############################################################################ # MLwiN User Manual # # 12 Modelling Count Data . . . . . . . . . . . . . . . . . . . . . . . 181 # # Rasbash, J., Steele, F., Browne, W. J. and Goldstein, H. (2012). # A User's Guide to MLwiN, v2.26. Centre for Multilevel Modelling, # University of Bristol. ############################################################################ # R script to replicate all analyses using R2MLwiN # # Zhang, Z., Charlton, C., Parker, R, Leckie, G., and Browne, W.J. # Centre for Multilevel Modelling, 2012 # http://www.bristol.ac.uk/cmm/software/R2MLwiN/ ############################################################################ library(R2MLwiN) # MLwiN folder mlwin <- getOption("MLwiN_path") while (!file.access(mlwin, mode = 1) == 0) { cat("Please specify the root MLwiN folder or the full path to the MLwiN executable:\n") mlwin <- scan(what = character(0), sep = "\n") mlwin <- gsub("\\", "/", mlwin, fixed = TRUE) } options(MLwiN_path = mlwin) # 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .181 data(mmmec, package = "R2MLwiN") summary(mmmec) # 12.2 Fitting a simple Poisson model . . . . . . . . . . . . . . . . . .182 (mymodel1 <- runMLwiN(log(obs) ~ 1 + uvbi + offset(log(exp)), D = "Poisson", data = mmmec)) # 12.3 A three-level analysis . . . . . . . . . . . . . . . . . . . . . .184 (mymodel2 <- runMLwiN(log(obs) ~ 1 + offset(log(exp)) + (1 | nation) + (1 | region), D = "Poisson", estoptions = list(Meth = 0), data = mmmec)) (mymodel3 <- runMLwiN(log(obs) ~ 1 + offset(log(exp)) + (1 | nation) + (1 | region), D = "Poisson", estoptions = list(Meth = 0, nonlinear = c(N = 1, M = 2)), data = mmmec)) (mymodel4 <- runMLwiN(log(obs) ~ 1 + uvbi + offset(log(exp)) + (1 | nation) + (1 | region), D = "Poisson", estoptions = list(Meth = 0, nonlinear = c(N = 1, M = 2)), data = mmmec)) # 12.4 A two-level model using separate country terms . . . . . . . . . .186 addmargins(with(mmmec, table(nation))) (mymodel5 <- runMLwiN(log(obs) ~ 0 + nation + nation:uvbi + offset(log(exp)) + (1 | region), D = "Poisson", estoptions = list(Meth = 0, nonlinear = c(N = 1, M = 2)), data = mmmec)) xb <- predict(mymodel5) plot(mymodel5@data$uvbi, xb, xlab = "UV B radiation", ylab = "prediction", type = "n") lines(mymodel5@data$uvbi[mymodel5@data$nationBelgium == 1], xb[mymodel5@data$nationBelgium == 1], col = 1) lines(mymodel5@data$uvbi[mymodel5@data$nationW_Germany == 1], xb[mymodel5@data$nationW_Germany == 1], col = 2) lines(mymodel5@data$uvbi[mymodel5@data$nationDenmark == 1], xb[mymodel5@data$nationDenmark == 1], col = 3) lines(mymodel5@data$uvbi[mymodel5@data$nationFrance == 1], xb[mymodel5@data$nationFrance == 1], col = 4) lines(mymodel5@data$uvbi[mymodel5@data$nationUK == 1], xb[mymodel5@data$nationUK == 1], col = 5) lines(mymodel5@data$uvbi[mymodel5@data$nationItaly == 1], xb[mymodel5@data$nationItaly == 1], col = 6) lines(mymodel5@data$uvbi[mymodel5@data$nationIreland == 1], xb[mymodel5@data$nationIreland == 1], col = 7) lines(mymodel5@data$uvbi[mymodel5@data$nationLuxembourg == 1], xb[mymodel5@data$nationLuxembourg == 1], col = 8) lines(mymodel5@data$uvbi[mymodel5@data$nationNetherlands == 1], xb[mymodel5@data$nationNetherlands == 1], col = 9) legend(7, 0.7, c("belgium", "wgermany", "denmark", "france", "uk", "italy", "ireland", "luxembourg", "netherlands"), lty = 1, col = 1:9) # 12.5 Some issues and problems for discrete response models . . . . . . 190 # Chapter learning outcomes . . . . . . . . . . . . . . . . . . . . . . .190 ############################################################################