Stat-JR LEAF Workflow Guide
(1.0.7)

This documentation was written by William Browne¥,
Richard Parker*, Chris Charlton*, Danius Michaelides** and
Luc Moreau**

*Centre for Multilevel Modelling, University of Bristol, UK

** Electronics and Computer Science, University of
Southampton, UK.

September 2019

Citing Stat-JR:

Please cite Stat-JR as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A., Cameron,
B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, A.J., Goldstein,
H., Jones, K., Leckie, G., Moreau, L. and Browne, W.J. (2019).
Stat-JR version 1.0.7. Centre for Multilevel Modelling,
University of Bristol & Electronics and Computer Science,
University of Southampton, UK.

Stat-JR LEAF Workflow Guide (1.0.7)

© 2019. William J. Browne, Richard M.A. Parker, Christopher M.J. Charlton, Danius T.
Michaelides and Luc Moreau.

No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, for any
purpose other than the owner’ s personal use, without the prior written
permission of one of the copyright holders.

ISBN: To be confirmed

Printed in the United Kingdom

Screen shots for version 1.06 updated by Rhiannon Moore.

Funding acknowledgement
We are grateful to the Economic and Social Research Council for funding the work upon which this
guide has been developed (ESRC grant ES/K007246/1).

Contents

FUNding ackNOWIEAZEMENT.......c.eiiiieeeie e et e e e bee e e et e e e e e abae e e enabeeeeenarenas 2
Section1l Getting Started with Stat-JR WOrKflOWSc..coviiiiiiiiiiiiicce e 6
11 OVEBIVIBW ..ttt ettt ettt e e et e e e st e e e e e e e s a s et e e s ane e e e s aneeeesannreeesannreeeseanreeesenrenes 6
1.2 STArtiNG UP TREE ..ottt ettt ettt e e e e s st e e e e e e s e s aabeeeeeeeeessnsnneeeeeeas 6
13 UY=L 10 e 1Y s I F- | = Y AU 9
1.3.1 If your dataset is already in .dta formatcccceeeeciee e 9
1.3.2 If your dataset is in Xt fOrmat ..oocceieiiiiiii 9
1.3.3 Converting your dataset to .dta format.......cccoeceeeiiicii i, 9
1.4 VIEWING the datasel.......ciiiiiiiei ittt e e e et e e e ebt e e e e ebeeeesenbaeeeesnraeaeeanes 9
1.5 OPENING STAt-JRILEAF ... e 15
1.6 Making our Workflow iNTEraCtiVe........cccuviiieciiee et 19
1.7 Adding QUESTION DIOCKS ...ciiiiiiie i e e e e e e aaeeeeas 22
1.8 [T u oY=l oY1 do T ={ = o o SRR 23
1.9 Connecting UP the OPErationsc.ueeiiciiie it e e e areeas 28
1.10 Using variables in @ WOIKFIOWccuuiiiiiiii et 30
1.11 Running a statistical regression model and showing predictions...........ccccceeecieeeeiieeeeennen. 34
1.12 Adding predictions to the WOrKfIOWcoiiiiiiiiiiii e 41
1.13 What have We COVEIEA?oooiiiiieieeieeee ettt s s 43
114 WAt s NEXE? .ottt ettt ettt s bt e s at e st st e e b e e bt e sbe e s heesabeeabeenbeesbeesaeenas 43
Section 2 A statistical analysis assistant for conducting regression type models...........ccccoeeennneen. 44
2.1 OVEIVIBW ..ottt e b e b e s ba e s b e e s ba e s saa e e sabeeesanee s 44
2.2 Questions and @ NISTOZIraMuii i e e s e eree e e e sabee e e e areeas 44
2.3 Introducing the “for-do” BIOCK.........uuiiiiiiieee e e 45
2.4 Univariable models — creating an intercept......ccoccueeeeeciieeeciieee e et 47
2.5 Univariable Models — running the models..........ccccueiieiie i 51
2.6 INterrogating the OULPULSuviiiee e e e ree e e e abae e e e areeas 54
2.7 Templates that do their own interrogationccveeecciieiieciiie e 62
2.8 Checking fOr SKEWNESScoiiiiiiec ettt e et e e e e ta e e e e aree e e e abee e e e areeas 62
2.9 MCMC EXplanation te€mMPIate......ceee et e e e e e e e e 64
2.10 WHhat have We COVEIEA?ooiiiiiiiieiiie ettt st ettt e s b e e s e e s ne e e snreesneeesaneeeane 66
Section3 Making workflows to support the LEMMA training materials.........cccoceeivcieeiciciveeeecnneen. 68
3.1 OVEIVIBW ..ottt ittt a e s a e s s aba e e s s aba e e s snbae s 68
3.2 [aYdfoTe [N ol T oY= o g o Yol =To [0 o TSRS 68
3.3 LEMMA P3.1: Regression with a single continuous explanatory variableccccceeeen. 72

3.4 LEMMA P3.2: Comparing groups: regression with a single categorical explanatory variable
74

3.5 LEMMA P3.3: Regression with more than one explanatory variable (multiple regression).75

3.6 LEMMA P3.4: Interaction ffeCtScoouiiiiiiiiieeee et 76

3.7 LEMMA P3.5: Checking model assumptions in multiple regression.........ccccoeeveeeevcieenennneen. 78

3.8 What have WE COVEIEA? ...ttt ettt et e st e s e e e sareeesanes 79
Section4 Translating @ workflow into an @BOOKcc.eeviieiiiiiiiiiie e 80

4.1 What have WE COVEIEA? ..ottt sb e s s s 93
Y= Yot o o T Yo T 1< o o [SRR 94

The Stat-JR:LEAF workflow system

The Stat-JR software package was first released in 2012 as a beta version and in September
2013 as a fully-released piece of software (version 1.0.0). Since then there have been a
number of updates and 2016 saw the release of Stat-JR 1.0.4: this featured an additional
workflow interface, LEAF (which stands for Logging and Execution of Analysis Flows), that
was distributed for the first time in beta form. In 2017 we released Stat-JR 1.0.5 which
included the workflow system in full. This has been developed as part of our ESRC-funded
project “The use of interactive electronic-books in the teaching and application of modern
quantitative methods in the social sciences” (see
http://www.bristol.ac.uk/cmm/research/ebooks/ for more information).

The Stat-JR:LEAF workflow system was primarily developed by Danius Michaelides**, with
additional input from Luc Moreau**, Chris Charlton*, Richard Parker* and William
Browne*.

To support the release of LEAF we have written this additional manual (to complement the
existing Beginner’s Guide to Stat-JR’s TREE interface, the Quick-start guide to the Stat-JR
1.0.6 TREE interface, the Advanced User’s Guide to Stat-JR, the DEEP eBook Reader and
Authoring Guide and the new SAA Guide which also uses workflows). This guide is self-
contained and does not assume that the reader is familiar with any of the other supporting
guides, although each of those will provide further information regarding their
corresponding topics.

This manual contains four main sections:

e In Section 1 we will introduce the TREE interface into Stat-JR and use the information
we glean from that to create a simple workflow in the new workflow system.

e In Section 2 we will introduce some of the other work in our ESRC grant: namely
investigating the development of a statistical analysis assistant.

e In Section 3 we will look at linking the workflow system to the training materials
available in the LEMMA Multilevel Modelling Online Course
(http://www.bristol.ac.uk/cmm/learning/online-course/).

e In Section 4 we will look at how we can export workflows into an eBook so that we
can link the workflow system with the DEEP eBook interface, and also investigate, in
greater depth, the system’s logging features to “complete the loop” and produce a
workflow from user interactions.

The materials in Section 1 to Section 3 are based on those used in teaching workshops and
we are grateful to attendees at these workshops for their helpful comments that have
greatly improved the final system.

* Centre for Multilevel Modelling, University of Bristol, UK

** Electronics and Computer Science, University of Southampton, UK.

http://www.bristol.ac.uk/cmm/research/ebooks/
http://www.bristol.ac.uk/cmm/learning/online-course/

Section 1 Getting Started with Stat-JR
workflows

1.1 Overview
This manual is designed to introduce new users to Stat-JR and in particular to its new workflow
interface LEAF (Logging and Execution of Analysis Flows). In order to introduce the workflow
interface, we will first provide an overview of how to use the TREE (Template Reading and Execution
Environment)! interface to Stat-JR and will briefly touch on certain aspects of the Python language
(https://www.python.org/) in which large portions of Stat-JR is written.

The main building block in Stat-JR is the template: a piece of code that performs operations one
might associate with a (statistical) software package. For example, one template might draw a
certain type of graph, whilst another might fit a particular statistical model, and so on. Templates are
the common currency shared by the various Stat-JR interfaces —i.e. they are used in LEAF, TREE and
DEEP (Documents with Embedded Execution and Provenance: Stat-JR’s eBook-reading interface) — so
it is important to have an understanding of how they work in order to use Stat-JR.

In order to perform its function appropriately, a template requires inputs from the user (just like a
function call in R or Stata, for instance): for example they typically need to know which variables to
use, and might need input concerning estimation options (for a model fit), plotting options (for a
chart), etc. We will begin by illustrating this using the TREE interface.

1.2 Starting up TREE
To start we will fire-up Stat-JR TREE which we do via All programs > Centre for Multilevel Modelling
> StatJR - TREE. When we do this we will find a command window appears which looks something
like the following:

! For a more detailed introduction to TREE, see the Beginner’s Guide to Stat-JR’s TREE interface.

https://www.python.org/

)y StatlR - TREE SEIES

0 Hi 0 ~
b B e 0 0
..ll NIN DO 0 0 ' 0 0 =
'H : : 0D 0 0 0 0 0
MWARHIN 00 D 0 0 0
LIARMIN 0D D 0 B H 0 D
LARNIN 0D D 0 ABH 0 0
LARNIN 00 0 0 H 1 H 1 0
LJARNIN 00 o 1o A E D 0
fuH : : 00 D D 0 0
LARNIN 00 0 0 1 0 0
ARHIN 00 D D 0 0
i.l O 00 0 D 0 0

0 0 A H 1 d G Y PGy P

[b H.801 0880

0 e 0 [. H 1 g Y b H P

515 , f HHHH
1 = 0 H.0 A1 8 G bl b 0 0
P i b H.H841 886
0 0 A H 1 d G Y b 0 0
P il A .86 7A0H
0 0 [. H 1 g Y b 0 0
P i A H.H 61615

i 0 H.0 18 G 0l 7 0 1 0
0 0 (0 P Al H.H062880 d
Figure 1

This command window will be where the software is actually running from and will contain
debugging information, but the user interacts with the software via a web browser (although often
Stat-JR will be running locally on the user’s machine); this should open automatically after a few
seconds. If you click on the about button at the top right then you can see information about the
software as follows?:

2 Stat-JR works best with either Chrome or Firefox, so if the default browser on your machine is Internet
Explorer it is best to open a different browser and copy the html path to it; this will be something like
localhost:52228 (although the number will likely differ each time you run Stat-JR). You can change your default
browser via Settings in the Chrome menu, or via Options > General in the Firefox menu (both menus are
found in top-right of their respective browser windows).

STAT-JR:TREE Version 1.0.7

© Centre for Multilevel Modelling, University of Bristol & Electronics and Computer Science, University of
Southampton, UK

Thank you for using our software. Stat-JR has been developed by a team based at the Universities of Bristol
and Southampton and funded by several grants from the UK Economics and Social Science Research council
(ESRC). For more information on the software, including downloadable manuals, please visit our webpages.

Citing Stat-JR

If you use Stat-JR in your research, then please cite it as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A.,, Cameron, B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, AJ.,
Goldstein, H., Jones, K., Leckie, G., Moreau, L. and Browne, W.J. (2019) Stat-JR version 1.0.7. Centre for
Multilevel Modelling, University of Bristol & Electronics and Computer Science, University of Southampton,
UK.

Stat-JR system

The initials of Stat-JR are taken from those of the late Jon Rasbash, whose vision was instrumental to its
conception.

The Stat-JR software system has been primarily developed by Chris Charlton* and Danius Michaelides™, with
algebra system development by Bruce Cameron®, and with additional input from William Browne* and
Richard Parker*.

Core template development by Chris Charlton®, William Browne®, Richard Parker*, Camille Szmaragd* and
Zhengzheng Zhang™.

Stat-JR:TREE

The Stat-JR:TREE software interface was primarily developed by Chris Charlton* and Danius Michaelides™,
with additional input from Richard Parker* and William Browne™.

* Centre for Multilevel Modelling, University of Bristol, UK

** Electronics and Computer Science, University of Southampton, UK.

Figure 2

Now clicking on the Close button will allow you to run the Stat-JR TREE software and the main
screen will look as follows:

tutorial Regression1 Idle

© Response:

© Explanatory variables: school
student
normexam
cons
standirt

girl

schgend

avsirt

schav

vrband »

@ Current input string: }

© Command: RunStatJR(lemplaie='Regression1', dataset="tutorial', invars = {}, estoptions = {})

Figure 3

The TREE interface allows the user to try out one template at a time, pairing it with one dataset, and
you can see at the top of the screen pull-down menus headed Dataset and Template, and the names
of the template and dataset currently selected by default (tutorial and Regression1). These pull-

down menus allow you to change the template and dataset you are using (and also to view, edit and
summarise the current dataset).

Below the black bar, in the central area of the window, you can see some of the inputs required for
the currently selected template (Regression1), namely the Response and Explanatory variables, and
you can further see that you are being offered variables from the default dataset (the tutorial
dataset) as possible values for some of these inputs.

1.3 Using your own dataset
Below we will be working with one of the sample datasets provided with the Stat-JR package (one
which you may be familiar with from MLwiN, namely the tutorial dataset). However, you might like
to use your own dataset in certain sections (or try out both). The remainder of this section details
how to import your dataset; if you don’t have your own dataset, you can move onto Section 1.4.

Stat-JR works with datasets saved in Stata format, i.e. with a .dta extension. It looks for these in
the...\datasets folder of the Stat-JR install, and also in a folder saved, by default, under your user
name, e.g. C:\Users\YourName\.statjr\datasets (you can change the path via Settings in the black
bar at the top of the browser window in the TREE interface).

1.3.1 If your dataset is already in .dta format
If your dataset is already in .dta format (see below), then you can upload it, in TREE, via (i) Dataset >
Upload (menu options in the black bar at the top of the browser window), which will upload it into
the temporary memory cache, or by (ii) saving your dataset in one of the datasets folders (as
discussed above), and then selecting Debug > Reload datasets (again, accessible via the black bar at
the top of the browser window).

In the case of option (i), the dataset will be available for use in the current session, but you then
need to download it (as a .dta file) via Dataset > Download (e.g. saving it into the

C:\Stat/R\datasets or C:\Users\YourName\.statjr\datasets folders) for use in the future sessionsor be
forced to upload it each time. In the case of option (ii), the dataset will be available in future sessions
since it has been saved in one of the folders in which Stat-JR searches for datasets on start-up.

1.3.2 If your dataset is in .txt format
If, instead, you have your dataset saved as a .txt file, you can use Stat-JR's LoadTextFile template to
save it into the temporary memory cache (the template LoadTextFileMoreOptions allows the user to
specify more particulars, and can also handle string variables).

This dataset will be available for use in the current session, but you then need to download it (as
a .dta file) via Dataset > Download (e.g. saving it into the C:\StatJR\datasets or
C:\Users\YourName\.statjr\datasets folders) for use in the future sessions or use the template to
load it each time.

1.3.3 Converting your dataset to .dta format
Via the procedure described in Section 1.3.2 (and downloading), Stat-JR will save your .txt dataset as
a .dta file, but you can also create .dta files via Stata, MLwiN and R (e.g. the foreign or haven
packages in R).

1.4 Viewing the dataset
You can select your dataset of choice via Dataset > Choose, remembering to press the Use button
once you have selected it from the list.

Once the dataset is selected, if we click on the Dataset menu and click on View we will get a second
tab in our browser as shown:

Stat-JR:TREE

Data Summary Add variable Delete variable Edit data label Edit value labels

Dataset name: tutorial E

tutorial (Exam results for six inner London Education Authorities; see Goldstein et al '93) (-]
[schoot student normexam cons standirt girl schgend avsirt schav vroand

1] 1 1 026132447 1 061805326 1 mixedsch 0.16617455 mid vb1 | A
2] 1 2 013406678 1 0.20580196 1 mixedsch 0.16617455 mid vb2
3] 1 3 -1.7238824 1 -1.3645757] mixedsch 0.16617455 mid vb3
4] 1 4 0.867586 1 0.20580196 1 mixedsch 0.16617455 mid vb2
] 1 0.5443408 1 037110487 1 mixedsch 0.16617455 mid vb2
6] 1 6 17348882 1 2188437] mixedsch 0.16617455 mid vb1
7] 1 7 1.038608 1 -1.1166214] mixedsch 0.16617455 mid vb3
8] 1 8 -0.12808468 1 -1.0339683] mixedsch 0.16617455 mid vb2
9] 1 8 -0.83837767 1 -0.5380612 1 mixedsch 0.16617455 mid vb2
w0 O 1 10 -1.2194855 1 -1.4472272] mixedsch 0.16617455 mid vb3
"] 1 11 2.408692 1 24373913] mixedsch 0.16617455 mid vb1
12 O 1 12 061072856 1 21067855] mixedsch 0.16617455 mid vb1
(| 1 13 -1.8366867 1 0.04043304] mixedsch 0.16617455 mid vb2
14 O 1 14 -0.12808468 1 1.1876194] mixedsch 0.16617455 mid vb1
15 [1 15 2203121 1 2.520043] mixedsch 0.16617455 mid vb1
(| 1 16 1.2405332 1 11149681 1 mixedsch 0.16617455 mid vb1
7o O 1 17 17348882 1 1.0323166 1 mixedsch 0.16617455 mid vb1
(| 1 18 1.3101424 1 07843622] mixedsch 0.16617455 mid vb1
19 O 1 18 -0.6230507 1 -1.1166214] mixedsch 0.16617455 mid vb3
20 [1 20 1.038608 1 -1.1882728 1 mixedsch 0.16617455 mid vb3
2] 1 Fal -1.0280668 1 -0.37275827 1 mixedsch 0.16617455 mid vb2
» O 1 22 -1.2194855 1 -1.3645757] mixedsch 0.16617455 mid vb3
23 [1 23 0.3280722 1 08513184 1 mixedsch 0.16617455 mid vb2
24 [1 24 -0.48273083 1 -2.3563933] mixedsch 0.16617455 mid vb3
25 [1 25 1.8003352 1 -0.04215242 1 mixedsch 0.16617455 mid vb2
26 [1 26 08965657 1 037110487] mixedsch 0.16617455 mid vb1

7 1 ey 0.073536366 1 11149681] mixedsch 0.16617455 mid vb1 "

+ T PG 10 Columns. View 1-30 of 4,058,

Figure 4

You can see the top few rows of the tutorial dataset, together with several tabs one could then click
on. Clicking on Summary, for example, produces the following:

Stat-JR:TREE

Data Summary Add variable Delete variable Edit data label Edit value labels

Dataset name: tutorial E

tutorial (Exam results for six inner London Education Authorities; see Goldstein et al '93) (-]
Name Count | Missing Min Max Mean Std Description Value Labels’

school 4058 0 1 65 31.006651884700 18.936811072595 School ID

student 4058 0 1 198 38.699926090169 30.260690898312 Student ID

normexam 4058 0 -3.6660717 3.6660914 -0.0001139071 0.99882084 Age 16 exam score (normalised)

cons 4058 0 1 1 1.0 0.0 Constant

standirt 4058 0 -2.9349535 3.0159516 0.0018102548 0.9931017 Age 11 exam score (standardised)

girl 4058 0 0 1 0.6001478196600 0.4898677517630 Girl

schgend 4058 0 1 3 1.8048780487804 0.9140796545376 School gender schgend

avsit 4058 0 -0.75596046 0.63765585 0.0018102472 0.3148315 School average LRT score

schav 4058 0 1 3 2.1271249076127 0.6529263155277 School average LRT score (3 categories) schav

vrand 4058 0 1 3 1.8430647942843 0.6307845929865 Age 11 verbal reasoning level vrband

G Page[T_Jof 1 View 1-10 0f 10,

Figure 5

This gives us, for each of our ten columns in the tutorial dataset, some basic statistics including the
minimum, maximum, mean and standard deviation. In fact one of the first things one might do when
presented with a dataset might be to produce summary statistics. The summary statistics we’ve just
viewed are not actually produced via a template: this dataset summary table is just an in-house
widget the TREE interface has to assist users with their exploratory data analysis. However, various
summary statistics can be produced via templates, and we will do this ourselves as a means of
illustrating both the TREE and workflow interfaces to Stat-JR.

10

Click on the first tab in the browser to return to the screen with the Regressionl inputs showing. If
you now choose the Template menu and click on Choose, a new window will appear that contains a
list of templates (and a cloud of key terms to help pare down the list to those most relevant).

Scroll down and select AverageAndCorrelation from the list and the screen will look as follows:

Change template

1-Level 2-Level Alternative MCMC methods aML Averages Binomial Categorical predictors
Complementary log-log Complex level 1 ConvergingC Correlation Crosstab CustomC
Data manipulation Diagnostics eStat Functions GenStat_model gretl_model hypothesis test
JAGS Logit MATLAB_script Minitab_model Missing data MLwiN_IGLS MLwiN_MCMC
MLwiN_script MLwiN:point & click Model MultiBUGS Multiple membership Multivariate response
N-Level Negative binomial Normal Octave_script OpenBUGS Ordered multinomial
Orthogonal parameterisation Plots Poisson Population ecology Prediction Probit PSPP_model
python_PyMC Python_script Rbrms Rgim Rhgim RINLA Rlme4 R_MCMCglmm
R_MCMCpack R_mgcv R_nimble R_RStan R_script R_scriptMCMC Ricomments Random slopes
Recapture Reference category SAA SABRE SAS_model Saving and Loading SPSS_model
Standard deviation Stata_model Summary stats Unordered multinomial VPC wf WinBUGS
[reset]

2LevelMod WBName: AverageAndCorrelation
2LevelMultipleMembership

2LevelOrdered

2LevelProbitRegression
2LevelRS averages and standard

Description: Choose to either calculate mean

2LevelRSComplex deviations, or correlations, for
2LevelUnordered selected variables.
AverageAndCorrelation

Figure 6

If we next click on Use then the main screen will reappear, but this time asking for the inputs specific
to this template. We can fill these in as follows (Operation: averages; Variables: normexam, girl; or
variables from your own dataset if not using tutorial):

Stat-JR:TREE tutorial AverageAndCorrelation Idle

Operation: averages

Variables: school
student
cons
standlrt
schgend
avslrt
schav
vrband

normexam
girl o

Next
@Current input string: {}

@Command: RunStat/R(template="AverageAndCorrelation’, dataset="tutorial’, invars = {}, estoptions = {})

Figure 7

Here we have selected averages (as opposed to calculating correlations) and chosen two variables to
work out averages for. If we then click on Next to confirm the inputs and Run to run the template,
the screen will look as follows:

11

Stat-JR:TREE tutorial AverageAndCorrelation Ready (0s)

Operation: averages remove

Variables: normexam,girl remove

Download Make workflow

@Current input string: {'vars’: 'normexam,girl’, ‘op’: ‘averages’}

@Command: RunStatIR(template="AverageAndCorrelation’, dataset="tutorial’, invars = {'vars 'normexam,girl’, ‘'op’: ‘averages’}, estoptions = {})

script.py E

Popout

import numpy
import numpy.ma
import EStat
from EStat.Templating import *
tabout = TabularOutput()
if op == ‘averages':
tabout.column_headings = ['name’, 'count’, ‘mean’, 'sd']

Figure 8

At the bottom of the screen there is a results pane which displays whatever output object is selected
in the pull-down list just above it. Here we see the Python script (script.py) that has been run to
execute the template. If instead we pick the object table from the pull-down list of outputs then the
screen looks as follows:

Stat-JR:TREE tutorial AverageAndCorrelation Ready (0s)
Operation: averages remove
Variables: normexam,girl remove

Download Make workflow

@Current input string: {'vars’: 'normexam,girl’, ‘op’: ‘averages’}

@Command: RunStatIR(template="AverageAndCorrelation’, dataset="tutorial’, invars = {'vars 'normexam,girl’, ‘'op’: ‘averages’}, estoptions = {})

table E Popout
name count mean sd
normexam 4059 -0.0001139071 0.99882084
girl 4059 0.60014731966 0.489867751763

Figure 9

So here we have done something really rather simple which is to execute a template that has taken
the two variables we chose and worked out their means and standard deviations; these should
correspond to those we have already seen in the Dataset Summary screen we looked at earlier.

We will shortly use this template in the workflow version of Stat-JR to create a workflow that
performs the same averaging operation. For this we need to pay attention to the names of the

12

inputs, which you can see in the grey Current input string® box and again in the Command box below
(which is how one would run this template with these inputs in the Python command driven version
of Stat-JR).

As this implies, the templates are written such that the input questions asked of the user in the
browser window (in this example, Operation and Variables) might be different to the name the
template actually assigns to those input objects in the background (in this example, op and vars,
respectively). This simply allows the input questions posed of the user to be more expansive than
the underlying assigned names, which may be shorter to spare the coder’s fingers and allow for
coding efficiency. We’ll have a look at the template itself in a moment to illustrate how this
distinction is realised in its code.

So using TREE is a useful way to test out a template and find the names of the inputs it requires, and
the names of the output objects too (via the pull-down list above the results pane); i.e. we now
know:

o The name of the template: AverageAndCorrelation
e The inputs it requires:
o op, which we assigned the value averages
o vars, which we assigned the value normexam, girl
e The name of the template’s output most relevant to us: table

As well as gleaning a template’s required inputs by running the template in TREE, however, you can
also retrieve that information by looking at the code in the template file itself. In the Stat-JR
directory from which you ran TREE, you will see there is a subdirectory called templates. In this
subdirectory there will be a Python file for each template; for example AverageAndCorrelation.py
contains the Python code for the template we’ve just run. If you open this file you will see the
Python code as shown below:

Copyright (c) 2013, University of Bristol and University of Southampton.
from EStat.Templating import Template
class TemplateAverages (Template) :

'Choose to either calculate mean averages and standard deviations, or correlations, for
selected variables.'

__version = '1.0.0'
tags = ['Summary stats', 'Correlation', 'Averages',6 'Standard deviation']
engines = ['Python script']
inputs = """
op = Text ('Operation: ', ['averages',6 'correlation'])
vars = DataMatrix ('Variables: ')
T
pythonscript = '''

import numpy

import numpy.ma

import EStat

from EStat.Templating import *

3 The input string allows the user to specify all the inputs directly, via the Set Inputs option in the Template
pull down list, without having to point-and-click through the list as we have done. If you click on Template >
Set Inputs you will see this input string reproduced in the Input string box; clicking on the Use button
populates the inputs with these values, which obviously will have no effect here, but it would if you first
changed a value, or indeed used the inputs from a previously-run template execution, as selected from the
History box above.

13

tabout = TabularOutput ()

if op == 'averages':
tabout.column headings = ['name', 'count', 'mean', 'sd']
for i in range (0, len(vars)):
var = datafile.variables([vars[i]]['data']
tabout.add row(vars([i], [len(var), var.mean(), var.std()])
if op == 'correlation':
invars = numpy.ma.row stack([datafile.variables([var]['data'] for var in vars])
corrs = numpy.corrcoef (invars)
tabout.column headings = ['name']

for j in range (0, len(vars)):
tabout.column headings.append(vars[]j])

for i in range (0, len(vars)):
row = []
for j in range (0, len(vars)):
row.append (corrs[i, 1)
tabout.add row(vars([i], row)

outputs|['table'] = tabout

Here you can see that the template code is structured such that it includes an inputs section where
you can see both the prompts asked of the user (Operation and Variables) and, importantly, the
names the template assigns to the values provided by the user to those prompts (op and vars,
respectively; all highlighted in yellow); i.e. the latter names are the same as those appearing in the
Current input string box in TREE. You can also see why we were offered a choice of averages or
correlation as values for op, since these are coded as the options to be presented to the user.

Below that you will find a section of the code called pythonscript; this contains the Python code
executed once the inputs defined in the section above have all been completed (i.e. had values
assigned to them) by the user (you can see that the objects op and vars are used in this section, so
the template cannot run to completion unless the user has provided values for them). On the last
line of this section you can see the output name of interest (table; again highlighted in yellow),
which is one of the outputs which appeared in TREE.

So either of these methods (via TREE, and via the template code itself) can be used to uncover the
information needed by a workflow in order for it to execute the operation we have just performed in
TREE. Having gleaned this information, we could ‘manually’ start building up such a workflow from
scratch in the LEAF (workflow) interface, but TREE can help us make a start by providing blocks
corresponding to our choice of input values, dataset and template. Back in the browser window you
will see a Make workflow button just below where you specified the inputs, above the Current input
string grey box. If you press this button a box will open entitled Save history. If the template
execution described above is the only one you’ve conducted in the current Stat-JR session then the
Only include last run box can remain unticked (otherwise tick as appropriate if you have run other
template executions beforehand).

Press the Workflow button; you now have a few options with regard to the choice of directory in
which to save it. You can simply choose any directory of your choice and then request LEAF upload it
from wherever you have saved it, or you can save it into one of the two directories in which LEAF
automatically looks for workflows. By default these two directories are (a) a folder under your user
name, e.g. C:\Users\YourName\.statjr\workflows, and (b) a folder under the Stat-JR install, e.g.
C:\StatJR\workflows*. To complicate matters a little further, workflows need to be saved in a

4 The distinction between these folders is that workflows saved in the Stat-JR install directory (e.g.
C:\StatJR\workflows) will (usually) be available to all users, whereas those saved under your own user name
(e.g. C:\Users\YourName\.statjr\workflows) will be available just to you.

14

subdirectory of these root folders to be automatically accessible from LEAF: e.g. if the workflow you
are saving is called my_workflow.xml, then:

C:\Users\YourName\.statjr\workflows\my_workflow.xml|
C:\Stat/R\workflows\my_workflow.xml|

..won’t work (i.e. your workflow will not be automatically accessible from LEAF), whereas:
C:\Users\YourName\.statjr\workflows\My new workflows\my_workflow.xm|
C:\Stat/R\workflows\My new workflows \my_workflow.xml

...will work (i.e. your workflow will appear be automatically accessible from LEAF, and will appear
under “My new workflows”).

1.5 Opening Stat-JR:LEAF
We will now open LEAF: the workflow interface to Stat-JR; you can open this via All programs >
Centre for Multilevel Modelling > StatJR - LEAF. This will fire-up another command window which
will contain debugging commands and another web browser window for the workflow version of
Stat-JR, as shown below:

Stat-JRILEAF Workflows ~ Edit~ Clear Dump Save Upload Dataset

Control Selected
Logic block:
Math

Lists

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 10

Stat-JR’s LEAF system is still using Python as the code in the background but the web interface is
using a program called Blockly (developed by Google; https://developers.google.com/blockly/;
https://blockly-games.appspot.com/); this is a visual programming system that involves using blocks
to represent operations, and has been used by a variety of applications as an aid to help people
learn to code.

We will first open the workflow we have just made in TREE. Depending on where you saved it you
can either do this via the Upload link in the black bar at the top of the LEAF interface, or — if you
have saved it to one of the directories in which LEAF automatically looks for workflows on start-up —
via the Workflows pull-down list.> Note that, whichever method you choose, you are asked to make
a choice as to whether you would like to (Up)Load or Import the workflow.

5 NB If you have saved it to one of these folders during a session of LEAF, then you can refresh the list
accessible via the Workflows pull-down by pressing Debug > Reload workflows.

15

https://developers.google.com/blockly/
https://blockly-games.appspot.com/

If you (Up)Load a workflow, this will clear any workflow currently displayed in the LEAF interface,
replacing it by the workflow you are bringing in.

If instead you choose to Import a workflow, this will keep the workflow currently displayed in the
LEAF interface and bring the imported workflow into the same workspace (you may need to move
blocks around to see them both). This can be useful if you want to add blocks from one to the other.

Having opened the workflow we saved in TREE, our screen will look as follows (to make things a little
clearer we’ve increased the size of the blocks here by pressing the + button just above the bin
symbol towards the bottom-right corner):

Stat-JR:LEAF

I Gz Selected
I Logic block:
I Math
I Lists
I Text ~ Change
Hypothesis Select dataset | €6 [TGLE] 22
I Data Preparation - o
= normexam,girl |-
T . Set Input | i normexam,girl
I Models . .
I Postprocess Setlnput | ¢ G2 = | <« BEEED
Input :
I of,tput LEEClE (1 AverageAndCorrelation -2/
I Variables
I Procedures
I other
Devel
Figure 11

These blocks represent our earlier choices in the TREE interface as a workflow, and we could have
instead constructed it by choosing blocks from the menu on the left-hand side and dragging them
into the central area.

First we have a Start block, whose simple purpose is to indicate the start of the workflow (you will
find this in the Control menu). Then we have a Select dataset block (Data Preparation menu), with a
text block (Text menu) attached to the right of it indicating we wish to select the tutorial dataset. If
you don’t know the dataset name you can right-click, choose “Select Dataset” and choose from a list.
Next we have two Set Input blocks (Models menu) which specify that the inputs “vars” and “op”
have the values “normexam,girl” and “averages”, respectively. As we saw earlier, “vars” and “op”
are the inputs for which the AverageAndCorrelation template needs values in order to run to
completion. Finally we have a Template block (Devel menu) with a text block to the right of it
indicating we wish to run the AverageAndCorrelation template. If you don’t know the template
name you can right-click, choose “Select Template” and then choose from a list.

If you press the Run button, towards the top right-hand corner, a new tab will open in the browser,
and after a short time the following content will appear:

16

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 Setlnput(vars=normexam,girl)

v

Block 3 Setlnput(op=averages)

v

Block 4 TemplateExecution(template=AverageAndCorrelation)

i

Provenance

Save to Ebook Preview Ebook

Validate | Translate into | json || xml || provn || turtle || trig | svg

Show Prov | Show Bindings |

Figure 12

The current output from workflows is a little crude: essentially we get a list starting with “Block 1”
and numbered through to “Block 4”, corresponding to the four blocks (counting vertically,
downstream from the Start block) in the workflow. If we click on the pull-down list just below Block
4 (the Template block) we can see the outputs from the template execution; e.g. selecting table
displays the output we saw earlier in the TREE interface, containing selected summary statistics for
the variables normexam and girl.

Returning to the browser tab containing the workflow blocks, we can request that this table is
displayed automatically by using a Show block from the Output menu. We need to do this manually
as the Make workflow tool in the TREE interface currently does not have the facility to specify which
output to show. So, click on Output in the left-hand menu to find the Show block:

Stat-JR:LEAF

I control Selected
I oo poe
I wmath
I Lists
j =
Hypothesis Select dataset | &6 [IRLE]) 22
Data Pi t e -
| o mern T vars L T romesamon 1)
o
l Models a4
I Postprocess Set Input [€61 2 | = (&6 ETEIERER) 22
Input -
I npu. LG sEICM 1| AverageAndCorrelation 2
.
l Variables
I Procedures
I other
Devel
Figure 13

Having located the Show block, place your cursor over it and, holding down the left mouse button,
drag it into the central workflow area. You will see there is a groove into which it can fit under the
Template block: if you attach it, it should join to it with a satisfying clicking noise (if your speakers

are on), and visually ‘snap’ into place to look as follows:

17

Stat-JR:LEAF -

I control Selected

I Logic block:

I wmath ;

I uisis

| =
eSS Select dataset {1 . tutorial |-/
Data P i . T

| oo paren SCLTEE Y vars LS normexam.girl |

I Models S ave L e

I Postprocess Set Input F “Ey» | = ¢ 1 averages |-
Input . :

= gﬂ,pm Template » % AverageAndCorrelation| .

I variables Show -

I Procedures

l Other
Devel

Figure 14

Here you can see, in a hollow towards the right of the Show block, a faint ‘shadow block’: this is a
prompt, or placeholder, to save the user pulling in a block separately from the palette of blocks on
the left-hand side. It’s not actually an active block until we decide to type something in it, so let’s go
ahead and type the output we want to display, table, as follows:

Stat-JR:LEAF

Control Selected
Logic block:

Math

Lists

Text Change

Hypothesis Select dataset 0 % tutorial |2/

Data Preparation e TR e
Data Exploration Setlnput [¢ - - = ”
Models .
Post-process
Input

Output Template & 1 AverageAndCorrelation| -

Variables Show m
Procedures

Other

Devel

Setlnput [¢)2 = -;l 1 averages |

Figure 15

18

At this point it would be good to save our modified workflow, so click on Save and specify a name
(we will name it after this section of the manual, and choose section1_05.xml) thus:

Save Workflow

Filename

session1_5.xml

Figure 16
You will be asked for a directory, so store this file somewhere you know where to find it!

If you press Run, a separate tab will again open, but this time displaying the table towards the end:

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

Block 2 Setlnput(vars=normexam,girl)
Block 3 Setlnput(op=averages)
Block 4 TemplateExecution(template=AverageAndCorrelation)

v

Block 5 OutputObiject(table)

name count mean sd
normexam 4059 -0.0001138071 0.99882084
girl 4059 0.60014781966 0.489867751763

Provenance

Validate | Translate into | json || xml || provn || turtle || trig | svg

Show Prov | Show Bindings |

Figure 17

1.6 Making our workflow interactive
As things stand we have what is effectively a log of what we did in TREE and for which there is no
interactivity. Next we will show how we can make the workflow interactive by asking the user which
variables they want to use to calculate the averages.

We will firstly do this rather crudely: click on the first tab to return to the workflow creation screen.
Next we will remove the Set Input block for “vars” from the workflow; there’s no need to delete it:
we can simply set it to one side of the workflow as shown below. The workflow system doesn’t

19

currently have a separate place to store fragments of workflow; however, only those blocks that are
contiguous with the Start block will be executed by the Run button, so effectively we’ve rendered
these inactive by removing them from the workflow stream: i.e. we’re simply storing them to the
side for now:

Stat-JR:LEAF

I Control Selected
l Logic block:
I math 4
I st
e ..

Hypothesis Se]ect CEIEE SIBNT tutorial B2
| Data Preparation

[13 » | = [11 ”»

l Data Exploration e m ‘
I Models A EICH. 1 AverageAndCorrelation)-+/
| Postprocess]
I output
I Variables
l Procedures
| other

Devel =

ST vars LR nomexam.gin |

Figure 18

This time, after we click on Run, two aspects of the output are notable. Firstly there is a statement at
the top indicating “Extra code ignored”. This simply means that it has detected the Set Input block
we removed from the workflow and set to one side. Secondly, we are prompted for the outstanding
input values the template needs before it can run to completion:

20

Stat-JR:LEAF

Extra code ignored.

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 Setlnput(op=averages)

v

Block 3 TemplateExecution(template=AverageAndCorrelation)

v

Input for TemplateExecution(AverageAndCorrelation)

Variables: school -

student
normexam
cons
standlrt
girl
schgend
avslrt
schav
vrband

Figure 19

If we click on standirt and schgend (or variables of your choice) and then Submit then the workflow
will execute and look as follows:

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 Setlnput(op=averages)

v

Block 3 Setlnput(vars=standirt,schgend)

v

Block 4 TemplateExecution(template=AverageAndCorrelation)

v

Block 5 OutputObiject(table)

name count mean sd
standirt 4059 0.0018102548 0.9931017
schgend 4059 1.80487804878 0.914079654538

Provenance

Save to Ebook | Preview Ebook

Validate | Translate into | json | xml | provn | turtle | trig | svg

Show Prov | Show Bindings |

Figure 20

And thus we have created a workflow that will ask the user for variables (from the tutorial dataset,
in our example) and then produce their means and standard deviations.

21

1.7 Adding question blocks
If we want to change how we ask for an input —i.e. the prompt presented to the user — from within
the workflow (cf. changing the code in the template itself) then instead of removing the Set Input
block from the workflow, we can instead reinstate it but this time with the addition of a question
block. So, move the Set Input block back in, and remove the text block in which the input values
were ‘hard-wired’ (you can select it and press the Delete button on your keyboard, or right-click and
select ‘Delete Block’, or finally you can drag it to the bin in the bottom right corner - the bin will
open and if you let go of the mouse button it will swallow the blocks!)

Then, from the Input list of blocks select the Ask multiple variables® block from the list and drag it to
fill the hole we left in the Set Input block. You will see that the Ask multiple variables block has a
blank box in which you can type your question (truncated here, but we asked “Which variables do
you want to calculate an average of?”):

Stat-JR:LEAF Run

Control Selected
block:

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Set Input

Template AverageAndCorrelation

Figure 21

Running the workflow will then prompt the user with this question, as we see below:

® We're using the Ask multiple variables block here as it allows the user to select more than one variable in
their answer; the Ask single variable block only allows the user to select one variable.

22

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 QueryMultipleVariable(question=Which variables do you want to calculate an average of?)

v

Block 3 Setlnput()

Input for QueryMultipleVariable()

Which variables do you want to calculate an average of?: school =

student
normexam
cons
standlrt
girl
schgend
avslrt
schav
vrband

Figure 22

Here if we answer the question we will once again get output showing the means and standard
deviations for the selected variables. Let’s overwrite the workflow we saved earlier with this version,
so save it as section1_05.xml.

1.8 Plotting a histogram
We will now move on from working with the AverageAndCorrelation template and turn our
attention to trying a second template and placing it in a workflow. This will be another operation
one might do when beginning to look at a dataset, namely plotting a histogram of a variable to
assess the shape of its distribution.

We can go back to TREE to identify the template we will need. If you don’t still have TREE active you
will need to restart it. Once you’re back on the main TREE window, select the Template list and click
on Choose. If you select Plots in the cloud of terms, you will see the list reduces to those templates
which generate charts, including one called Histogram, which we can use.

23

Change template

1-Level 2-level Alternative MCMC methods aML Averages Binomial Categorical predictors
Complementary log-log Complex level 1 ConvergingC Correlation Crosstab CustomC
Data manipulation Diagnostics eStat Functions GenStat_model gretl_model hypothesis test
JAGS Logit MATLAB_script Minitab_model Missing data MLwiN_IGLS MLwiN_MCMC
MLwiN_script MLwiN:point & click Model MultiBUGS Multiple membership Multivariate response
N-Level Negative binomial Normal Octave_script OpenBUGS Ordered multinomial
Orthogonal parameterisation Plots Poisson Population ecology Prediction Probit PSPP_model
Python_PymMc Python_script Rbrms R.gim Rhglm RINLA RlIme4 R_MCMCgimm
R_MCMCpack R_mgcv R_nimble R _RStan R_script R_scriptMCMC R:icomments Random slopes
Recapture Reference category SAA SABRE SAS_model Saving and Loading SPSS_model
Standard deviation Stata_model Summary stats Unordered multinomial VPC wf WinBUGS
[reset]

CaterpillarPlot9s
CaterpillarPlotResid

CaterpillarPlotSD E
[ETY S | Description: Produces a histogram from a

HistSkew column of data, with the
MCMCColumnDiagnostics number of bins chosen by the
MCMCExplanation
PlotsViaR

WBName: Histogram

user.

Figure 23

In an earlier section we chose to run our template of interest in TREE and then export a workflow
reflecting our choice of template, dataset and inputs via the Make workflow button. This time we’ll
try a different method.

Returning to the LEAF interface, make sure you have saved the previous workflow we were working
on (section1_05). Then, delete the blocks specifically relating to our execution of the
AverageAndCorrelation template (so that’s the Set Input, Template and Show blocks) as shown
below:

Stat-JR:LEAF

Control Selected
Logic block:
Math
Lists g

Text Select dataset tutorial
Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 24

As an aside — whilst we’ve got this small set of blocks — it’s worth noting that one of the features of
using Blockly to realise Stat-JR’s workflow system is that many of the syntactical rules are inherent in
the shape of the blocks, and their readiness to fit together. As you can see, the Select dataset block
has a slot on its right-hand side, like the side of a jigsaw piece. As you might imagine, this can only
take another block which is appropriately shaped to fit into that slot. However, it can’t take any such

24

block: for example if you were to try to replace the current text block with a not block (from the
Logic menu), you’ll see it resists, like trying to join like poles of two magnets:

Stat-JR:LEAF Run

Control Selected
Logic block:
Math 6e8kge

Lists < tutorial [
Text ’

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Select dataset

Figure 25

Clearly, this is the wrong sort of block (we can just delete it, as were only trying it out to prove a
point!) In this instance, of course, the shadow block is suggesting an appropriate choice of block: a
‘text’ block, which is exactly what we had anyway, so we can just re-attach our “tutorial” text block,
and we’re back where we were.

Next we'll add a Template block indicating we wish to run the Histogram template we identified in
TREE; to do this, pull in a Template block from the Devel menu on the left-hand side (alternatively
we could, of course, have edited the Template block we just deleted) and write Histogram in the text
block attached to the right of it, as shown below:

Stat-JR:LEAF Run

Control Selected
Logic block:
Math

e
Hypothesis
Data Preparation Select dataset tutorial
Data Exploration
Models Template Histogram
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 26

Now, if we press Run, it will prompt us for the inputs the template needs. In this example we’ve
chosen to plot the variable normexam in a histogram with 15 bins:

25

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 TemplateExecution(template=Histogram)

v

Input for TemplateExecution(Histogram)

Values: normexam E

Number of bins: 15

Figure 27

Once you have pressed the Submit button, you will see that a final block appears (Block 4) pertaining
to the template execution; from the pull-down underneath it select histogram.svg:

26

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 Setlnput(bins=15)

v

Block 3 Setlnput(vals=normexam)

v

Block 4 TemplateExecution(template=Histogram)

histogram.svg E

0
-4 =3 =2 -1 0 1 2 3 4
normexam
Provenance
Validate | Translate into | json | xml | provn | turtle | trig | svg

Show Prov | Show Bindings |

Figure 28

So, we’ve been prompted for the input values the Histogram template needs, and have identified
the relevant output object (histogram.svg). If we now press the Re-edit button, towards the bottom-
left of the screen, we will see that a workflow appears containing the Histogram template’s inputs
(bins and vals) and the values we just assigned to them (15 and normexam, respectively). What this
workflow doesn’t have is the output object (it’s currently not possible to add that to a workflow via
the Re-edit button), so let’s add that ourselves by pulling in a Show block from the left-hand menu:

27

Stat-JR:LEAF

I Control Selected
l Logic block:
I Math
| = ,
Hypothesis Select dataset | &6 [OeLED 2
I Data Preparation
; I, gwewm as | [s or= aa |
I Pl Setinput | « I = («ED»
odels
| Postprocess
I input Set Input t‘ 1 vals 20| = [| 11 normexam |-
I output
I Variables Template (“”
l Procedures '- I
I other Show histogram.svg
Devel
Figure 29

Now, if you Run this workflow, you see that the plot appears towards the bottom of the output.

Save this workflow as section1_08.xml.

1.9 Connecting up the operations
We have now created two workflows and an obvious next step is to join them together; to do this
we can import the earlier workflow we produced and then append them. With the last workflow we
constructed (section1_08.xml) still on the screen, select Upload from the black bar at the top, and
navigate to the workflow we earlier saved as section1_05.xml. Having selected it and pressed Open,
next choose Import file when prompted: this will bring that workflow into the same workspace as
the current workflow (rather than first clearing the workspace).

The two workflows may appear alongside each other, or perhaps one may be overlaying the other; if
the latter you can just move one aside so you can clearly see them both:

Stat-JR:LEAF

Control Selected
Logic block:
Math d43g2¢
Lists

-

i Select dataset | ¢ [[TO0ED
Appaliveas cecoessr h Select dataset tutorial

Data Preparation Setinput |« CIB = |: «EB»

. Set Input L LA [Which variables do you want to calculate an aver_.. |
Data Exploration EETTNEE T vals | o rmexam) S
! 1 averages
Models emplate B
e Hist »
Post i -3 Template AverageAndCorrelation
o8 PIOCess : snow
Input - a0
Output
Variables
Procedures
Other
Devel
Figure 30

We now need to append the blocks pertaining to the histogram below those generating our
summary statistics of interest; remember we only need one Start block and one Select dataset block
(since both template executions use the same dataset):

28

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 31

If we press Run, and then answer the question when prompted (here we have chosen just
normexam) we will see that both operations are done thus:

Select dataset tutorial

Set Input

Template AverageAndCorrelation

Setlnput || I P? | = |
Setinput |« R » | =
Template (HNEE ”»

{115 L1
2 normexam F1

29

Selected
block:

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 SetVariable(variable=response, value=normexam)

v

Block 3 Setlnput(op=averages)

v

Block 4 Setlnput(vars=normexam)

v

Block 5 TemplateExecution(template=AverageAndCorrelation)

v

Block 6 OutputObiject(table)

name count mean sd

normexam 4059 -0.0001139071 0.99882084

Block 7 Setlnput(bins=15)

v

Block 8 Setlnput(vals=normexam)

v

Block 9 TemplateExecution(template=Histogram)

v

Block 10 OutputObject(histogram.svg)

800

0
normexam

Provenance
Figure 32

1.10 Using variables in a workflow
So we have now seen how we can join up two template executions in one workflow and it is easy to
continue this with further operations to create a logfile-style workflow, either by appending blocks in
LEAF or via the Make workflow button in TREE.

30

We have investigated how to ask questions to replace hard-wired inputs and add an element of
interoperability. A natural extension of this is to ask a question where the answer is shared by
several templates downstream. To do this we will introduce the concept of variables within a
workflow and illustrate it by constructing a workflow that asks for a single input and then produces
its average and its histogram.

You will see in the list to the left there is a menu entitled Variables and in this list is a grey New
variable... block. Clicking on this block and typing in response will add 3 red blocks (set, change and
the variable itself) to the Variables menu item. Grab a copy of the set block and place it in your
workflow under the Select dataset block (if you place it in the approximate area and let go of the
mouse button it should be added into the workflow thus):

Stat-JR:LEAF Run
I Control Selected
I Loge block:
I Math Start eeqisxt
I Lists td tutorial
I e
Hypothesis Set Input vars = ST EERER S Which variables do you want to calculate an aver. .. }
I Data Preparation -
[Data Exploration STzl = averages
I Models Template AverageAndCorrelation
l Post-process S
I Input - . .
I output Setinput | ¢ GO = («ED»?
h > =
I W Setinput (¢ (E P | = | ¢ OSE
Procedures .. —_——
Template (66 »
I other
Figure 33

We now need to assign the variable response a value (in this case the answer to a question), and so
from the Input list select Ask single variable and move it to the right of response. We can then add
the question text (“What is your variable of interest?”) as shown below:

Stat-JR:LEAF

I conto Selected
I Lot block:
I math
I Bets Select dataset tutorial
I Text =-d response v RGBT EEELELEY What is your variable of interest?
Hypothesis
I Data Preparation
I Data Exploration Set Input
I Models Template
I Post-process Show
Input et |
I ouput Setinput | ¢ (I »
I Variables Set Input : =
Procedures
I o Template EEIRIEERE N2
er
Figure 34

31

This has created a variable (called response), the value of which will be whatever the user chooses
when prompted by the question “What is your variable of interest?” However, before running this
workflow, we first need to slot this variable (response) into places in the workflow where it is to be
used (as the values for inputs vars and vals, for example). Have a go at doing this yourself (you'll
need a new type of block from this list on the left). Note that, as well as pulling multiple instances of
the same block in from the left-hand menu, if you right-click on a block you can choose Duplicate
from the resulting menu and a copy of the block appears (alternatively you can select the block(s)
you wish to duplicate and press Ctrl-C then Ctrl-V to copy and paste). The completed workflow looks
as follows:

Stat-JR:LEAF

I Control Selected

I Logic 5 block:

I Math Select dataset tutorial bazwyl

I Lists SR What is your variable of interest?

I - Change
Hypothesis — —————

| Data Preparation Set Input = averages

I Data Exploration Template AverageAndCorrelation

I Post-process -

I Input Set Input bins = 15

l Variables

I Procedures T W
Devel

Figure 35

Hopefully you managed to find the block you needed. We can now save this workflow as
section1_10.xml before clicking on the Run button to run the workflow. In our example we’ve
chosen avsirt in answer to the question:

32

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 SetVariable(variable=response, value=avsirt)

v

Block 3 Setlnput(op=averages)

v

Block 4 Setlnput(vars=avsirt)

v

Block 5 TemplateExecution(template=AverageAndCorrelation)

v

Block 6 OutputObiject(table)

name count mean sd
avsirt 4059 0.0018102472 0.3148315

Block 7 Setlnput(vals=avsirt)

v

Block 8 Setlnput(bins=15)

v

Block 9 TemplateExecution(template=Histogram)

v

Block 10 OutputObject(histogram.svg)

700

avslirt
Provenance
Validate | Translate into | json | xml | provn | turtle | trig | svg

Show Prov | Show Bindings |

Figure 36

Here we see the mean and then a histogram for the avsirt variable; i.e. it’s taken our answer and
used it as input for two template executions.

33

1.11 Running a statistical regression model and showing predictions
We will now move on to actually fitting a statistical model in Stat-JR. We will continue our approach
of adding to our current workflow. We have so far seen how we can put together a sequence of
operations in one workflow but up to now outputs from one template execution have not yet been
used as inputs for the next template execution. We will remedy that by illustrating how to create
predictions for our regression model based on the model fit.

We will begin by returning to TREE to fit a model using Stat-JR’s built-in eStat MCMC engine. This
time we're going to export the template executions we make in TREE as a workflow. We don’t want
to export earlier template executions, so it’s probably easier to open a new TREE session and work
with that.’

To do this we will use the Regression1 template to fit a simple regression. The Regression1 template
requires the user to include a constant in their list of predictors if they want to fit an intercept. As it
happens, the tutorial dataset we have been using has a constant of ones (the variable cons) which
we could use, but since you may be using your own dataset which might not have a constant already
in it, we’ll show how to add a constant to the dataset using the template Generate.

Here, having selected the template Generate in TREE, we request our constant of ones as follows:

Stat-JR:TREE Start again Dataset ™ (tutorial! Template ™ (Generate' eBook
Output column name: intercept remove
Type of number to generate: Constant remove
Value 1 remove
Name of output dataset: my_dataset remove

@Current input string: {'type: ‘Constant’, ‘outdata’: ‘my_dataset’, ‘outcol: ‘intercept’, ‘value’: 1’}

@Command: RunStatlR(template="Generate’, dataset="tutorial’, invars = {'outcol": ‘intercept’, ‘outdata" ‘my_dataset’, ‘type": ‘Constant’, ‘value: *1’}, estoptions =

0

Figure 37

On pressing Run we create a variable consisting solely of ones called intercept in a new dataset
called my_dataset (which is exactly the same as our original dataset, but with the new variable
appended to the end). Selecting this modified dataset (my_dataset) from the list of datasets, and
Regression1 from the list of templates, we can now include this new variable as one of our
predictors, setting up the inputs as follows:

7 If you want to close the current TREE session to avoid possible confusion, then remember to close the
browser tabs related your current TREE session and the associated command line window: this will be the one
with TREE in the title bar. An alternative, of course, would be to work within the current TREE session, and
then just delete any superfluous blocks we export as part of our workflow.

34

Stat-JR:TREE

oRespunse: normexam remove
@Explanatory variables: intercept.standlrt remove
Number of chains: 3 remove
Random Seed: 1 remove
Length of burnin: 500 remove
@Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: Yes remove
Use default starting values: Yes remove
@Name of output results: out

Next

@Current input string: {'burnin’; '500, 'defaultsv’: 'Yes', ‘thinning": 1", 'nchains’: ‘3", ‘defaultalg’: 'Yes', ‘iterations’; '2000", 'y": ‘normexam’, 'x": 'intercept.standirt’, ‘seed’:

1", 'makepred" Yes}
Figure 38

Here we are using the default settings for our MCMC estimation procedure?®, although we answer
Yes to the prompt Generate a prediction dataset. Clicking on Next and Run will run the model and
choosing ModelResults gives a summary of the model we have fitted thus:

8 This particular template can only use this estimation engine, although many others can use a wide variety of
third-party software, including R, Stata, MLwiN, etc.

35

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
tau 1541609950742 0.0340065114631 5799
beta 0 -0.00127835184871 0.0125770014327 5960 intercept
beta_1 0.594959154334 0.012745358164 6129 standlrt
sigmaz2 0.648987956705 0.0143068971085 5784
sigma 0.805548947358 0.00887975878981 5789
deviance 9763.48848831784 2.433023996009 6061
Model:
Statistic Value
Dbar 9763.48848831784
D(thetabar) 9760.509788970701
pD 2.978699347139
DiC 9766.467187664979

Figure 39

Now click on the Make workflow button and then, within the resulting box, the Workflow button,
and save it somewhere you can access from within LEAF.

Return to the LEAF interface and then Upload the workflow you have just saved during your TREE
session, again choosing to Import file so that your current workflow remains in the workspace.
Again, once you have done so, one workflow might be partially overlaying the other, so if so just
move one aside to clearly see them both:

36

(%]
—
[+3]

=3

EA

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 40

Select dataset tutorial

Set Input
Set Input

Set Input

Set Input

Template Histogram

Show histogram.svg

Template

Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input

Set Input

Select dataset | ¢ »

"3 type |20 L= 1 Constant |1

2 outdata | L — - my_dataset -
- outcol |20 intercept 1)
«Em» | = «@»

' Generate |-

Select dataset 11 my_dataset |52

" burnin F2A =T 1 500 F
1 defauttsv |10 =11 Yes |
73 outdata 20 =1 out |
"1 thinning 24 =1 4 1 15

13 nchains 2=k 3 |4
1 defautalg |20 S Yes |
3 iterations A0k (1] 2000 |2
3y b= normexam |4
- E) 1 intercept,standirt |1
7 sccd ERIGEE] ' B

1 makepred L0 E= 8 Ves o4
1 Regression! |-/

Selected
block:

We can attach this imported workflow (after first discarding the Start and Select dataset blocks at
the top of it) to our existing one, as follows:

[%2]
—+
<]

—+

EAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 41

tutorial
set to

SetInput

- ELELE What is your variable of interest?

SetInput

setinput W ST -

Histogram
Setinput | & CTIY® = | & ”
Setinput | & EIEED) 2 | = (L COREETS
SCULTEERT outcol EMENEN Y intercept |1}
Setinput || G EEID» = «@»

Te] Generals 1))
Select da " my_dataset .

Setinput | € (MO = ¢ EQ)
Setinput | & EEEEM | - | D |

Setinput | € » | = «Em»
Setinput | & IEER > = | «§)»
setinput | & EEELR? - (<@

37

Run

Selected
block:

We're almost there, but there are a couple of changes we first need to make. Firstly, it is better
practice within the LEAF system to explicitly extract the modified dataset we need from the relevant
template execution, rather than rely on it being there in the global cache of datasets. So, remove the
Text block to the right of the Select dataset block midway down the workflow (the one containing
the text “my_dataset”), and replace it with a Retrieve block (found in the Other menu). The Retrieve
block retrieves a named object from whatever stage of the workflow execution is cited in the block.
Thus we have to give the object name we want (my_dataset)® and tell it which block to take this
from. We perform the latter by referencing a unique ID code each block is assigned — it’s the black
Template block we need to reference (the one to which “Generate” is appended). If you select this
block you will see the corresponding reference ID appears in the “Selected block” box towards the
top right-hand side of the screen. In the example in the screenshot this is 46, but the unique block
IDs don’t always take this form: sometimes they are assigned long alphanumeric IDs (e.g.
pofzefaivngbosOn3x7h) — it just depends on the history of the workflow (e.g. whether it was created
via the Re-edit button, etc.) You will also note that we’ve copied this block ID and pasted it in our
Retrieve block (between “Block” and “Output”), as shown below:

Stat-JR:LEAF

I control Setinput (| 66 EID» | = || & TN Selected
l Logic — - —— block:
I Man Setinput |« (EIY» | = | « gD 46
I st Template (R ECIEETY
ange
I Text Select dataset | Retrieve [EE3 from Block 5 Output 4
eSS Setinput |« P ? | = ||« G0 2
| Data Preparation C L
P | [—————
|| Data Exploration Setinput [¢ EEENEY»? | = [¢« K »?
I Models >~ e———
Setlnput | ¢« EIEERY > | = | & X3 %
l Post-process e l—
I input Setinput | ¢ @I » | = [«ED”
I GO Sethput | % (EETE» =« @
I Variables - E L
I Procedures ST defaultalg =1 Yes |
o e [
Other o . . |]
i Setinput || ¢ EEETN = | 6B 2
Devel L :
Figure 42

Actually, let’s change this block ID to something more meaningful: making sure the relevant
Template block is still highlighted, type “Generate_constant” in the “Selected block” box and press
the Change button. You'll see that the reference to it in the Retrieve block is also automatically
modified to reflect this change:

9 Note we could type this in the gap to the right of “Output”, as we have done in the screenshot, or if you still
have the text block we just removed you can attach it to the end of the Retrieve block, to the same effect.

38

Stat-JR:LEAF

Control
Logic
Math
Lists
Text
Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Devel

Figure 43

Set Input

Set Input

Select dataset

Set Input
Set Input
Set Input
Set Input
Set Input
Set Input

Set Input

(i outcol 20 = intercept |
(1] value EERNEERNTY 1 1
ICWECY - U Generate 2

GEGEEY last + B ElE1dd Generate_constant {8NioI1d my_dataset

(4 burnin [0 8= 500 |1k

1 defaultsy |0 | =

1 Yes |1

L1 outdata |50 =0 out |
(1 thinning L= 00 1 12

[nchains NS
1% defaultalg |2
] iterations |1/

«@»
7 Yes b1}
L2000)

Selected
block:

nstant

Note our choice of last in the Retrieve block simply tells the workflow to take the version of the
object created the last time this block was executed (this becomes important within loops where the

same block is called more than once).

Next, rather than hard-wiring our choice of response (y) variable in the subsequent model fit, we
need to feed in the variable (response) defined above, so the value for the input “y” to the variable
response as shown below:

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 44

S.et Input
E‘;et Input
éet Input
Set Input

Set Input

Template

1 iterations [0S
x4 = intercept,standirt -1

2000 |

Jseed [1

) makepred Lol =

. Regression1

" Yes |

Selected
block:

obj7eh

Finally, append a Show block to the end of the workflow requesting the output ModelResults be

displayed:

Stat-JR:LEAF

I Control ~—
. 0 | pp—
I Logic Set Input (66 fIENRIEY 22 | = (&6 POIL) 99
I s
I Math
I Lists Setlnput [¢« » | =
I text)
=]
Hypothesis SELnAE S x BRI Y intercept, standirt 2
) e —
I Data Preparation —_—
5 | ppppe———
|| Data Exploration Setlnput [¢ ETR)? = «E»
I Models - : ‘
- |y ———
I Post process SCURIREY makepred ENIENEETY Ves EX
Input
I output LEyECH 1 Regressiont [£2
I Variables
I Procedures m ModelResults
| other
Devel
Figure 45

Selected
block:

7w3In8

We will Save this workflow as section1_11.xml and then Run it (in this example choosing normexam
as our variable of interest). Note that it will take a little longer for this workflow to finish its
execution, and nothing will appear until the workflow has finished. If you scroll down to the bottom

of the window after running it, it will look as follows:

Stat-JR:LEAF

Results
Parameters:
parameter mean
tau 1.541609950742
beta_0 -0.00127835184871
beta_1 0.594959154334
sigma2 0.648987956705
sigma 0.805548947358
deviance 9763.48848831784
Model:
Statistic
Dbar
D(thetabar)
pD
DIC
Provenance

Save to Ebook Preview Ebook

Validate | Translate into | json || xml || provn || turtle || trig | svg

Show Prov | Show Bindings |

Figure 46

sd ESS
0.0340065114631 5799
0.0125770014327 5960
0.012745358164 6129
0.0143068971085 5784
0.00887975878981 5789
2433023996009 6061
Value
9763.48848831784
9760.509788970701
2978699347139
9766.467187664979

variable

intercept

standlrt

So we see the results that we saw within TREE, from our model fit, appearing in the final block of the

output.

As we saw earlier, the Show block is not the only way to see outputs; we can view any of the output
objects from the regression model fit via the pull-down list under the block above (Block 27 in this

40

example) which represents the Regressionl template run. For example if we choose equation.tex we
get the following output:

Stat-JR.LEAF
Block 28 TemplateExecution(template=Regression1)

equation.tex E

normexam; ~ N(u;, %)

u; = fyintercept; + f, standlrt;

Bo o1
!
T~ [(0.001,0.001)
gt=1/1
Block 29 OutputObject(ModelResults)
Results
Parameters:
parameter mean sd ESS variable
Figure 47

The only difference with this and the Show block is that the pull-down list is interactive, but it can
only display one object at a time (whereas you could append several Show blocks on top of each
other).

1.12 Adding predictions to the workflow

Going back to the TREE interface, since we selected the option to generate a prediction dataset we
can look at the predictions graphically. The Regression1 template has created a dataset object called
prediction_datafile which we can select from the list of datasets in TREE (it will be in darker font to
indicate it has been generated by the software and is loaded in the current session). Having chosen
this as our dataset in TREE (it should appear in the black bar at the top once you have selected it) we
can perform operations on it — e.g. plot predictions — by choosing an appropriate template (we will
choose XYPlot) via the usual means.

Having chosen XYPlot, we can now set Y values to plot both the prediction and the original response
variable (pred_full and normexam, in our example) and the X values to be our predictor variable of
interest (standlrt, in this example). Clicking on Next and Run will give the following (if we select
graphxy.svg from the list):

41

Stat-JR:TREE prediction datafile XYPlot Ready (0s)

¥ values: pred_fullnormexam remove

X values: standirt remove

Download Make workflow

@Current input string: {'xaxis': 'standlrt’, "yaxis': 'pred_full, normexam'}

©@Command: RunStatJR(template="XYPlot', dataset="prediction_datafile’, invars = {'xaxis": 'standlrt’, 'yaxis": "pred_full,normexam}, estoptions = {}J

graphxy.svg E Popout

% pred_full
*® normexam

Figure 48
Here we see the data in green and the regression line in blue.

So, to add this to the workflow we will need to change dataset (to the prediction_datafile generated
by the template). Let’s return to the workflow interface and add the following to our existing
workflow; note that we’ve changed the Block ID of the Template block for the Regression1 template
to “Simple_linear_regression” (by selecting the relevant Template block and changing its block ID via
the “Selected block” box towards the top right-hand corner):

Stat-JR:LEAF

Selected

Control '-7-

Logic Set Input defaultalg = block:

Math o i

i Set Input makepred = Simple.

- E
ange

Text Set Input defaultsv =

Hypothesis —

Data Preparatiol _ Sl=8[ilall outdata
Data Exploratior
Models
Post-process
Input

Qutput
Variables
Procedures

Other v

Template Regression1

Show ModelResults
Select dataset | Retrieve last -+ FiteE e Simple_linear_regression :mml prediction_datafile I

|

Figure 49

As before, then, we change the dataset name via the Select dataset block, appending a Retrieve
block to the end of it, and specifying in that block that we want to use the output object called
prediction_datafile from the relevant template execution (the black Template block which runs the
Regressionl template).

42

For the graph, the input names and output objects are those we saw in TREE (although we can
create these dynamically, based on the user’s earlier choices: see Figure 124 in the Appendix for an
example of how to do so) — we will leave these to you to add (e.g. see Section 1.4; remember to
choose the corresponding template too; if in doubt, see Figure 124 in the Appendix). Save the
resulting workflow as section1_12.xml and then click on Run to see what happens (in our example
we again choose normexam when prompted). At the end of the run output you will see the
prediction plot thus:

Stat-JR:LEAF

4

x pred_full
X normexam

standlrt
Figure 50

So here we have demonstrated how we can link together output (via an outputted dataset) from
one template as input for another template.

1.13 What have we covered?
From this first session you should now be comfortable with using Stat-JR TREE: selecting a dataset
and template, entering inputs, running it and inspecting the outputs. We've investigated how to use
this information (the dataset, template, inputs and outputs of interest) to replicate the same
operations in the Stat-JR workflow system, either doing so manually in LEAF, via TREE’s Make
workflow button, or via the Re-edit button in LEAF. In doing so we have covered:

e how to find and append blocks;

e duplicating and deleting blocks;

e saving workflows;

e including questions in workflows;

e using the same variable more than once in a workflow;

e retrieving output from one template execution for use in a later template execution;
o the functional relevance of the Start block.

1.14 What's next?
In the next section we will build on what we have covered and think about creating more interactive,
generalised workflows for fitting regression models and also introduce the idea of a statistical
analysis assistant. In doing so, we will also explore more of the workflow system’s functionality.

43

Section 2 A statistical analysis assistant for
conducting regression type models

2.1 Overview

In the first section we introduced Stat-JR’s TREE interface and its workflow system. By the end of
that section we had become familiar with blocks within a workflow that allow us to ask questions of
the user, to perform some statistical operations via Stat-JR’s template system, to output objects and
to use outputs from one operation as inputs for another operation.

In this second section we will introduce further blocks that will allow us to influence the route
through a workflow, and also additional templates that contain some textual output conditional on
the results. As well as covering the workflow system in more detail, our parallel aim in this section is
to think more about what people do when they want to fit models to a continuous response variable
when they have an independent sample from the population, i.e. we are focussing here on linear
modelling and the associated operations that go with it. As part of the eBook research grant we
would like to create an automated system (a statistical analysis assistant) that will take a user’s
dataset and by asking him/her questions perform an appropriate statistical analysis of it (or at least
offer the user useful help and guidance along the way). This section will make a modest start in
building one; we'll be some distance from achieving a generalisable statistical analysis assistant, but
it will facilitate discussion about some of the possibilities and challenges one might encounter when
trying to undertake such an endeavour, and it will also allow us to investigate further functionality in
the workflow system.

2.2 Questions and a histogram

We will begin by simply creating a workflow that asks for some inputs and produces one plot. We
have already encountered blocks that ask for a single and multiple variable input, and we will use
those again here, but also introduce a third question block which asks for a dataset (this block is
available from the Input menu). So either start up Stat-JR:LEAF afresh or click on the Clear button to
clear the current workflow, and set up the workflow using the palette of blocks accessible from the
left-hand menu, as follows:

Stat-JR:LEAF

Control Selected
Logic block:
Math

#'S: Select dataset | 1 = ceEi=Lst Please choose the dataset to be used
[5) .

Hypothesis =4 resp * RGN] A5 [ENEE 1 Please choose your response variable

DESFEIEED W get T TS Please choose your list of candidate predictor v....
Data Exploration _
Modsls Set Input =
Post-process -
Input Set Input
Qutput
Variables Template Histogram
Procedures 0
Other Show histogram.svg
Devel
Figure 51

44

So here we have constructed blocks which first ask the user which dataset they would like to use,
and then asks them to nominate their response and predictor variables (truncated here) of interest
(assigning these to the variables resp and preds, respectively). We then plug in their response
variable as the values (vals) the Histogram template will plot (with 15 bins), and finally run the
template and show the graph (histogram.svg). You’ll notice that whilst we ask the user to nominate
their predictor variables, we don’t actually use these yet, but will do soon.

Save this workflow as section2_02.xml and then Run it. In this example we are still using the tutorial
dataset but you may like to try a different dataset yourself. Here is an example of the output:

Stat-JR:LEAF

800

700+

600 |-

500

400

2001

100+

normexam

Figure 52

In this example we have chosen normexam as our response from the tutorial dataset and hence a
histogram of normexam is returned.

2.3 Introducing the “for-do” block

We also asked for predictor variables, so we can do something with those as well: for example let’s
plot the response against each of them in turn. Here we face a situation we haven’t previously
encountered in that there are (likely to be) multiple predictors, so we need to introduce a new block
which performs the same operation for each one. Such blocks are found in the Control list on the
left hand side, and in this example the for-do block is a good choice:

45

Stat-JR:LEAF

Control Selected
Logic block:
Math
Lists
Text

Hypothesis S5l resp v LG TG EAELER Y Please choose your response variable

DA PR set ST EREEL] S Please choose your list of candidate predictor v...

Data Exploration -

Models
Set Input

qgps41

éélect dataset | 1 = ceEi=Lst Please choose the dataset to be used

Post-process
Input

Qutput
Variables Template Histogram
Procedures) .
Other histogram.svg
Devel : -
eve for each item ([in list
Figure 53

The for-do block has slots for two attached blocks (or sets of blocks) — the uppermost slot (to the
right of “...list”) requires a list containing elements to loop through, whilst the other slot, beneath,
requires blocks defining what to do to each element of that list. The variable i will contain the value
from the list at each pass through the for loop, and so can be used as an index to reference within
the instructions.?

So what we want to do is to loop through the variables the user nominates as predictors, and for
each one plot it against the user-nominated response variable (we can use the XYPlot template we
used in the last section), showing the relevant output (graph) for each. Have a go at doing this
yourself, and then compare it to our worked example in Figure 125 of the Appendix.

How did you get on? Save your workflow as section2_03.xml/, and then Run it. In our example,
below, we have chosen normexam as our response and the predictors standirt and avsirt:

10 conventionally, i (perhaps an abbreviation of index, iteration, or integer) is used as the default counter in a
control structure such as this, but you can change it to whatever name you like (although some care is needed
if names have been used elsewhere).

46

-3 =2 =1 0 1 2 3 4
standlrt

Block 12 Setlnput(yaxis=normexam)
v

Block 13 Setinput(xaxis=avslrt)
v

Block 14 TemplateExecution(template=XYPlot)

Block 15 QutputObject(graphxy.svg)

0 TR RO X

-4
-0.8 -0.6 -0.4 -02 00 02 04 06 08
avsirt

Figure 54

Here we see that both of the predictor variables we chose appear to have a positive relationship
with the response (normexam), with avslirt plotted as discrete bands of points as this variable is
constant for each school in our two level dataset.

2.4 Univariable models — creating an intercept

So we’ve started to visually investigate relationships in these plots and, as well as perhaps giving the
user the option of different plot types (or of different settings for the plots we’ve used) we might
want to allow them to explore cross-tabulations, or to examine the effect of transforming variables
on their plotted distributions and relationships, and so on. We don’t have time to explore all these
options in this short example, other than to acknowledge they’re all viable choices at this stage of an
exploratory data analysis (and there may be many more options we have left out too; e.g. what
would you do?) Instead, we’ll jump into some models and run analyses with each predictor in turn,
in what epidemiologists call univariable models. We can use the Regression1 template that we used
in the first section. You will recall that it requires an intercept to be explicitly added as a constant in
the list of predictors, and so as before we can generate a constant again, using the Generate
template.

As we found in Section 1, we will need a few blocks to generate a constant: four for the inputs, one
to run the template, and another to extract the output of interest (the dataset with the new variable
in it). In fact, to help further organise our workflow we can nest these into a grouping block (see the
green block with group description written on it in the Other list on the left-hand side). This block
helps us to visually structure our workflow (identifying contiguous blocks all concerned with the
same function), can be collapsed for brevity (by right-clicking on the grouping block and selecting

47

Collapse Block), and allows easy duplication of all the blocks inside it (just by right-clicking the
grouping block and choosing Duplicate), although it can’t be called from elsewhere in the workflow
(unlike procedures, which can; we will investigate these in Section 3).

Here we’ve nested our completed Set Input blocks and a black (run) Template block all inside a
grouping block, together with a Retrieve block. As you can see, we have given the grouping block an
appropriate name (“Generate intercept”) to describe the function of the blocks within. Instead of
plugging the Retrieve block straight into a Select Dataset block, we assign it to a variable (which we
happen to call modeldata), and then, outside the grouping block, we plug this into the Select dataset
block. We've also changed the default block ID for the black Template block associated with the
Generate template to “Generate_constant” and used this to reference that block in the Retrieve
block. Here we constructed this section of the workflow afresh, but as we’ve seen in earlier sections
we could instead have (a) imported another workflow and taken our blocks of interest from that,
deleting the rest (e.g. section1_11, which we made earlier: if you do this make sure you select
Import, otherwise you will over-write the current workflow), (b) run the Generate template in TREE
and imported the resulting workflow, or (c) used the Re-edit button to populate input values for the
Generate template.

Stat-JR:LEAF

Selected
I control Template Histogram electe
I Logic i block:
I Math Show histogram svg
I Lists =
I text for each item (KB in list rzmge
l Data Preparation L
[Data Exploration Set Input - '3
I Modes ’ :
Template XYPlot
I Post-process
l Input Show graphxy svg
I output —
l Variables Generate intercept
I Procedures ‘;_S;_-t N -
I Other et Inpul = intercept

Set Input outdata

my_dataset

Template Generate
_set modeldata ~ FEREREETTEEY ast + BitiiNEe ' Generate_constant ReNITE my_dataset

SHEe e M modeldata ©

Figure 55

Here we’ve collapsed the block, helping to simplify what is becoming a busy workflow:

48

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Devel

Figure 56

Select dataset AELEVEIEREE Please choose the dataset to be used

set LSS ERETEL R Please choose your response variable

set GBS [T EREELEES Please choose your list of candidate predictor v

Set Input

Template Histogram

Show histogram_svg

for each item ([in list ! preds *

Template XYPlot

Show graphxy.svg
L

Generate intercept Set Inpu_..

Select dataset modeldata ~

Selected
block:

Change

In fact we can further add grouping blocks around those generating the histogram of the response
variable, and another around our for-do loop, as follows:

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 57

Collapsing those blocks effectively shows the workflow at a higher level of information:

Select dataset =B IERE T Please choose the dataset to be used

set to | Ask ST EREEL Y Please choose your response variable

set LT ERETED Y Please choose your list of candidate predictor v

response histogram

Set Input

Template Histogram

Show histogram.svg
—
for each item (@B in list | RS

Template XYPlot
Show graphxy.svg
(-

Generate intercept Set Inpu...

Select dataset | G ECR

49

Selected
block:

Stat-JR:LEAF

Control Selected
Logic block:
Math

Lists

Text Change
© Select dataset 2t dekiekn Please choose the dataset to be used

Hypothesis T

Dt Bz set [E5ED to | LELEERENELIL] Please choose your response variable

Data Exploration L= preds + N0 CE T EREER ESY Please choose your list of candidate predictor v

Models response histogram Set Inpu. .
Post-process for each item i in list pre...
Input Generate intercept Set Inpu...
Qutput .
. Select dataset modeldata ~
Variables
Procedures
Other
Devel
Figure 58

To complete the operation we will use a block we haven’t yet investigated, namely the Summary
Statistics block available in the Data Exploration block list. This block will produce summary statistics
for the dataset and we can pull these out for display by adding a Show block for the “table” output,
as shown below. In fact, the Summary Statistics block hard-wires the execution of a template called
SummaryStats, with the inputs that template requires hardwired too (to include all the variables
contained in the current dataset); i.e. the same effect could be achieved by using Set input and
Template blocks, as we’ve done previously.

(%]
—
[+3]

=3

EAF Run

I Control Selected
I Logic block:
I wath
I s sEEefEEEO ARG S ElcEEd Please choose the dataset to be used
' ch

I Text G resp + REMEECTGIERETEGIEY Please choose your response variable

Hypothes: :
| Dﬁ);:gzmﬁon 5 preds + RGBT ERENER ELY Please choose your list of candidate predictor v....
|| Data Exploration résponse histogram Set Inpu...
I “P"Osdiels for each item i in list pre...

0S1-process S

I input Generate intercept Set Inpu...
I oupu Select dataset | [FLEC
l Variables < -
(| Freesiines Summary Statistics

Devel

Figure 59

Running the workflow should still produce plots and finally the summary table thus (for tutorial):

50

Stat-JR:LEAF

Block 25 OutputObject(table)

name school student normexam cons standirt girl schgend avsirt schav vrband intercept

N 4059 4059 4059 4059 4059 4059 4059 4059 4059 4059 4059
mean 31.00665188470067 38.69992609017 -0.0001139071047031.0 0.00181025476637 0.60014781966 1.80487804878 0.00181024724787 2.127124907613 1.843084794284 1.0
sd 18.936811072596 30.260690898313 0.998820809206 0.0 0993101732984 0.489867751763 0914079654538 0.314831494414 0.652926315528 0.630784592987 0.0
median 29.0 33.0 0.00432175118476 1.0 0.0404930389343 1.0 1.0 -0.0201981365681 2.0 20 1.0
min 1 1 -3.6660717 1 -2.9349535 0 1 -0.75596046 1 1 1.0
max 65 198 3.6660914 1 3.0159516 1 3 0.63765585 3 3 1.0
25% 20 20 -1.962075471878 1.0 -2.108438968658 0.0 1.0 -0.650231063366 1.0 1.0 1.0
5% 40 40 -1.623729705811 1.0 -1.703446757793 0.0 1.0 -0.649017989635 1.0 1.0 1.0
50% 29.0 33.0 0.00432175118476 1.0 0.0404990389943 1.0 1.0 -0.0201981365681 2.0 20 1.0
95% 62.0 92.0 1.661805510521 1.0 1.61087679863 1.0 30 0441040635109 3.0 3.0 1.0
97.5% 64.0 11455 1.977106928825 1.0 1.941482543945 1.0 30 0.635056257248 3.0 3.0 1.0
QR 33.0 380 1378264009953 0.0 1.239771902561 1.0 20 0.359865933657 1.0 1.0 0.0

ESS 3 66 549 -2147483648 2130 163 63 18 22 2615 -2147483648

BD 15127929 676492 -2147483648 -2147483648 1887747483 109976 159871 -2147483648 107217 720 -2147483648
bayesian-p 0.0 0.0 0512195121851 0.0 0484848484848 0.0 0.0 0.559004680956 0.0 0.0 0.0

Figure 60

You will see that at the end we have the new column labelled intercept. (You may also notice that
the Summary Statistics block (via the SummaryStats template) produces a table with some rows
which are better suited to an MCMC chain (such as the ESS (effective sample size) and BD (Brooks-
Draper) diagnostics).

Save your workflow as section2_04.xml.

2.5 Univariable Models — running the models

We will next perform the actual model fitting by looping through the list of predictors. Note, in this
short example, we are assuming that all predictors will be treated as continuous rather than
categorical variables and thus be included in the model in their current form rather than as a series
of dummy variables. Recall that in the first section we fitted a regression model and so many of the
input blocks will be the same as we used there. To begin we will take the current workflow and bin
the last two blocks (for Summary Statistics). We will add a grouping block which we will label as
“univariate model fitting” thus:

Sta Run
I Control Selected
I Logic block:
I watn 45
I Lists SR E EE B G ETEEETE Please choose the dataset to be used
Y I ange
Text ; : - . .
I P Sl resp v BenIE S GIEREE|EY Please choose your response variable
| Data Preparation set S 6 EVE |5 Please choose your list of candidate predictor v...
I Data Exploration response histogram Set Inpu...
l Models = ——
I Postprocess for each item i in list pre...
I Input Generate intercept Set Inpu...
Output]
3 Select dataset modeldata ~
l Variables
I Procedures univariate model fitting
I other
Devel
Figure 61

We will now need to loop over the predictors and so we will add a for-do loop block inside the
grouping block and begin filling in the inputs required for a regression as shown below:

51

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Devel

Figure 62

Selected
block:

LS R E S SIS B EES S Please choose the dataset to be used

oW resp - NEONERLTE [ERELELEY Please choose your response variable

set VOB) [THERETEL S Please choose your list of candidate predictor v. ..
response histogram Set Inpu...

for each item i in list pre...
Generate intercept Set Inpu....
Select dataset
for each item KB in list | [IEEED

do

Set Input y

- JENE
Set Input - -

nchains =
Set Input - _
- e

Set Input = 2000

Set Input

Set Input

Set Input

Set Input defaultalg

ean
- o
- o

Set Input makepred =

Set Input defaultsv

Set Input outdata modelchains
—

These inputs are just a reiteration of what we chose in the last section for this template, although we
need to add the y and x variables. For y we simply choose the resp variable nominated (by the user)
earlier in the workflow but for x we need to introduce a new block, namely the create list block
(available from the Lists menu to the left). We will use this block to create a list of names for the x
variables. Here you can reduce the number of items that the create list block expects by clicking on
the blue button in the create list block and dragging out one of the items from within the block as

illustrated below:

52

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 63

You'll see we are creating a list that includes the variable intercept and whatever is the current

for each itemi in list pre_.

Generate intercept Set Inpu_..
Select dataset
||

Select dataset | Ask dataset

set [E5088 to | Ask single variable
set [UESEEM to | Ask multiple variables
response h\slograrﬁ Set Inpu...

for each item [in list

Set Input n = | [a] create list with .“”]

™ I
Set Input m = 2000

Please choose your list of candidate predictor v. .

Selected
block:

mzyouw

predictor (as indexed by j) as we loop through the list. We next need to add the template block and
we will also add a Show block for the ModelResults thus:

Stat-JR:LE

Control
Logic
Math
Lists
Text
Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 64

Select dataset | LIGEFECH
univariate model fitting
for each item [in list | ([EEEED

do | get Input y

Set Input = | [@) create list with _' % intercept |2 [

Set Input nchains

- e
o
-

Set Input iterations = 2000

Set Input seed

Set Input burnin

Set Input thinning

Set Input defaultalg

:
Set Input defaultsv |
Set Input makepred =

Set Input outdata modelchains

—

Template Regression1

Show
L .

ModelResults

53

Selected
block:

If we now save this workflow as section2_05.xm/ we can then run it. Note we will be fitting an MCMC
model for each predictor so it may take a while to run. Below are the last outputs for the tutorial
dataset with response normexam and predictors standlrt and girl.

Stat-JR:LEAF

Results
Parameters:
parameter mean sd ESS variable
tau 1.015307795309 0.0223966710742 5795
beta_0 -0.140384374851 0.024397158694 1679 intercept
beta_1 0.233549417316 0.0313266019613 1661 girl
sigma2 0.985401953167 0.0217228903881 5780
sigma 0.992613838282 0.0109417191326 5783
deviance 11458.672416699634 2417203406112 3817
Model:
Statistic Value
Dbar 11458.67241669963
D(thetabar) 11455.702110894224
pD 2.970305805406
DIC 11461.642722505036
Figure 65

Here we see the results for a model with just girl as the predictor (normexam is the response
variable), and higher up were the results for a model with standirt as the sole predictor instead. By
viewing the beta_1 parameters in the model fit with gir/ we can see that the mean estimate of its
effect is far larger than its standard deviation (sd) and so there is a significant effect of gender on
exam score.

2.6 Interrogating the outputs

It would be good to automate this description (of significance) or even simply to construct a table
from the model results that includes the significance of the predictors. Looking down the list of
outputted objects (e.g. via the pull-down list in the penultimate block of the workflow output
window), we can see that the model parameter estimates are also returned as a .dta file, with the
name modelparameters.dta, and so we can work with this dataset.

To do this we can add to the workflow within the for-do loop:

54

Stat-JR:LEAF

I Control Select dataset | (IeEREEND Selected
I Logic univariate model fitting block:
l Math [for each item 5B in list | (EEKD
I st do [o
I Tex - ; e
. —
Hypothesis SetInput “ = () create Iistwitn | ¢ [IEEED) ?
I Data Preparation m-
l Post-process
I Variables
l Procedures
I Other Set Input defaultalg =
Devel Set Input defaulisv S
Set Input outdata = modelchains.
Template Regression1
Show ModelResults
—
é'elect dataset || T last + Ripl=leq Simple_linear_regressionfellli+lli{ modelparameters.dtal
Figure 66

Here we’ve included another Retrieve statement, this time to pluck out the modelparameters.dta
dataset, and have changed the block ID for the Template block associated with the Regression1
template to “Simple_linear_regression”.

We will next append an additional column to this dataset that contains the ratio of the mean
estimate to its standard deviation which we will give the name zscore (since, for the fixed
parameters, this will have an approximate normal distribution). To do this we will use the Calculate
template which adds a variable to the working dataset based on an expression defined by the user.’!

Going back to TREE (or opening it, if it is closed), your last execution may still be the model run via
the Regression1 template, but if not you can run one (the specifics of the model you fit don’t matter
so much here, we’re just running one to demonstrate use of the Calculate template in post-
processing the results). Having run a model, change the working dataset to modelparameters.dta,
and the template to Calculate. You'll see from the template description that the expression it
evaluates is based on numexpr syntax. numexpr is a Python package “for the fast evaluation of array
expressions elementwise” — there’s a hyperlink in the template description which takes you to a
supporting website describing the operators and functions it supports. We need to ensure that the z-
score is positive, so can use the abs function to return the absolute value of the expression mean/sd
(dividing the columns of interest from our selected dataset); our whole expression therefore is
abs(mean/sd). The screenshot below shows our inputs, and also the outputted dataset (which we’ve
chosen to call zscore_table) in the results pane at the bottom:

11 NB: there is also an in-built Calculate block in the workflow system which simply calls the Calculate
template, although it currently outputs a dataset with the name a which is perhaps a little opaque for the
user, so here we use the template directly instead.

55

Output column name:

Numeric expression:

Name of output dataset:

modelparameters.dta Calculate

z5core
abs(mean/sd) remove

zscore_table

Download Make workflow

@Current input string: {'expr": ‘abs(mean/sd)’, ‘'outdata’: ‘zscore_table’, ‘outcol’: ‘zscore’}

©@Command: RunStatJR(template="Calculate’, dataset="modelparameters.dta’, invars = {'expr": ‘abs(mean/sd)", ‘outdata": ‘zscore_table’, ‘'outcol’: ‘zscore},

estoptions = {})

zscore_table E

zscore_table

moe W R o

Popout
a
parameter | mean sd ESS | variable | zscore
tau 154174041 0.03428684 6364.0 — 44.9650484

beta_0 0.59486489 0.01267134 B8977.0 standirt 48.9456958(

sigmaZ 0.64893827 0.01442580 6359.0 — 44.9845494]
sigma 0.80551729 0.00895329 8380.0 — 89.9688399
deviance 9762.51281 2.03956133 8419.0 — 4788.57475]

View 1-50fS

] >

Figure 67

So let’s now convert this into workflow blocks; of course we could save this as a workflow in TREE
and export, but given it involves just a few blocks it’s just as quick in this instance to assemble the
blocks ourselves in LEAF:

Stat-JR:LE

Control
Logic
Math
Lists
I Text
Hypothesis
Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures

I other

Devel

Figure 68

ugiauitaly
Set Input makepred =
éel Input outdata = modelchains

Template Regression1

Show ModelResults

|-

Set Input outdata = zscore_table

Zscore

abs(mean/sd)

Template Calculate

Show zscore_table
L.

56

SRR SRR Jast + Finll:ES Simple_linear_regression 8118 modelpa

Selected
block:

Press Run to check we’ve set this up correctly. Does the output make sense? In our example we
chose standirt, girl as our predictor variables; once it had been running for a few seconds it strangely
asked us to nominate our Response and Explanatory variables for the Regression1 template —
behaviour we weren’t expecting:

Stat-JR:LEAF
Block 54 TemplateExecution(template=Regression1)

v

Block 55 ForEach()

v

Input for TemplateExecution(Regression1)

@ Response:

parameter E

@ Explanatory variables: parameter ~

mean
sd

ESS
variable

Figure 69

So it’s behaving as if it doesn’t have the inputs it needs to run the Regression1 template (hence it’s
asking the user for them). Let’s look back at the workflow; can you work out what might have
happened?

Stat-JR:LEAF Run

Control CCELEEEE I modeldata - Selected
Logic univariate model fitin: block:

Math or each item (K3 preds 1mOcai

do

Lists etinp y resp *
Text etinp x o) create intercept

Hypothesis JIke
Data Preparation ot inp ST 3

Data Exploration
Models
Post-process
Input stinp iterations 2000
Output etinp thinning 1
Variables . |

p defaultalg Yes
Procedures
Other etinp defaultsy Yes

seed 1

P burnin 500

Devel etInp makepred Yes I

P outdata modelchains l

Regression1

ModelResults

ect dataset | Retrieve (I I Simple_linear_r Output dta) |

p outcol Zscore

p expr abs(mean/sd)

p outdata zscore_table

Calculate

zscore_table

Figure 70

Inspecting our workflow indicates that before the group of univariate model fitting blocks start, we
select our working dataset (modeldata): this is the dataset from which the inputs for the Regression1

57

template are to be drawn. However, within the model-fitting loop we change the working dataset
away from this one, and instead select one of the datasets outputted by the Regression1 template,
modelparameters.dta, as the working dataset to use when calculating the z-scores. When the loop
starts over with the second predictor variable, then (assuming the user has chosen >1 predictor), the
working dataset is modelparameters.dta, which has a whole different set of columns from the one
our inputs (as written by us) within the loop are expecting. Looking back at the workflow outputs
tab, this makes sense: it’s asking us to choose variables for the Response and Explanatory variables
which are from the outputted modelparameters.dta dataset, and further up we can see that it has
actually fitted one model successfully: when it first passed through the loop; the problems began
when it swept through for a second time.

Let’s remedy this by moving the Select dataset: modeldata blocks so that they appear within the
loop. That way, the working dataset will be changed to the one the Regression1 template inputs are
expecting each time the loop begins again:

Stat-JR:LEAF Run

g————
Control univariate model fittin Selected
Logic or each itern (3 preds - block:

" do | Selectdataset | [ELEFECKI x1b7p3

Lists etinp y resp *
Text etinp x o) create intercept

Hypothesis JIke
Data Preparation ot inp ST 3

Data Exploration
Models
Post-process
Input stinp iterations 2000
Output etinp thinning 1
Variables

Procedures
Other etinp defaultsy Yes

seed 1

burnin 500

defaultalg Yes

Devel etInp makepred Yes I

outdata modelchains l

Regression1

ModelResults

Hlast - I Simple_linear_r Output dta) |

outcol Zscore

expr abs(mean/sd)

outdata zscore_table

Calculate

zscore_table

Figure 71

Pressing Run this time results in the workflow working as anticipated, as the end of the outputs
window indicates:

58

Stat-JR:LEAF

Block 62 OutputObject(zscore_table)

parameter mean =d ESS variable zscore
1 tau 1.015307795308995. 0.022396671074194737 5795.0 - 45.33207792093864.
2 beta_0 -0.14038437485099833. 0.02439715869402358 1679.0 intercept 5.754128036449893.
3 beta_1 0.23354941731572695, 0.0313266019613341 1661.0 girl 7.45530643904473
4 sigma2 0.9854019531685776 0.021722890388097497 5780.0 - 45.36237745353185.
sigma 0.9926138382820381 0.010941719132557148 5783.0 - 90.71827070834883.
[deviance 11458 672416699834 2.4172034061121797 3817.0 - 4740.486767291213.
& View 1-80f6

Block 63 ForEach()

Provenance

Save to Ebook | Preview Ebook
|

Validate | Translate into | json || xm provn || turtle || trig | svg

Show Prov | Show Bindings |

Figure 72

As all our ‘univariable’ models are just fitting the intercept and one predictor during each run
through the loop, then we know that the important number in the table indicating whether we have
a significant predictor is in row 3 of the last column. We can interrogate individual entries in a table
by extracting them into variables. We will do this here as indicated in the bottom of the workflow
below:

[%2)
—+
o

—+

EAF Run

Selected
Control Set Input outdata modelchains .
Logic block:
Template Regression1
Math
Lists Show ModelResults
Text Select dataset | Retrieve from Block Slmpleillnearfregressnnmodelparamelers.dw]:

Zscore

Data Preparation ___
Data Exploration Set Input =

abs(mean/sd)

Models Set Input outdata = zscore_table
Post-process
Input Template Calculate
Output Show zscore_table
Variables set to | Extract
Procedures Table LG Jast + il =68 Calculate zscore f8Ni 18 zscore table
Other Row
Devel
Column zscore
Figure 73

So here we’ve defined an item called zscore as comprising the value of whatever is in row 3 of the
column headed “zscore” of the table we constructed with the z-scores in it (zscore_table).*

We now want to make some form of decision based on the value of our zscore item and for the
purposes of this example we will do something simple, namely indicate in the output that the
predictor is significant if the zscore is greater than 1.96. We can do this by using some further new
blocks — an if block that is available from the Control block list, a light blue comparison block
available from the Logic block list and Comment blocks available from the Output block list.

12 NB: the blue block is retrieved from the Math block list, and the Extract block is from the Other block list.

59

We will begin by simply grabbing the three blocks and arranging thus:

[%2]
—+
<]

—+

EAF

Control I A Selected

. tcol = .
Math Set Input = abs(mean/sd)
= |
Tt Set Input outdata zscore_table ange
Hypothesis Template Calculate
Data Preparation Show zscore_table
Data Exploration % N

3

. se o act

Post-process Table GE U last « Riplgleilled Calculate_zscore Izml ZSCOre. lahlel
Input Row
Output Column zscore

Variables (& i | 'm'

Procedures
do
Comment
Otner S “@r

—

Devel

Figure 74

By default, the if-do block can do something if the if statement is evaluated as true, but it isn’t giving
us the opportunity to state what we wish to happen if the if statement is evaluated as false.
However, we can modify the block to suit our requirements by clicking on the blue symbol on the if
block to expose structural changes one can make thus:

[%2]
—+
<]

—+

EAF Run

I Control i ererre ‘ TS T T T—— —
I Logic set input RN - R black:
I Math Set Input = abs(mean/sd) h5ppfs
I usts |
I Text . Set Input outdata = zscore_table Change
Hypothesis Template Calculate
l Data Preparation
|| Data Exploration @
I wodeis
I Post-process @ Retrieve [EEI Calculate zscore Izml ZSCore lahlel
l Input
I Output zscore
I Variables @) if (‘m‘
I Procedures
do
I om Cammen, o
Devel
Figure 75

If you drag the else into the if then we can add an alternative if the condition tested is evaluated as
false:

60

(%]
—
[+3]

=3

EAF

Control
Logic
Math
Lists
Text
Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 76

e oy e o e _tuyg I P I S T

| Selected
Set Input outcol = zscore block:
Set Input = abs(mean/sd) h5ppfs

Set Input outdata = zscore_table

Template Calculate

FEGEVE last » Rio]l:illed Calculate zscore JeN(Il{ zscore table

s zscore
LY
do | comment -

| —

As you do so you can see the if-do block turning into an if-do-else block. Clicking on the blue symbol
will return control to the main workflow and now we can fill in the gaps in the blocks. Firstly we need
to define our conditional statement as zscore > 1.96 by using an appropriate combination of blocks,
and then instruct the if-do-else block what to do when it returns ‘true’, and what to do when it
returns ‘false’. The Comment blocks are simply used to send a string to the output. We could use
these to simply say this variable is significant or not depending on the result of the evaluated
expression, but it’s helpful to the user if we include the predictor’s name as well; to do this we can
use the create text block to create a text string that contains the current predictor name used in this
iteration of the loop (remember to include a space at the end of “...variable ” and the start of “ does

not...”):

Stat-JR:LEAF

Control
Logic
Math
Lists
Text
Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 77

- - Selected
set EZIRS to | Extract
Table Retrieve [EE#) from Block CalculahegscoreWzsmreﬁtableI:

Column Zscore

Comment (5] create textwith | ¢6 [QIERELERES 22

| . 11 has a significant effect. -}/

else | comment ((@) create text with ;: 1% The variable |
[i -
| : "1 does not have a significant effect. L4

If we save this workflow as section2_06.xm/ and then run it we can see it in action. Here again | am
using the tutorial dataset with response normexam and predictors standirt and girl:

61

Stat-JR:LEAF

Block 65 OutputObject(zscore_table)

parameter mean =d ESS variable zscore
1 tau 1.015307795308995 0.022396671074194737 5795.0 - 45.33297792093864
2 beta_0 -0.14038437485099833 0.02439715889402358 1679.0 intercept 5.754128036449893
beta_1 0.23354941731572695 0.0313268019613341 1661.0 girl 7.45530643904478
sigma2 0.9854019531665776 0.021722890338097497 5780.0 - 45.36237745353185
sigma 0.9926138382820391 0.010941719132557148 5783.0 - 90.71827070834883
[deviance 11453.672416699634 2.4172034061121797 3817.0 - 4740.466767391213
& View 1-6 of 6

Block 66 SetVariable(variable=zscore, value=7.45530643904)

v

Block 67 OutputComment()

The variable girl has a significant effect.

Figure 78

So here we see the textual output indicating that girl has a significant effect on normexam*3. We can
use the if-do block to perform more advanced operations like running different templates depending
on the result of the evaluated statement, and we can also nest if statements to create more complex
structures too.

You should now hopefully have an idea of how, through conditional blocks and comment blocks, we
can produce a system that can give feedback and take the user through the workflow in different
ways.

2.7 Templates that do their own interrogation

We will finish this section by introducing a couple of templates that have some built-in interrogation
of their outputs. Firstly we will replace the Histogram template that we used towards the start of our
workflow with a template by the name of HistSkew which gives textual feedback about the shape of
the variable.

In addition, whilst we haven’t greatly dwelt on the fact that we are fitting our model using MCMC
estimation, we can pay our choice of method a little more attention here by checking whether we
have run our MCMC chains for long enough. Indeed, we have created a template called
MCMCExplanation which aims to do precisely that.

2.8 Checking for skewness

Let’s begin by replacing the current Histogram template in the workflow. If we continue from the
workflow as stands we will need to Expand the block entitled response histogram (to make life
easier we can also Collapse the univariate model fitting block). The workflow will then look as
follows:

13 Obviously this is quite a crude way of evaluating evidence for an effect (one would typically wish to look
beyond simply considering whether a test statistic has an associated p-value below 0.05 or not), but this
example nevertheless illustrates the functionality of the if-do-else block, using it to return conditional textual
output.

62

Stat-JR:LEAF Run
I Control Selected
I Logic block:
I Math Select dataset LAl cicod Please choose the dataset to be used
I #:: set (508 o _ ‘Ask S ERELELEY Please choose your response variable
Hypothesis 1Y preds ¢ RERECTE T 02 SR ELEEE Please choose your list of candidate predictor v...
l Data Preparation
I Models |
I Post-process Set Input
I Input
I output Template Histogram
Variabl
I variables Show histogram.svg
l Procedures —
I Other = ——
B for each item i in list pre...
Generate intercept Set Inpu...
univariate model fitting fo...
Figure 79

The HistSkew template actually has the same inputs as the Histogram template, so we only need to
change the name in the Template block and then add the additional outputs as follows:

Stat-JR:LEAF

I Control Selected
I Logic block:
I Math S B B L ETEEE Y Please choose the dataset to be used nnadxx
I #:: set [C508 o _ ‘Ask S ERELELEY Please choose your response variable
Hypothesis 1Y preds ¢ RERECTE T 02 SR ELEEE Please choose your list of candidate predictor v...
l Data Preparation
I Models o
I Post-process Set Input
l Input
I output Template HistSkew
I vanebles Show histogram.svg
I Procedures
Devel |
L for each item i in list pre...
Generate intercept Set Inpu...
univariate model fitting fo...
Figure 80

Of course, we could have discovered the names of the outputs we required by running the Histskew
template in TREE or LEAF, but for brevity we’ve done that for you. We’ve also detached (but not
deleted) the section of workflow downstream of the response histogram group of blocks; this is
simply so our outputs of interest are returned more quickly without having to first wait for all the
models to fit. Running this workflow we see the following outputs:

63

Stat-JR:LEAF

800

normexam

Block 8 OutputObiject(table)

name count skewness Z score p value Minimum

normexam 4059 0.00374211836606 0.097509762081 0922321582156 -3.6660717

Figure 81

So the HistSkew template simply works out the skewness of the column of numbers (given in the
table along with its significance) and based on this statistic provides a textual output providing some
(hopefully appropriate) information about the distribution. We could use this in a statistical analysis
assistant to potentially suggest fitting a transformed response variable to make normality of the
residuals more likely if the data are very skewed (whilst remembering it is the residuals not the
response that is assumed normally distributed).

Attach the latter part of the workflow back onto the former part of it, and save it as section2_08.xml|
before continuing.

2.9 MCMC Explanation template

We will next add some extra blocks to the univariate model fitting group of blocks and so let’s
expand this group, and collapse the response histogram group. To provide feedback on the MCMC
chains, we need to select them from amongst the output of the Regression1 template and then feed
them into an appropriate operation. The Regressionl template produces an output object called
modelchains. To illustrate its structure we’ve selected it from the pull-down list of outputs after
running the workflow in the screenshot below:

64

modelchains

iteration

moe W R o

w @ @

®

Figure 82

W

ERRCRE RN

sigmaz
0.6738427797099777
0.6484113920482701
0.6436119366333003
0.641826209750443
0.6470771207821464
0.650136918848877
0.6478652474655078
068 1447

sigma
0.8208792723110857
0.8052399592967739

0.802254284272325
0.8011405880343763
0.8044110398943508
0.8083108838240933
0.8049007687072413

0.6583393252727637
0.8504431388611308
0.6272917832367049
0.6719642761826475
0.6489668315439566
0.6459581815986803
0.6828240293329298

0.623361813589398
0.6481004598820661
0.6549127941119514
0.86876537783112465

0 5

0.811381122083059
0.8085036496266652
0.7920175397279438
0.8197342716897028
0.8055847761371591
0.8037152368348431
0.8263318702952452
0.7895326551760845
0.8050468681278054
0.8092668250410088
0.8171008372968703

0. 0/ 46

0.826797 4

0.6356186804973718
0.6206489046565222
0.6416050849469336
0.6609448825753512

0.7972569726865809
0.7935041932192434
0.8010025499003942
0.8129851675002141

chain tau bsta_0 beta_1
1 1.4840256957719433 -0.0024672638437387767 0.6036079745495528
1 1.5422307693285504 0.026196122648868156 0.5857713148248451
1 1.5537312820077512 0.002262505966863466 0.5004420762145551
1 1.5580541660784206 0.01022613243514356 0.5964292399932969
1 1.5454108449874762 -0.003227142731984635 0.6162442527518414
1 1.5381375384280507 -0.021185814362503844 0.5918337814347455
1 1.5435308560106704 0.010825812476962163 0.6024576931886978
1 1.483265 053 0. 142162 0 7691118
1 1.5189735185610516 -0.02345368976644594 0.585725351803744.
1 1.537401590272366 0.014982088553014705 0.5957314481035147
1 1.5041544696157064 -0.010919268147950356 0.6059227600408359
1 1.48317425010219 -0.00022092835007448652 0.5762225770608523
1 1.5409108008658338 -0.007833269678250033 0.59971131971064256
1 1.543087830585414 0.00857047859576636 0.5854412492258635
1 1.4845061641678432 0.013192112666597637 0.5673319617885191
1 16042047783483400 0.01064055401224386 0.6203283842943902
1 1.5420708687478182 -0.008513747379306868 0.5656720779982876
1 1.526920849801022 -0.01174296957925415 0.595176118053526
1 1.4977822825018456 -0.014789177758576043 0.6008902921498345
1 1.4628574437985405 -0.004894306970229955 0.5943612581327303
1 1.5732703123474907 0.007652761239403253 0.5919443140153736
1 1.5831866745174547 0.006934390534435471 0.5952714062037481
1 1.5585911367836038 0.005656843111631441 0.607814622207847
1 1.5129854642395157 -0.0005203679701134059 0.6078719091138975
1 1.5454358780654556 -0.016748896398827495 0.60300
1 1 72228 -0.001248803366812463 (0.5833584693470733
1 1.5225091230786179 -0.019821953091748352 0.5844458661316265

0.6470 93818805
0.6410546957090195
0.6568105141977287

0.8044045247149475
0.8006589134637917
0.3104384703342561

deviance
9763.917213957797 ~
9765.73123662443
9760.829280393362
9761.558526075838
9763.320328820046
9763.084984439767
9761.759734310714
9770.513441171395
9764.56478TT799734
9762.164510238788
O764.12444800447
9765.179498967496
9760.88765030825
9761.708370813107
9767.102603718784
9768.723253115813
9766.184013765207
9761.400374158413
9763.539675903741
9766.
9761.881381452904
9762.703772095261
9762.050859478168
9762.245215635485

O762.4242446043
9761.629787T19758
9763.679248850578 "

58918321664

View 1- 30 0f 8,000

As you can see, there is a column for each parameter, with rows corresponding to the value at each
iteration of each chain (chains 2 and 3 appear further down), so here we have our chains.

We will add some MCMC explanations after the model fit, so let’s insert some blocks under the
Show: ModelResults block, changing our working dataset to modelchains. We will run the template
MCMCExplanation which requires one input only (incol), namely an MCMC chain. The output we are
interested in is called mcmctext:

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Figure 83

Set Input outdata

Template Regression1

Show ModelResults

Set Input

Template

Set Input

Template

Set Input

Template

Set Input

Select dataset || LG last + RiGTpNEle S Simple_linear_regression {e/1:1|{ modelchains

65

Selected
block:

So here we have changed the dataset (to modelchains) and then repeated three steps of setting the
incol input, running the MCMCExplanation template and showing the resulting object of interest
(mcmctext). We do this for the intercept (beta_0) the slope (beta_1) and the residual variance
(sigma2; as an exercise, perhaps at the end of the section, you may like to try converting this to a
loop). Save this workflow as section2_09.xml.

If we Run it you will see it creates lots of output, including the mcmctext object we have just added,
e.g.

Stat-JR:LEAF

Block 78 tputObjecl(mcmClext)

MCMC estimation methods are simulation based which means that rather than a point estimate (and
accompanying standard error) for each parameter they instead produce a (dependent) chain of values from
the posterior distribution of the parameter. In fact in Stat-JR several chains are run from differing starting
values/ random number seeds and so for each parameter we have several chains of values that can be
combined to summarise the parameter. For parameter beta_1 we can first look at the posterior mean which
has value 0.234 and standard deviation of the chain which has value 0.0313 and plays the role of standard
error for the parameter. We might also consider the posterior median which has value 0.233 as an
alternative if the distribution is not symmetric. Here the median is close to the mean as the posterior is
reasonably symmetric. We can use the quantiles of the distribution and so we see a 95% credible interval
for beta_1is 0.173 to 0.295. We can look at the 3 chains for the parameter beta_1and we can also look at
kernel density plots (which are like smoothed histograms) of the 3 chains on a single plot:

Parameter traces Kernel Density

kernel density

o 500 1000 1500 2000 010 015 020 025 030 035 040
stored update parameter value

Due to the nature of MCMC algorithms updating parameters in separate steps there is some dependence in
the parameter chains produced. One way of investigating this is to look at auto-correlation functions (acf)
for the chains. Essentially an acf examines how correlated a chain of values is with a similar chain shifted by
a number of iterations (the lag). We can plot such a function for a series of lags as shown below.

Figure 84

Within this template we have written code to interrogate the chains that come out of the MCMC
algorithm, and have used the results to tailor output in the style of a short report. The hard work’s
done in the template here, and this is an alternative to coding such interrogations within a workflow,
albeit one which is somewhat less transparent since the user would need to go into the template
code if they wished to change what is written, or query the algorithms. We might also like to allow
the user to decide whether to run the chain for longer based on the diagnostics, and so this would
require interaction within the workflow.

2.10 What have we covered?
In this section we have made a tentative start to building a ‘statistical analysis assistant’, in doing so
encountering some new functionality, such as:

e grouping blocks;
e control structures, such as if-do blocks;

66

o modifying the functionality of blocks (e.g. changing if-do to if-do-else);
e selecting elements from tables;

e returning textual output from a workflow;

e investigating templates which have their own textual outputs.

In the third section we will return to teaching-focussed examples and show how we are updating the
LEMMA training materials to be used within a workflow format.

67

Section 3 Making workflows to support the
LEMMA training materials

3.1 Overview
This section is somewhat different to the previous sections in that all the workflows have been
written for you and the idea is simply that you follow them and learn some further features of the
workflow system as you go. We will be using workflows that aim to produce the equivalent analyses
presented in the MLwiN practical for Module 3 of the LEMMA training materials (written by Fiona
Steele). It is therefore best to have a copy of the practical with you as you run through the workflow
(the website supporting the online LEMMA training materials can be found here:
http://www.bristol.ac.uk/cmm/learning/online-course/index.html).

3.2 Introducing procedures
To begin you will need to start up Stat-JR:LEAF, or return to the workflow screen if it’s already open,
and press Clear. The screen will look as follows:

Stat-JR:LEAF

I Control Selected
I Logic block:
I Matn
I Lists
I text
Hypothesis
I Data Preparation
Data Exploration
I Models
l Post-process
I Input
I output
I Variables
l Procedures
| other
Devel
Figure 85

The workflows we will use can be opened from Workflows > LEAF_Guide (via the black bar at the
top of the LEAF interface); there’s one for each of the five sections of the LEMMA Module 3
practical, and you will find them saved as lemma3_1 ... lemma3_5. Let’s open the first of these,
lemma3_1:

68

http://www.bristol.ac.uk/cmm/learning/online-course/index.html

<p=This workllow is adapted

" Here is the dataset summary (page 5)

T

«ED» |

I Control
l Logic
I wath
I usts
I i -1 nopause - }
~ Mod3.1 with
Hypothesis I
I Data Preparation
|| Data Exploration
I Models
l Post-process
I Input ([[EEEXD with: nopause
I Output elect dataset || 66 LA LILEENE) 2
I Variables Comment
l Procedures
I Other w [& [E
Devel _
set [CELIECRS to
| histogram of response
Set Input L4 bins -]
Setinput | ¢¢ (EEY » |
SULURL L histogram.svg L2
Figure 86

') to (ENEEY with nopauss

&) it | not
90 | setinput
—

177 cois B

LA EELLE do you want to continue?

Selected
block:

1820

This looks somewhat different to the workflows you have seen previously. There appears to be a
rather short workflow contiguous to the Start block consisting of a Show block, one set <variable>

block and a purple block that we haven’t yet come across. There are then some other blocks
elsewhere in the workspace, which do not appear to be connected to the main workflow.

The purple blocks relate to procedures; these are available from the Procedures menu which, if you

click on it, looks as follows:

Stat-JR:LEAF

I Control
l Logic

I wath

I st

I Text
Hypothesis
I Data Preparation
1

|

|

|

|

|

Data Exploration
Models
Mod3.1 with.

Post-process
Input
Qutput
Pause with:
Variables
I Other
Devel

nopause

Figure 87

BN do something

iworkﬁuw&nbsE is adaEled | I

)0} do something

return

dJataset summary (page 5)

core

= (TwEm |
=

he histogram of the response variable, .

69

o (EEIER with nopause

&) it | not
90 | setinput
—

177 cois B

LA EELLE do you want to continue?

Selected
block:

1820

The top three blocks are always found in this list, whilst the others appeared in the list as we added
procedure blocks when building our workflow — we describe this further below. We used the top
block to create the procedures in this workflow. It looks similar to the grouping block we used in
Section 2 — we can change the name away from “do something” and place some blocks within the
‘mouth’ of the procedure block which will be executed when the workflow reaches it — but one
important difference is that it’s call-able: we’ve been able to place it away from the main workflow
because we can call it from there.

To demonstrate, if we bring another of these onto the central workflow pane, and give it a name in
place of the default “do something” (we’ve chosen “run a model” in this example), another purple
block (with “run a model” written on it) has now appeared at the bottom of the Procedures list:

Stat-JR:LEAF

Selected
block:

ojuhs
5 workflow is adapted ... R
===

Lists
Text [@ &) do something |
Hypothesis
return [D i
[7) to [GEMERY with: nopause

|
|
|
|
|
l Data Preparation
1
|
|
|
|
|

Control
Logic
Math

Gl @)1 oo something

q not nopause -

Data Exploration i |' return || el Ly .
Models 90 L_smmpm 0 cols LSRR EET do you want to continue?
Post-process Mod3.1 with:
Input nopause =
Output

P Pause with sl ©
Variables nopause dataset summary (page 5)
Procedures s

I Other @@ run a model |
Devel
core n

= «ED»

— | response -

he histogram of the response variable, ..

Figure 88

If we next click on the blue button on the procedure block we have just introduced, we can modify
the procedure block, requesting that it accept a named input when called — here, in keeping with a
number of the other procedures we produced when originally writing this workflow, we’ve called
the named input “nopause”:

70

Stat-JR:LEAF

I Control Selected
I Logic block:
I Math ojuhyg
~ =p=This workflow is adaptedf.
I o
ange
I et 9
H et Mod3. 1 with
ypothesis
nopause 0 0
|| Brm e aliol’ with: nopause
_ (@] i (8 nopause - |
I Data Exploration :
I Models j1-0 do you want to continue’
l Post-process e
I mput (%) (7) to ([EERD with: nopause
I Output Select dataset | ¢ [EAENNEER) 2?
I Variables [Sulul T Here is the dataset summary (page 5) . ENORY run a model LA I
I Procedures TrE
Other
Show [& T
Devel T
" response - LN T wcore |
histogram of response
Setinput (" ¢ (G % |
!
Setinput | ¢ (EEY »
(el 8 C Here is the histogram of the response variable, |+
=0T histogram svg
—
se with:
nopause nopause
Average for response
- i
Figure 89

Now if we look again at the list of blocks under the Procedures list we see the block at the bottom
has been modified, and now looks just like the ones immediately above it:

Stat-JR:LEAF Run
Control Selected
Logic (@)] do something | block:
Math ojuhyg

5 workflow is adapted ...

|

Lists
Text
Hypothesis

|
|
|
|
|
l Data Preparation
1
|
|
|
|
|

Bl@)\) do something)

return &) (2) to [REME with: nopause

(o] if | not
90 | setinput | ¢) ” | = | Askyesio (RN EIIAELIITY
~—

—

mma3_1
dataset summary (page 5)] (z) fo with: nopause

D |

core
: o
5 !
H

‘he hi~*

Data Exploration

Models
Post-process
Input nopause
Qutput
Variables

Procedures

I Other run a model with:
Devel nopause

Figure 90

This new block (the one which has appeared at the bottom of the left-hand list) is the block we
would use if we wished to call the procedure we’ve just defined (although we’ve not defined it fully:
we haven’t added any blocks in the procedure itself in this simple example). Since we’ve modified it
such that it takes an input (called “nopause”), we can use this input to control internal aspects of the
procedure.

Let’s bin the procedure we’ve just made (you'll notice the Procedures list is modified appropriately)
and turn our attention back to the original workflow. It has two procedures defined: one named

71

Pause and another named Mod3.1; this latter procedure carries out all the instructions in section 1
of the LEMMA Module 3 practical. The procedure called Pause is a lot shorter; like the dummy
procedure we produced for illustration a moment ago, it takes an input called nopause. Looking
inside the Pause procedure we can see that it evaluates this input via an if-do block (as used in
Section 2). The use of not when evaluating the nopause item means that if nopause is ‘false’ then it
will set an input called “cols” (the name we’ve given it here is incidental) to be a Boolean yes/no
guestion asking the user whether they wish to continue or not.

The calls to the Pause procedure are within the large Mod3.1 procedure, whilst the nopause input it
uses is defined in the main workflow, just three blocks below the Start block. It’s currently set to
‘“true’, which means that the whole workflow would run without pausing when you click Run; if it
were instead set to ‘false’ the user would be prompted with the question “do you want to
continue?” whenever the pause procedure was called.

So here a procedure is being used not for data analytical purposes, but to simply modify the
interface for the user; cf. the other procedure, Mod3.1, which is used for data analytical purposes.

Below we run through each of the five workflows (lemma3_1 ... lemma3_5) in turn.

3.3 LEMMA P3.1: Regression with a single continuous explanatory variable
So let’s now look at the first section of LEMMA Module 3.

If you press Run, the workflow will execute; this will take some time (you may see a flurry of activity
in the command line window running in the background), so whilst its running we can look at the
workflow blocks themselves.

You will see that the procedure consists of green grouping blocks identifying what each section of
code does, with occasional Comment blocks. These Comment blocks link the workflow to the page
numbers in the LEMMA documentation, and the text in the Comment blocks will be printed out in
the output. The workflow is also punctuated by calls to the Pause procedure which, as described
above, if set to ‘false’ would pause the workflow and present the user with a prompt asking whether
they would like it to continue or not. Otherwise, the functional structure of the workflow is much
like that encountered in the last two sections: Set Input blocks specifying the inputs for subsequent
Template executions, and Show blocks displaying certain outputs from those executions.

Once it’s run to completion you will see the following output if you scroll down:

72

Stat-JR:LEAF

Finally for section 3.1 here is a histogram of the standardised residuals

Block 147 OutputObject(histogram.svg)

3500

3000

2500

2000}

1500}

1000

500

stdresidual

Figure 91

Here is the histogram from page 24 of the MLwiN practical. If you have two screens (or two
windows) you can have the workflow-code window and the workflow-results window up together to
see their correspondence.

In this first section, whilst a number of the blocks are familiar to us from the first two sections, some
of templates aren’t. We make use of the Tabulate template that can produce quite a wide range of
summary statistics in tabular form and is designed to mimic the MLwiN tabulate window. We also
use a RecodeValues template for recoding the values of a categorical variable, again mimicking the
MLwiN window for recoding values.

Scrolling down the workflow reveals some other new templates we have used:

73

Stat-JR:LEAF

l Control EELT RN xaxis EEIEENIY cohort90 EX) Selected
I Logic OSSN XYLincPlot | block:
I e (@000 81 Here we work out the prediction line and plot ag... |4
Lists
I Text LTS graphxy.svg)
—
Hypothesis I
I Data Preparation | Pause with: nopause nopause
I Data Exploration Wil d 18 Currently no way to do R-squared calculation =
I Models | Selectdataset | Retrieve last + Bieln¥elle 2052 [eliid prediction_datafile
Post-process |
I : utp WhiginEn s Here we calculate the residuals, stdresiduals an... 22
np! |
I Output Calculate Residuals
I Variables USRS outcol LAY residual [2)
I Procedures | - 4
Set Input Y expr L 7 score - pred_full 5
l Other | : I
Devel SIS outdata o201 prediction_datafile |-,
Jerr‘up\ate ' Calculate |
Select dataset | Retrieve last + Rigli=llled 2097 [ellid prediction_datafile
Calculate standardised residuals
Setinput (¢ D 2 | = | Tl
SR gutcol A SR stdresidual [
ST outdata 00— ({1 prediction_datafile |20
Jsl‘r‘u;}\ate ' " StandardiseResiduals |-
Select dataset | Retrieve [ES8 from Block [EXEER Output [Ta e G Gl
Calculate normalised scores
SRR incol EARENERTY sidresidual 2]
Setlnput (¢ CIEED | = (66 Gy
S outdata 4| |4 prediction_datatile |- |
Jemp\ate ! 11 Zscore |k
EECWEE EEC I E T last + RipTyl:leg 2125 felliiy prediction_datafile
Figure 92

Here we use the XYLinePlot template which is simply a variant of the XYPlot that plots lines rather
than points. Then, having switched dataset to the prediction datafile generated from the model fit,
we use in quick succession: Calculate (which you have encountered before) to create residuals from
responses and fitted values; Standardise, to create standardised residuals from raw residuals and
their standard errors; and Zscore, to create normalised scores from the (standardised) residuals.
Each of these templates adds a column to a dataset, each of which we save using the same name,
ensuring we are using the correct (latest) version by appending the Retrieve block onto a Select
dataset block.

As an exercise you might take your own dataset and see if you can, by choosing one response and
one predictor, replicate this exploratory analysis on your dataset: which aspects of the workflow
would you need to modify to accommodate your own dataset, and how?

3.4 LEMMA P3.2: Comparing groups: regression with a single categorical

explanatory variable
We can now look at the next workflow, lemma3_2 (accessible via Workflows > LEAF_Guide):

74

(%]
—
[+3]

=3

EAF Run

I Control Selected
I Logic block:
I wath 1803
I usts Show | HTML <p>This workflow is adapted ... h
I Tt = Change
_ =T nopause + MM true - |
Hypothesis = :
I Data Preparation TRk Wi (7) to ([FEMED with: nopause
. VIS nopause * | i
I Data Exploration el b2 (=] if not 7
I Models 90 | get nput [cols k2 = S8 do you want to continue? |
I Postprocess L —
l Input
I Output (& [IE¥] with- nopause
I Variables Select dataset | ¢ [EluCel)
I Procedures Table vs gender
I otrer Setinput || « ETER? = (| «[E)»? |
Devel L .
Setinput | ¢ ED» | = (& LD
Setinput || 6@ ? | = |« G »
Setinput || ¢ (EED? = || « ETD»
Setinput | s E@D» | = |« EED
Template (SEERETTEYIS
Ll S8 Here is the table of average scores for each gen... 2
Show [¢ [ELE)
o]
Pause with:
nopause
Regression vs gender
Figure 93

Section 3.2 of the LEMMA MLwiN practical covers some basic modelling of categorical predictor
variables. The workflow here consists of some tabulations of the response variable (score) for
different categorical variables using the Tabulate template, several calls to the Regression1 template
for model fitting and much use of the Calculate template to create dummy variables for the different
categories of social class and the different cohorts, primarily because the models fitted have
differing base categories.

There are no really new templates or blocks here so we suggest you simply Run the section and
cross-reference it with the relevant LEMMA materials. If you have your own data and it contains
categorical predictors you might like to adapt the code to your dataset.

3.5 LEMMA P3.3: Regression with more than one explanatory variable (multiple

regression)
We can now look at the next workflow, lemma3_3:

75

Stat-JR:LEAF

I Control

I leegre Start

I Math Show [HTML

I st

I Text

Hypothesis Mod3.3 with:

I Data Preparation nopause

I Data Exploration

I Models

I Post-process

I Input

I ouput

I Variables

I Procedures

l Other Set Input

Dz Set Input

Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input

Figure 94

This workflow is actually quite short as this section of the LEMMA 3 MLwiN practical simply

) (2) to with: nopause
BRSNS nopause |

do

Setlnput [&R | = | Askyesino
—

N

3y b= score
4 x LD cons, cohort90, female, sclasst, sclass2, sciassd 2
3 nchains |4 | =

12 seed |

2 burnin L0~

7 iterations |-

4 thinning 21 | =

< defauttalg |20 | =1 {1 Yes |

" makepred |)| — _“sf

3 defauttsv M Yes |2

Selected
block:

2538

introduces the concept of multiple regression by placing the three predictor variables, investigated
separately up to that point, into the same model. It does this using the Regression1 template, with
which we are familiar. It then also displays a tabulation of two categorical variables to show how

social class has changed over time.

Again we suggest you Run the code and investigate whether it replicates the LEMMA materials, and
if it relates to your own dataset try modifying it accordingly before moving onto the next section.

3.6 LEMMA P3.4: Interaction effects

This section is quite a long one in the training materials. Here is workflow lemma3_4:

76

(%]
—
[+3]

=3

EAF Run

I Control Selected
I Logic block:
I wmath Start 2618
I st . = _
I — Show | HTML <p>This workflow is adapted f._. Change
E
Hypothesis set IR true -)
| Data Preparation Mod3.4 with:
|| Data Exploration nopause () (2) to [GEN=) with: nopause
I Mogels o] it || not
Post-process 1
I P do Sl cols AR SRS STEST RN do you want to continue?
l Input — -
— —
I Qutput (2] (z) to [IELEEY with: nopause
I variables Select dataset | el AT EE) 2
I Procedures Regression vs cohort and gender
I oter Setinput (| @ | = |« G
Devel L £
SEALVLEERTY x EEREERERT cons, cohort90, female 2]
Setinput (¢« (EEGE? = «@»
Setinput | «EZT)» = | «w@»
Setinput (¢ (M2 = | 6 E0)
Setinput (¢ [EEed 2 | = |66 EL0n) %2
Setinput (¢ [GEnTED?? = | @D
Setlnput (| ¢ CEETER) 2 = | « A |
SV makepred EMEE] Yes |
Selinpul (| G (EENEN» = | «“RE»
Figure 95

In this section of the LEMMA materials the concept of interactions is introduced, and several
regressions are fitted. To start with a multiple regression of cohort and gender on the hedonism
score is fitted. The resulting model fit is plotted using a template we haven’t come across previously,
XYGroupPlotLine, which plots separate lines for each group. Another new template, Choose, is then
used to select subsets of the data, firstly all boys and secondly all girls, and separate regressions of
the hedonism score on cohort are performed for each subset. To illustrate interactions, the
Calculate template is used to create the interaction term and a model including it is fitted. The
XYGroupPlotLine template is used again, plotting separate lines that are not parallel for the two
genders.

Attention then moves from gender to social class, which has more categories. The Calculate
template is used to create interactions before the Regression1 template is used to fit a model
including these interactions. The fit of the model is illustrated in two ways using the XYGroupPlotLine
template. Firstly a straightforward predicted line plot with a line for each social class and then a plot
of the differences for each social class from a base category. Here the workflow illustrates how to
extract values from a table of results thus:

77

Stat-JR:LEAF

I control Selected

I Logic ' block:
0g| set to | Extract

I r:it; IEICREE C G EEY last » RifdnB=llIq 2973 Rellii Il d modelparamsters.dta 2618
I L

} e
Hypothesis Column |

I Data Preparatior set CECIIED to | Extract

I Model Table GEGETEN [ast + RiGlgREld 2973 RelliLd modelparameters.dta

els (!

I Postprocess Row

l Input Column |

g

Figure 96

This takes the values of the means of beta_0 and beta_1 from the model fit, which are then used to
create the differences (stored as predscore) from the base category (social class 3) as shown below:

Stat-JR:LEAF Run

Control =l - Selected
I § Calculate differences from social class 3 block:

Logic - . ocl
I Math ST outcol |2 | predscore | 2618
I usts I : ' .
l Text ol =il 18 Note numbers hardwired into calculation below! -/

Hypothesis > = .
I Data Preparation Set Input . G ? | = | (o) create textwith | &€ (I ITIEN(22
[l Data Expioration beta 0 -
I Models |« ER»
| Postprocess ‘
I Input

({4 * »
1 ouput | | §
I variabies Sl (] outdata -0 | {* prediction_datafilel--) |
l Procedures | -
| other . Template EEEeEITEICYS
| —
Devel
Select dataset | Retrieve [EE3E from Block o]l 11 prediction_datafile|
|r\+ nfrliﬁ'nmnm Frama camian miaee -
Figure 97

Finally the plot is constructed before a final model without interactions is constructed for
comparison purposes.

Again we suggest you try running the section to satisfy yourself you understand the code and see
how it replicates the section in the LEMMA materials. If you have suitable data you might consider
modifying the code to use your own dataset.

3.7 LEMMA P3.5: Checking model assumptions in multiple regression
In this final short workflow (lemma3_5), the various predictor variables are brought together in one
final model. This model isn’t so easy to show graphically so instead this section focusses on checking
the fit of the model.

78

Stat-JR:LEAF

I control Selected
I Logic block:
I wath - 1820
I st
I Text Show HTML <p>This workflow :is adapted f... Change
Hypothesis -1 nopause * ORI true - |
Data Preparation Mod3.5 with:
I - . with: nopause
|| Data Exploration nopause
I Models i
I Post-process 90 | set input 14 cols k0= E S SESET do you want to continue?
I Input € to ([ITEN with: nopause =
I Output VSe\ectdataset leaf_lemma...
I Variables final multiple regression
I Procedures Setinput [&P = &« END»
Other
I — =LAl x L cons, cohort90, sclassi, sclass2, sclass4, femal. E
evel i
Setinput | & EELD» | = «@»
Sethnput | CEZH)P | = g
Setinput |« CTEm? | = (| @D
SO rerations |14 3000 120
Setinput | ¢¢ (I 2 = « @)
Setinput | ¢ EEENEGD | = | w
Set Input “”':.:“”
Setlnput | ¢ CEENER” | = | 6 hiD)
SetInput | ¢ [VGEEY 22 =]
Figure 98

In practice this section very closely resembles the first section only with a more complex model, i.e.
all the calculations and plots are ones we have seen before. We suggest you Run the section to
replicate the LEMMA materials and then consider what you would do with your own dataset.

3.8 What have we covered?
In this section we have demonstrated the use of procedure blocks to group sections of workflow
together which can then be called from elsewhere in the workflow. We have also encountered a
number of new templates, and have more generally demonstrated how we might use the tools of
Stat-JR’s workflow system to replicate the outputs found in the LEMMA training materials. Given
Stat-JR’s ability to interoperate with a wide variety of third-party statistical software packages (R,
MLwiN, Stata, etc.) this workflow could eventually be modified to allow the user to toggle between
packages. In doing so it could expose the scripts (R scripts, .do files, etc.) used to run each execution,
so that the user can cross-reference the script and outputs from those packages, and gain insight
into how the same operation might be achieved by a number of different packages.

At this point you should have the tools to try out other things. For example, you may like to consider
fitting other models to your own dataset, perhaps even using other model-fitting templates (e.g.
1LevelMod, 2LevelMod) which you can always test first using TREE.

79

Section 4 Translating a workflow into an
eBook

In this section we will create a workflow within LEAF and explore exporting it to Stat-JR’s eBook-
reading interface, DEEP.

To start things off we will load up the workflow system which will give us the usual window as
shown:

Stat-JR:LEAF Run

Control Selected

Logic block:

Math

Text ange

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 99

We'll quickly construct a workflow using the Re-edit button: a tool we briefly touched on in Section
1.8. We will start off by producing what we might call a ‘skeleton workflow’: a stripped down
workflow that only contains the Start block, the Select Dataset block and the black Template blocks.

To create this skeleton workflow pick the Start block from the Control menu, the Select dataset
block from the Data Preparation menu and two Template blocks from the Devel menu so that the
workflow looks as follows:

Stat-JR:LEAF Run

Control Selected
block:

Logic
Math

Lists

Text
Hypothesis)
Data Preparation Select dataset
Data Exploration
Models
Post-process Template
Input
Qutput
Variables
Procedures
Other
Devel

Template

Figure 100

80

Next we will fill in the shadow blocks so that we have the names of the dataset (we’re using the
tutorial dataset we used earlier) and some templates which will allow us to explore aspects of the
dataset (you may recall we encountered these two templates in Section 1):

Stat-JR:LEAF

Control Selected
e block:
Math

Lists

Hypothesis p

Data Preparation Select dataset tutorial

Data Exploration
Models
Post-process Template Histogram
Input
Output
Variables
Procedures
Other
Devel

Template AverageAndCorrelation

Figure 101

This is a valid workflow but doesn’t contain any inputs and so, as we saw in Section 1, when input
values are not specified the user will instead be prompted for them when the workflow runs. Note
that in this example, since we haven’t specified how the input values are to be requested (e.g. via a
prompt of our own choosing), the questions will simply be those that we observe in TREE.

If we click on Run we will see the following:

Stat-JR:LEAF

Results
Block 1 DatasetSelect(dataset=tutorial)

v

Block 2 TemplateExecution(template=AverageAndCorrelation)

v

Input for TemplateExecution(AverageAndCorrelation)

averages E

Variables: school

Operation:

student
normexam
cons
standlrt
girl
schgend
avslrt
schav
vrband

Figure 102

Here we see prompts for the input values for the AverageAndCorrelation template, which we can fill
in. Here we have chosen averages as the Operation, and normexam and standirt as the Variables;
after pressing Submit we see the following:

81

Stat-JR:LEAF

Block 4 TemplateExecution(template=AverageAndCorrelation)

Block 5 TemplateExecution(template=Histogram)

v

Input for TemplateExecution(Histogram)

Values: normexam E

Number of bins: 20

Figure 103

So we’re now being prompted for values for the Histogram template inputs; we’ve selected
normexam as the Values to plot, and have typed 20 into the Number of bins. On pressing Submit,
the relevant output from the AverageAndCorrelation template, table, and that from the Histogram
template, histogram.svg, will be created but not displayed until we select them from the pull-down
lists associated with each template execution; here first is the output table from the block titled
TemplateExecution(template=AverageAndCorrelation):

Stat-JR:LEAF
Block 4 TemplateExecution(template=AverageAndCorrelation)

table E

name count mean sd
normexam 4059 -0.0001139071 0.99882084
standirt 4059 0.0018102548 0.9931017

Block 5 Setlnput(bins=20)
Figure 104

...and next the output histogram.svg from the pull-down list associated with the Histogram template
execution:

82

Stat-JR:LEAF

Block 7 TemplateExecution(template=Histogram)

histogram.svg

700

-1 0
normexam

Provenance

Save to Ebook Preview Ebook

Validate | Translate into | json | | xml provn || turtle || trig || svg

Show Prov ‘ Show Bindings |

Figure 105

At the bottom of the screen you can see the Re-edit button: as we saw in Section 1.8, this will return

the full workflow including the values for the inputs we specified. So, click on this now and you

should see the following:

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 106

Select dataset | ¢ ”

Setlnput (¢« »? = | « BEED”?

= EE 1 vars B S normexam, standirt [
|

Template 11 AverageAndCorrelation |-/

Set Input | €€ m ”» [&€ ”»
Set Input | : (44 ”»

Template (RN6€ o

83

Selected
block:

So this workflow is a log of the workflow we have just run. If we wish to include the output objects
then we need to add two Show blocks from the Output menu after the respective Template blocks,
as follows:

Stat-JR:LEAF

I Control Selected
I Math 1
I Lsts Select dataset | €6 [[TELE] 2?
. Change
i o 40
I Hypothess Setinput | & ED» = (« EEZTD”
I Data Preparation = . .
| Data Exploration Set Input : “ » | = ' % normexam,standirt -
Model
I o ;piocess I EICEE L AverageAndCorrelation -2
| = s VNN
ow
I output
= e Setinput | « G » | = || « gD »
I Other . 1
Devel Set Input | : (13 » =
Template (SEERIECETCT 39
histogram.svg
Figure 107

If we were to run this workflow now it would automatically execute to completions, using the input
values we chose earlier, and displaying the two outputs we’ve place in the Show blocks.

Save this workflow as section4_01.xml.

We will next extend our workflow by considering a regression, as we did in Section 1. Here we will
simply add an additional Template block (from the Devel menu) to the end of the workflow and type
Regression1 in the associated shadow block:

Stat-JR:LEAF

I Control Selected
I Logic block:
I wmath -
I st Select dataset | ¢ [MGLE) 22
Text . e T e
I Hi'polhesis Set Input | 1 ¢ m ” = l L »
l Data Preparation . 2 m
[Data Exploration Set Input : 7 vars el | normexam,standirt |-
Model) :
I o Sfp'c;ocess ICLEICH | AverageAndCorrelation 2
| = oo
Show table
I output]
= ananes Setinput | «EID» | = | «ED»
Oth . 1
1 omner Setlnput | ¢ (T »
Template & ”»
Show histogram.svg
IR Regressiont |
Figure 108

84

If we next press Run then, after the templates has calculated the averages and generated the
histogram, we will need to fill in the many Regression1 inputs that appear in sequential stages thus
(here we're regressing normexam on standirt, and are including the constant of ones (cons) already
in the dataset as a predictor in order to fit an intercept to the model, cf. earlier examples in which
we demonstrated creating a constant anew):

Stat-JR:LEAF

0
-4 -3 -2 -1 0 1 2 3 4
normexam

Block 10 TemplateExecution(template=Regression1)

B

Input for TemplateExecution(Regression1)

© Response: normexam E

© Explanatory variables: school -
student
normexam
schgend
avsirt
schav
vrband
girl =
cons .
standlrt V

[Chreat cons as categorical
[Chreat standirt as categorical

Figure 109
...and (we’re just accepting the defaults here)...

Stat-JR:LEAF

Input for TemplateExecution(Regression1)

Number of chains: 3
Random Seed: 1
Length of burnin: 500
@ Number of iterations: 2000
Thinning: 1

Use default algorithm settings: ®VYes
ONo

Figure 110

...and...

85

Stat-JR:LEAF

Input for TemplateExecution(Regression1)

Generate prediction dataset: OYes
®No

Use default starting values:

Figure 111

...and finally...

Stat-JR:LEAF

Input for TemplateExecution(Regression1)

@ Name of output results:

Figure 112

Once we have specified this last value, and clicked Submit, then the template will run. Once it has
finished we can display outputs from the template execution, for example here we have chosen
ModelResults:

Stat-JR:LEAF

Block 21 TemplateExecution(template=Regression1)

ModelResults E
Results
Parameters:
parameter mean sd ESS variable
tau 1541609950742 0.0340065114631 5799
beta 0 -0.00127835184871 0.0125770014327 5960 cons
beta_1 0.594959154334 0.012745358164 6129 standlrt
sigma2 0.648987956705 0.0143068971085 5784
sigma 0.805548947358 0.00887975878981 5789
deviance 9763.48848831784 2433023996009 6061
Model:
Statistic Value
Dbar 9763.48848831784
D(thetabar) 9760.509788970701
pD 2978699347139
DIC 9766.467187664979
Figure 113

If we click on Re-edit we will now get a longer workflow that, if executed, would run all three
templates in order:

86

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 114

SetInput

Input

Y ttorial [
3 op LEMEEN Y cverages |2

(3 vars |0 ST normexam, standirt |)

1 AverageAndCorrelation)

| table k)

7 bins EERIENENTY 50 E)
2 vals T normexam |
(] Histogram £

. histogram.sug 24

Set Input
SetInput
Set Input
SetInput
Set Input
SetInput
SetInput
Set Input
SetInput
Set Input
SetInput
Set Input
Set Input
SetInput

SetInput

SetInput

Input

te

x| consstandi)
“y = nommexam |
CEmY - w@»

i iteratians |1 = 2000 F
defautalg . Yes |
" nchains 3
1 ininning RENER T 1)

" bumin 500
“EmY - «p»

"7 terations LA (1 2000)
L derautaig EON S Ves |
3 nchains = 3 L
 thinning | “g
bumin| =500
2 makepred L0011 No | 1)
1 defauitsv i Yes

L1 outdata 20 «m»
] Regression1 /)

Selected
block:

We will add a couple of Show blocks to show the ModelResults and beta_0.svg output objects (the

latter consists of six plots of various MCMC diagnostics for the beta_0 (intercept) parameter):

Stat-JR:LEAF

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 115

Set Input
Set Input
Set Input

Set Input

Template

Show ModelResults
Show beta_0.svg

. burnin |20
[makepred |-/ |
11 defaultsv -/ =

1 outdata |21
| Regression1 |

Save this workflow as section4_02.xml.

73 500 B
I No |
Yes |

out 4|

Selected
block:

Now if we run the workflow the three templates will be executed in order, and the four output

objects will be shown. The sixway plot (beta_0.svg) can be seen in the window below:

87

Stat-JR:LEAF

Block 29 OutputObject(beta_0.svg)

beta_0
0.06 T T
0.04 | 25}
. z
g o002 v 20f
a o
£ 000 T 15t
e o
g -0.02 g 10
-0.04 > st
—0.06 L L L 0 n . n
0 500 1000 1500 2000 -0.06 —0.04 —0.02 0.00 0.02 0.04 0.06
stored update parameter value
1.0 T T T T T 1.0 T T r T T
0.8 0.8
0.6 w 06}
5 o
<
< 04 a o4l
0.2 1 0.2}
0.0 . i 0.0 . . L L L
0 20 40 60 80 100 120 0 2 4 6 8 10 12
Lag Lag
0.00025 T T T T T 1.0 T
0.00020 |- 1 0.8} i
w 0.00015 o 06|
0 o
Y Q
= 0.00010 | @D 04
0.00005 |- 02}
0.00000 L . L L v 0.0 L L L L
0 20000 40000 60000 8000010000020000 0 200 400 600 800 1000
updates start iteration
Figure 116

As you might imagine, if we were to press Re-edit again we should get exactly the workflow we just
ran, however we will instead click on the Save to Ebook button.

When we do this a popup appears for which we will specify the requested information as follows:

Save to Ebook

Title LEAF section 4 example eBook
Authors William Browne
Description This is an example eBook from section 4 of the LEAF manual

Filename LEAF_manual_section_4.zip

Figure 117

88

Clicking Save then gives a standard Save As window in which we then need to save the zip file to a
directory from which we can retrieve it from within Stat-JR’s DEEP interface.

The DEEP interface is Stat-JR’s eBook interface and can be accessed by selecting All programs >
Centre for Multilevel Modelling > StatJR — DEEP. As with the LEAF interface, a console window will
pop-up and after a few moments the DEEP front-end will be displayed in a web browser, as shown
below:

Stat-JR:DEEP

Your E-Books: About:
- Author
Created at
Description
Continue reading: OR Start a new reading:
~ New reading process name:

Brief description:

.
Start reading

Figure 118

To select the eBook you have created you will need to click on the Import button (in the black bar at
the top):

Import E-Book

=+ Select an E-Book file

or Find E-Books on maxperiment

Figure 119

Next choose to Select an E-book file and select the file you saved from the workflow system, and
when prompted click Continue Uploading:

89

Import E-Book

eBook structure checking result
Errors:

No error

Warnings:

No warning

HTML checking result
Errors:

Mo error

Warnings:

No warning

Continue Uploading Cancel Upload

Figure 120

...after which we (hopefully) receive confirmation our eBook has been successfully imported:

Import E-Book

Success! Your eBook has been Imported.

Continue

Figure 121

It now appears in the list of Your E-Books in the top left pane; select this eBook in the list so that it is
highlighted (associated meta-information, such as the Author and Description, will then appear
under About). Then, under Start a new reading, type a New reading process name (we have chosen
test, although it doesn’t really matter what name you choose):

90

Stat-JR:DEEP

Your E-Books: About:
- puthor Wil Browne

Created at 2016-06-17T13:03:00.955000

Description This is an example eBook from
section 4 of the LEAF manual

Delete ebook

Continue reading: OR Start a new reading:

-~ New reading process name:

test

Brief description:

.
Start reading

Figure 122

Clicking on Start reading will fire up the eBook and we will get a largely blank page with the progress
gauge in the top-left corner stating “Running Workflow”. Soon this will indicated it has “Finished”
and we will be left with the following:

91

Stat-JR:DEEP

LEAF section 4 example eBook

Finished
Go to page

name count mean sd
normexam 4059 -0.0001138071 099832084
standlrt 4059 0.0018102548 09931017
about
700
600
500
400
300
200
100
4]
- 2 -1] 1 2 3 4
normexam
about
Results
Parameters:
parameter mean sd ESS variable
tau 1.541609950742 0.0340065114631 5799
beta_ 0 0.00127835184871 0.0125770014327 5960 cons
beta_1 0.594959154334 0.012745358164 6129 standirt
sigma2 0.648987956705 0.0143068971085 5784
sigma 0.805548947358 0.00887975878981 5789
deviance 9762.48848831784 2.433023996009 6061
Model:
Statistic Value
Dbar 9763.48848831784
D(thetabar) 9760.509788970701
pD 2978699347139
DIC 9766.467187664979
beta_0
0.06 3
0.04 = 25
8 o002 @ 20
@ g
E 000 15
2]
8 -0.02 £10
= o
-0.04 = 5
~0.06
o 500 1000 1500 2000 ~0.06-0.04 -0.02 0.00 0.02 0.04 006
stored update parameter value
10 10
LX) 08
06 w 0.6
g 2
< o4 & 04
02 0.2
0
20 40 60 B0 100 120 z 4 6 8 10 12
Lag Lag
0.00025 L0 ——
0.00020 0.8
E 0.00015 g o8
= 0.00010 g 04
0.00005 0.2
0.00000 0.0
20000 40000 60000 80000100000 20000 200 400 600 800 1000
updates start iteration

abou

Figure 123

92

Essentially we have a rather skeleton-like eBook where the outputs from the Show blocks in the
workflow appear as objects in boxes in a one-page eBook.

Currently the LEAF system will simply create this skeleton eBook, but we can then consider adding to
the eBook structure etc.; see the Stat-/JR DEEP eBook Reader & Authoring Guide for more
information.

4.1 What have we covered?
In this section we have demonstrated how to create a workflow by starting with a ‘skeleton’ and
filling in the template inputs ourselves when prompted, before selecting Re-edit to ‘complete the
loop’ and construct the workflow corresponding to our choices.

Then we have investigated exporting this as a Stat-JR eBook, to be opened and read in the Stat-
JR:DEEP interface.

93

Section 5 Appendix

From Section 1.12, here’s the end of the workflow with our prediction-plotting blocks added to it;
remember to save the workflow as section1_12.xml.

Stat-JR:LEAF

Control . Selected

I) Set Input defaultsv = block:

I Logic oc

I Math Set Input outdata = Simple.
Lists

I Text w Regression1
Hypothesis Show ModelResults

I Data Preparato Select dataset | Retrieve (53 from Block (ST ion RelNEITY prediction_datafil

I Data Exploration = Select dataset || etrieve ([EE#) from Blo: |mpe|near7regressmn ie[11Y prediction_datafile

I Modeis Set Input) create text with || 66 (ECBITN 2

Il Postprocess response + | |

I Input

I ouput Set Input standirt

I s Template

l Procedures

I Other Show graphxy.svg

0 s s I

Figure 124

From Section 2.3, here’s how we set-up our loop plotting the response against each of the predictors
inturn:

Stat-JR:LEAF Run
I Control Selected
I Logic block:
I Math e Bl e e L [EG B Rl Please choose the dataset to be used
I st set LGB S ERE TR B Please choose your response variable
| ange
I Text CETH preds v RIS ERETE RS Please choose your list of candidate predictor v...
Hypothesis -
I Data Preparation Set Input
l Data Exploration -
I Models
l Post-process Template Histogram
I (o Show histogram svg
I output
I variables for each item (i@ in list | [EEREED
S [0 | Set npu -
I Other 1 =
Devel Set Input xaxis = 083
Template XYPlot
Show graphxy svg
S
Figure 125

So for each predictor variable in preds, the four blocks in the “do” section of the for-do block will be
run. The first block assigns the user-nominated variable response as the variable to be plotted on the
y-axis, whilst the second block sets the variable currently indexed in our list of predictors (preds) as
the variable to be the plotted on the x-axis. Finally, the XYPlot template is run (with these two
inputs), and the output object of interest is plotted.

Save this workflow as section2_03.xml.

94

	Funding acknowledgement
	Section 1 Getting Started with Stat-JR workflows
	1.1 Overview
	1.2 Starting up TREE
	1.3 Using your own dataset
	1.3.1 If your dataset is already in .dta format
	1.3.2 If your dataset is in .txt format
	1.3.3 Converting your dataset to .dta format

	1.4 Viewing the dataset
	1.5 Opening Stat-JR:LEAF
	1.6 Making our workflow interactive
	1.7 Adding question blocks
	1.8 Plotting a histogram
	1.9 Connecting up the operations
	1.10 Using variables in a workflow
	1.11 Running a statistical regression model and showing predictions
	1.12 Adding predictions to the workflow
	1.13 What have we covered?
	1.14 What’s next?

	Section 2 A statistical analysis assistant for conducting regression type models
	2.1 Overview
	2.2 Questions and a histogram
	2.3 Introducing the “for-do” block
	2.4 Univariable models – creating an intercept
	2.5 Univariable Models – running the models
	2.6 Interrogating the outputs
	2.7 Templates that do their own interrogation
	2.8 Checking for skewness
	2.9 MCMC Explanation template
	2.10 What have we covered?

	Section 3 Making workflows to support the LEMMA training materials
	3.1 Overview
	3.2 Introducing procedures
	3.3 LEMMA P3.1: Regression with a single continuous explanatory variable
	3.4 LEMMA P3.2: Comparing groups: regression with a single categorical explanatory variable
	3.5 LEMMA P3.3: Regression with more than one explanatory variable (multiple regression)
	3.6 LEMMA P3.4: Interaction effects
	3.7 LEMMA P3.5: Checking model assumptions in multiple regression
	3.8 What have we covered?

	Section 4 Translating a workflow into an eBook
	4.1 What have we covered?

	Section 5 Appendix

