R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ############################################################################ > # MLwiN User Manual > # > # 14 Multivariate Response Models . . . . . . . . . . . . . . . . . . . 211 > # > # Rasbash, J., Steele, F., Browne, W. J. and Goldstein, H. (2012). > # A User's Guide to MLwiN, v2.26. Centre for Multilevel Modelling, > # University of Bristol. > ############################################################################ > # R script to replicate all analyses using R2MLwiN > # > # Zhang, Z., Charlton, C., Parker, R, Leckie, G., and Browne, W.J. > # Centre for Multilevel Modelling, 2012 > # http://www.bristol.ac.uk/cmm/software/R2MLwiN/ > ############################################################################ > > library(R2MLwiN) R2MLwiN: A package to run models implemented in MLwiN from R Copyright 2013-2024 Zhengzheng Zhang, Christopher M. J. Charlton, Richard M. A. Parker, William J. Browne and George Leckie Support provided by the Economic and Social Research Council (ESRC) (Grants RES-149-25-1084, RES-576-25-0032 and ES/K007246/1) To cite R2MLwiN in publications use: Zhengzheng Zhang, Richard M. A. Parker, Christopher M. J. Charlton, George Leckie, William J. Browne (2016). R2MLwiN: A Package to Run MLwiN from within R. Journal of Statistical Software, 72(10), 1-43. doi:10.18637/jss.v072.i10 A BibTeX entry for LaTeX users is @Article{, title = {{R2MLwiN}: A Package to Run {MLwiN} from within {R}}, author = {Zhengzheng Zhang and Richard M. A. Parker and Christopher M. J. Charlton and George Leckie and William J. Browne}, journal = {Journal of Statistical Software}, year = {2016}, volume = {72}, number = {10}, pages = {1--43}, doi = {10.18637/jss.v072.i10}, } The MLwiN_path option is currently set to C:/Program Files/MLwiN v3.13/ To change this use: options(MLwiN_path="") > # MLwiN folder > mlwin <- getOption("MLwiN_path") > while (!file.access(mlwin, mode = 1) == 0) { + cat("Please specify the root MLwiN folder or the full path to the MLwiN executable:\n") + mlwin <- scan(what = character(0), sep = "\n") + mlwin <- gsub("\\", "/", mlwin, fixed = TRUE) + } > options(MLwiN_path = mlwin) > > > # 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .211 > > data(gcsemv1, package = "R2MLwiN") > summary(gcsemv1) school student female agemths written Min. :20920 Min. : 1 Male : 777 Min. :186.0 Min. : 0.625 1st Qu.:60501 1st Qu.: 64 Female:1128 1st Qu.:205.0 1st Qu.:37.500 Median :68133 Median : 133 Median :510.0 Median :46.875 Mean :62128 Mean :1037 Mean :389.8 Mean :46.798 3rd Qu.:68411 3rd Qu.: 458 3rd Qu.:510.0 3rd Qu.:55.625 Max. :84772 Max. :5521 Max. :510.0 Max. :90.000 NA's :202 csework cons Min. : 9.259 Min. :1 1st Qu.: 62.963 1st Qu.:1 Median : 75.926 Median :1 Mean : 73.435 Mean :1 3rd Qu.: 86.111 3rd Qu.:1 Max. :100.000 Max. :1 NA's :180 > > # 14.2 Specifying a multivariate model . . . . . . . . . . . . . . . . . 212 > > # 14.3 Setting up the basic model . . . . . . . . . . . . . . . . . . . .214 > > (mymodel1 <- runMLwiN(c(written, csework) ~ 1 + (1 | student), D = "Multivariate Normal", estoptions = list(sort.ignore = TRUE), + data = gcsemv1)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Multivariate Normal) Estimation algorithm: IGLS Elapsed time : 0.61s Number of obs: 1905 (from total 1905) The model converged after 3 iterations. Log likelihood: -13903.9 Deviance statistic: 27807.9 --------------------------------------------------------------------------------------------------- The model formula: c(written, csework) ~ 1 + (1 | student) Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept_written 46.80278 0.32017 146.18 0 *** 46.17527 47.43030 Intercept_csework 73.36400 0.38821 188.98 0 *** 72.60313 74.12488 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept_written 178.71008 6.10784 cov_Intercept_written_Intercept_csework 102.31138 5.91751 var_Intercept_csework 265.44838 9.01669 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > (mymodel2 <- runMLwiN(c(written, csework) ~ 1 + female + (1 | school) + (1 | student), D = "Multivariate Normal", + data = gcsemv1)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Multivariate Normal) N min mean max N_complete min_complete mean_complete max_complete school 73 2 26.09589 104 73 2 26.09589 104 Estimation algorithm: IGLS Elapsed time : 0.86s Number of obs: 1905 (from total 1905) The model converged after 4 iterations. Log likelihood: -13400.2 Deviance statistic: 26800.5 --------------------------------------------------------------------------------------------------- The model formula: c(written, csework) ~ 1 + female + (1 | school) + (1 | student) Level 2: school Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept_written 49.45213 0.93384 52.96 0 *** 47.62183 51.28243 Intercept_csework 69.67166 1.17179 59.46 0 *** 67.37500 71.96831 femaleFemale_written -2.50295 0.56072 -4.46 8.052e-06 *** -3.60194 -1.40396 femaleFemale_csework 6.75139 0.67065 10.07 7.734e-24 *** 5.43694 8.06584 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the school level: Coef. Std. Err. var_Intercept_written 46.81298 9.18733 cov_Intercept_written_Intercept_csework 24.87783 8.88036 var_Intercept_csework 75.16623 14.56485 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept_written 124.63432 4.34983 cov_Intercept_written_Intercept_csework 73.00323 4.17829 var_Intercept_csework 180.09817 6.24580 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > mymodel2@RP["RP2_cov_Intercept_written_Intercept_csework"]/sqrt(mymodel2@RP["RP2_var_Intercept_written"] * mymodel2@RP["RP2_var_Intercept_csework"]) RP2_cov_Intercept_written_Intercept_csework 0.4193899 > > mymodel2@RP["RP1_cov_Intercept_written_Intercept_csework"]/sqrt(mymodel2@RP["RP1_var_Intercept_written"] * mymodel2@RP["RP1_var_Intercept_csework"]) RP1_cov_Intercept_written_Intercept_csework 0.4872688 > > # 14.4 A more elaborate model . . . . . . . . . . . . . . . . . . . . . .219 > > (mymodel3 <- runMLwiN(c(written, csework) ~ 1 + female + (1 + female | school) + (1 | student), D = "Multivariate Normal", + data = gcsemv1)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 iteration 4 iteration 5 iteration 6 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Multivariate Normal) N min mean max N_complete min_complete mean_complete max_complete school 73 2 26.09589 104 73 2 26.09589 104 Estimation algorithm: IGLS Elapsed time : 2.21s Number of obs: 1905 (from total 1905) The model converged after 7 iterations. Log likelihood: -13378.1 Deviance statistic: 26756.1 --------------------------------------------------------------------------------------------------- The model formula: c(written, csework) ~ 1 + female + (1 + female | school) + (1 | student) Level 2: school Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept_written 49.40112 0.99594 49.60 0 *** 47.44912 51.35312 Intercept_csework 69.30076 1.35678 51.08 0 *** 66.64152 71.96000 femaleFemale_written -2.47108 0.64394 -3.84 0.0001243 *** -3.73318 -1.20898 femaleFemale_csework 7.15671 1.13530 6.30 2.904e-10 *** 4.93157 9.38186 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the school level: Coef. Std. Err. var_Intercept_written 54.54177 11.77079 cov_Intercept_written_Intercept_csework 38.89313 12.68564 var_Intercept_csework 104.69574 21.82904 cov_Intercept_written_femaleFemale_written -7.44933 5.68375 cov_Intercept_csework_femaleFemale_written -6.97482 7.29527 var_femaleFemale_written 5.28220 4.23883 cov_Intercept_written_femaleFemale_csework -21.10519 9.96561 cov_Intercept_csework_femaleFemale_csework -39.67547 14.69664 cov_femaleFemale_written_femaleFemale_csework 11.00389 6.29634 var_femaleFemale_csework 49.90979 14.60603 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept_written 123.40991 4.37104 cov_Intercept_written_Intercept_csework 70.55722 4.10549 var_Intercept_csework 169.80446 5.99977 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > (mymodel4 <- runMLwiN(c(written, csework) ~ 1 + female + (1 + female[1] | school) + (1 | student), D = "Multivariate Normal", + estoptions = list(resi.store = TRUE), data = gcsemv1)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 iteration 4 iteration 5 iteration 6 iteration 7 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Multivariate Normal) N min mean max N_complete min_complete mean_complete max_complete school 73 2 26.09589 104 73 2 26.09589 104 Estimation algorithm: IGLS Elapsed time : 1.86s Number of obs: 1905 (from total 1905) The model converged after 8 iterations. Log likelihood: -13399.6 Deviance statistic: 26799.2 --------------------------------------------------------------------------------------------------- The model formula: c(written, csework) ~ 1 + female + (1 + female[1] | school) + (1 | student) Level 2: school Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept_written 49.51235 0.94927 52.16 0 *** 47.65181 51.37289 Intercept_csework 69.65891 1.17223 59.42 0 *** 67.36139 71.95644 femaleFemale_1 -2.58355 0.63117 -4.09 4.254e-05 *** -3.82063 -1.34648 femaleFemale_2 6.75772 0.67057 10.08 6.943e-24 *** 5.44342 8.07201 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the school level: Coef. Std. Err. var_Intercept_written 48.19051 10.44075 cov_Intercept_written_Intercept_csework 23.72850 9.34337 var_Intercept_csework 75.23904 14.57476 cov_Intercept_written_femaleFemale_1 -2.54470 4.60831 cov_Intercept_csework_femaleFemale_1 2.00384 5.27357 var_femaleFemale_1 4.10047 3.41483 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept_written 123.99295 4.37418 cov_Intercept_written_Intercept_csework 73.30694 4.18134 var_Intercept_csework 180.08374 6.24510 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > mymodel4@RP["RP2_cov_Intercept_written_Intercept_csework"]/sqrt(mymodel4@RP["RP2_var_Intercept_written"] * mymodel4@RP["RP2_var_Intercept_csework"]) RP2_cov_Intercept_written_Intercept_csework 0.394065 > > mymodel4@RP["RP2_cov_Intercept_written_femaleFemale_1"]/sqrt(mymodel4@RP["RP2_var_Intercept_written"] * mymodel4@RP["RP2_var_femaleFemale_1"]) RP2_cov_Intercept_written_femaleFemale_1 -0.1810253 > > mymodel4@RP["RP2_cov_Intercept_csework_femaleFemale_1"]/sqrt(mymodel4@RP["RP2_var_Intercept_csework"] * mymodel4@RP["RP2_var_femaleFemale_1"]) RP2_cov_Intercept_csework_femaleFemale_1 0.114084 > > u0 <- mymodel4@residual$lev_2_resi_est_Intercept.written > u1 <- mymodel4@residual$lev_2_resi_est_Intercept.csework > u2 <- mymodel4@residual$lev_2_resi_est_femaleFemale.1 > > plot(u0, u0, asp = 1) > plot(u0, u1, asp = 1) > plot(u0, u2, asp = 1) > plot(u1, u1, asp = 1) > plot(u1, u2, asp = 1) > plot(u2, u2, asp = 1) > > # 14.5 Multivariate models for discrete responses . . . . . . . . . . . .222 > > data(tutorial, package = "R2MLwiN") > > tutorial$binexam <- as.integer(tutorial$normexam > 0) > tutorial$binlrt <- as.integer(tutorial$standlrt > 0) > > (mymodel5 <- runMLwiN(c(logit(binexam), logit(binlrt)) ~ 1, D = c("Mixed", "Binomial", "Binomial"), estoptions = list(sort.ignore = TRUE), + data = tutorial)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Mixed) Estimation algorithm: IGLS MQL1 Elapsed time : 1.55s Number of obs: 4059 (from total 4059) The model converged after 4 iterations. Log likelihood: NA Deviance statistic: NA --------------------------------------------------------------------------------------------------- The model formula: c(logit(binexam), logit(binlrt)) ~ 1 Level 1: l1id --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept_binexam 0.04879 0.03140 1.55 0.1202 -0.01276 0.11034 Intercept_binlrt 0.06062 0.03141 1.93 0.05357 . -0.00093 0.12218 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the l1id level: Coef. Std. Err. var_bcons_1 1.00000 0.00000 cov_bcons_1_bcons_2 0.41914 0.01193 var_bcons_2 1.00000 0.00000 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > > # Chapter learning outcomes . . . . . . . . . . . . . . . . . . . . . . .224 > > ############################################################################ > > proc.time() user system elapsed 9.95 1.46 19.84