R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ############################################################################ > # MLwiN User Manual > # > # 5 Graphical Procedures for Exploring the Model . . . . . . . . . . . .65 > # > # Rasbash, J., Steele, F., Browne, W. J. and Goldstein, H. (2012). > # A User's Guide to MLwiN, v2.26. Centre for Multilevel Modelling, > # University of Bristol. > ############################################################################ > # R script to replicate all analyses using R2MLwiN > # > # Zhang, Z., Charlton, C., Parker, R, Leckie, G., and Browne, W.J. > # Centre for Multilevel Modelling, 2012 > # http://www.bristol.ac.uk/cmm/software/R2MLwiN/ > ############################################################################ > > library(R2MLwiN) R2MLwiN: A package to run models implemented in MLwiN from R Copyright 2013-2024 Zhengzheng Zhang, Christopher M. J. Charlton, Richard M. A. Parker, William J. Browne and George Leckie Support provided by the Economic and Social Research Council (ESRC) (Grants RES-149-25-1084, RES-576-25-0032 and ES/K007246/1) To cite R2MLwiN in publications use: Zhengzheng Zhang, Richard M. A. Parker, Christopher M. J. Charlton, George Leckie, William J. Browne (2016). R2MLwiN: A Package to Run MLwiN from within R. Journal of Statistical Software, 72(10), 1-43. doi:10.18637/jss.v072.i10 A BibTeX entry for LaTeX users is @Article{, title = {{R2MLwiN}: A Package to Run {MLwiN} from within {R}}, author = {Zhengzheng Zhang and Richard M. A. Parker and Christopher M. J. Charlton and George Leckie and William J. Browne}, journal = {Journal of Statistical Software}, year = {2016}, volume = {72}, number = {10}, pages = {1--43}, doi = {10.18637/jss.v072.i10}, } The MLwiN_path option is currently set to C:/Program Files/MLwiN v3.13/ To change this use: options(MLwiN_path="") > # MLwiN folder > mlwin <- getOption("MLwiN_path") > while (!file.access(mlwin, mode = 1) == 0) { + cat("Please specify the root MLwiN folder or the full path to the MLwiN executable:\n") + mlwin <- scan(what = character(0), sep = "\n") + mlwin <- gsub("\\", "/", mlwin, fixed = TRUE) + } > options(MLwiN_path = mlwin) > > > # 5.1 Displaying multiple graphs . . . . . . . . . . . . . . . . . . . . .65 > > data(tutorial, package = "R2MLwiN") > > (mymodel1 <- runMLwiN(normexam ~ 1 + standlrt + (1 | school) + (1 | student), estoptions = list(resi.store = TRUE), + data = tutorial)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Normal) N min mean max N_complete min_complete mean_complete max_complete school 65 2 62.44615 198 65 2 62.44615 198 Estimation algorithm: IGLS Elapsed time : 0.28s Number of obs: 4059 (from total 4059) The model converged after 4 iterations. Log likelihood: -4678.6 Deviance statistic: 9357.2 --------------------------------------------------------------------------------------------------- The model formula: normexam ~ 1 + standlrt + (1 | school) + (1 | student) Level 2: school Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept 0.00239 0.04002 0.06 0.9524 -0.07605 0.08083 standlrt 0.56337 0.01247 45.19 0 *** 0.53894 0.58780 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the school level: Coef. Std. Err. var_Intercept 0.09213 0.01815 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept 0.56573 0.01266 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > u0 <- mymodel1@residual$lev_2_resi_est_Intercept > u0se <- sqrt(mymodel1@residual$lev_2_resi_var_Intercept) > u0CI95 <- 1.96 * u0se > > u0rank <- rank(u0) > u0rankhi <- u0 + u0CI95 > u0ranklo <- u0 - u0CI95 > u0rankno <- order(u0rank) > > plot(1:65, u0[u0rankno], ylim = c(-1, 1), pch = 15, xlab = "Rank", ylab = "u0 residual estimate") > points(1:65, u0rankhi[u0rankno], pch = 24, bg = "grey") > points(1:65, u0ranklo[u0rankno], pch = 25, bg = "grey") > for (i in 1:65) { + lines(rep(i, 2), c(u0ranklo[u0rankno[i]], u0rankhi[u0rankno[i]])) + } > > plot(mymodel1@data$standlrt, mymodel1@data$normexam, asp = 1) > > # 5.2 Highlighting in graphs . . . . . . . . . . . . . . . . . . . . . . .68 > > xb <- predict(mymodel1) > > xbu <- xb + u0[mymodel1@data$school] > > pred <- as.data.frame(cbind(mymodel1@data$school, mymodel1@data$standlrt, xb, xbu)[order(mymodel1@data$school, mymodel1@data$standlrt), + ]) > > colnames(pred) <- c("school", "standlrt", "xb", "xbu") > > if (!require(lattice)) { + warning("package lattice required to run this example") + } else { + xyplot(xbu ~ standlrt, type = "l", group = school, data = pred) + + xyplot(xbu ~ standlrt, panel = function(x, y, subscripts) { + panel.xyplot(x, y, type = "l", groups = pred$school, subscripts = subscripts) + panel.xyplot(pred$standlrt, pred$xb, type = "l", lwd = 3, color = "black") + }, data = pred) + } Loading required package: lattice > > c(unique(mymodel1@data$school)[u0rank == 65], u0rank[u0rank == 65]) [1] 53 65 > > sch53 <- which(levels(as.factor(mymodel1@data$school)) == 53) > > plot(1:65, u0[u0rankno], ylim = c(-1, 1), pch = 15, xlab = "Rank", ylab = "u0 residual estimate") > points(1:65, u0rankhi[u0rankno], pch = 24, bg = "grey") > points(1:65, u0ranklo[u0rankno], pch = 25, bg = "grey") > for (i in 1:65) lines(rep(i, 2), c(u0ranklo[u0rankno[i]], u0rankhi[u0rankno[i]])) > points(x = which(u0rankno == sch53), y = u0[u0rankno[which(u0rankno == sch53)]], pch = 22, bg = 2) > legend(5, 1, "School 53", pch = 22, pt.bg = 2, col = 2) > > plot(mymodel1@data$standlrt, xbu, type = "n") > for (i in 1:65) { + lines(mymodel1@data$standlrt[mymodel1@data$school == i], xbu[mymodel1@data$school == i], col = "blue") + } > lines(mymodel1@data$standlrt, xb, col = 1, lwd = 3) > lines(mymodel1@data$standlrt[mymodel1@data$school == 53], xbu[mymodel1@data$school == 53], col = "red") > legend(-3, 2, "School 53", lty = 1, col = "red") > > plot(mymodel1@data$standlrt, mymodel1@data$normexam, type = "p") > points(mymodel1@data$standlrt[mymodel1@data$school == 53], mymodel1@data$normexam[mymodel1@data$school == 53], col = "red") > legend(-3, 3, "School 53", lty = 1, col = "red") > > schid <- as.vector(by(mymodel1@data$school, mymodel1@data$school, function(x) x[1])) > schsize <- as.vector(by(mymodel1@data$school, mymodel1@data$school, length)) > > cbind(schid, schsize, u0rank)[u0rank >= 28 & u0rank <= 32, ] schid schsize u0rank [1,] 8 102 32 [2,] 47 82 30 [3,] 48 2 29 [4,] 51 58 28 [5,] 61 64 31 > > sch48 <- which(levels(as.factor(mymodel1@data$school)) == 48) > > plot(1:65, u0[u0rankno], ylim = c(-1, 1), pch = 15, xlab = "Rank", ylab = "u0 residual estimate") > points(1:65, u0rankhi[u0rankno], pch = 24, bg = "grey") > points(1:65, u0ranklo[u0rankno], pch = 25, bg = "grey") > for (i in 1:65) { + lines(rep(i, 2), c(u0ranklo[u0rankno[i]], u0rankhi[u0rankno[i]])) + } > points(x = which(u0rankno == sch53), y = u0[u0rankno[which(u0rankno == sch53)]], pch = 22, bg = 2) > points(x = which(u0rankno == sch48), y = u0[u0rankno[which(u0rankno == sch48)]], pch = 22, bg = 3) > legend(5, 1, c("School 53", "School 48"), pch = 22, pt.bg = c(2, 3), col = c(2, 3)) > > plot(mymodel1@data$standlrt, xbu, type = "n") > for (i in 1:65) { + lines(mymodel1@data$standlrt[mymodel1@data$school == i], xbu[mymodel1@data$school == i], col = "blue") + } > lines(mymodel1@data$standlrt, xb, col = 1, lwd = 3) > lines(mymodel1@data$standlrt[mymodel1@data$school == 53], xbu[mymodel1@data$school == 53], col = "red") > lines(mymodel1@data$standlrt[mymodel1@data$school == 48], xbu[mymodel1@data$school == 48], col = "green") > legend(-3, 2, c("The average school", "School 53", "School 48"), lty = 1, col = c("black", "red", "green")) > > plot(mymodel1@data$standlrt, mymodel1@data$normexam, type = "p") > points(mymodel1@data$standlrt[mymodel1@data$school == 53], mymodel1@data$normexam[mymodel1@data$school == 53], col = "red") > points(mymodel1@data$standlrt[mymodel1@data$school == 48], mymodel1@data$normexam[mymodel1@data$school == 48], col = "green") > legend(-3, 3, c("School 53", "School 48"), lty = 1, col = c("red", "green")) > > cbind(schid, u0rank)[u0rank == 1, ] schid u0rank 59 1 > > sch59 <- which(levels(as.factor(mymodel1@data$school)) == 59) > > plot(1:65, u0[u0rankno], ylim = c(-1, 1), pch = 15, xlab = "Rank", ylab = "u0 residual estimate") > points(1:65, u0rankhi[u0rankno], pch = 24, bg = "grey") > points(1:65, u0ranklo[u0rankno], pch = 25, bg = "grey") > for (i in 1:65) lines(rep(i, 2), c(u0ranklo[u0rankno[i]], u0rankhi[u0rankno[i]])) > points(x = which(u0rankno == sch53), y = u0[u0rankno[which(u0rankno == sch53)]], pch = 22, bg = 2) > points(x = which(u0rankno == sch59), y = u0[u0rankno[which(u0rankno == sch59)]], pch = 22, bg = 3) > legend(5, 1, c("School 53", "School 59"), pch = 22, pt.bg = c(2, 3), col = c(2, 3)) > > plot(mymodel1@data$standlrt, xbu, type = "n") > for (i in 1:65) { + lines(mymodel1@data$standlrt[mymodel1@data$school == i], xbu[mymodel1@data$school == i], col = "blue") + } > lines(mymodel1@data$standlrt, xb, col = 1, lwd = 3) > lines(mymodel1@data$standlrt[mymodel1@data$school == 53], xbu[mymodel1@data$school == 53], col = "red") > lines(mymodel1@data$standlrt[mymodel1@data$school == 59], xbu[mymodel1@data$school == 59], col = "green") > legend(-3, 2, c("The average school", "School 53", "School 59"), lty = 1, col = c("black", "red", "green")) > > plot(mymodel1@data$standlrt, mymodel1@data$normexam, type = "p") > points(mymodel1@data$standlrt[mymodel1@data$school == 53], mymodel1@data$normexam[mymodel1@data$school == 53], col = "red") > points(mymodel1@data$standlrt[mymodel1@data$school == 59], mymodel1@data$normexam[mymodel1@data$school == 59], col = "green") > legend(-3, 3, c("School 53", "School 59"), lty = 1, col = c("red", "green")) > > (mymodel2 <- runMLwiN(normexam ~ 1 + standlrt + (1 + standlrt | school) + (1 | student), estoptions = list(resi.store = TRUE, + resioptions = c("estimates", "sampling")), data = tutorial)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Normal) N min mean max N_complete min_complete mean_complete max_complete school 65 2 62.44615 198 65 2 62.44615 198 Estimation algorithm: IGLS Elapsed time : 0.33s Number of obs: 4059 (from total 4059) The model converged after 4 iterations. Log likelihood: -4658.4 Deviance statistic: 9316.9 --------------------------------------------------------------------------------------------------- The model formula: normexam ~ 1 + standlrt + (1 + standlrt | school) + (1 | student) Level 2: school Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept -0.01151 0.03978 -0.29 0.7724 -0.08948 0.06647 standlrt 0.55673 0.01994 27.92 1.344e-171 *** 0.51765 0.59581 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the school level: Coef. Std. Err. var_Intercept 0.09044 0.01792 cov_Intercept_standlrt 0.01804 0.00672 var_standlrt 0.01454 0.00441 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept 0.55366 0.01248 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > xb <- predict(mymodel2) > > u0 <- mymodel2@residual$lev_2_resi_est_Intercept > u1 <- mymodel2@residual$lev_2_resi_est_standlrt > > xbu <- xb + u0[mymodel2@data$school] + u1[mymodel2@data$school] * mymodel2@data$standlrt > > plot(u1, u0, xlab = "Slope", ylab = "Intercept") > points(u1[schid == 53], u0[schid == 53], col = "red") > points(u1[schid == 59], u0[schid == 59], col = "green") > legend(0.2, -0.5, c("School 53", "School 59"), pch = 22, pt.bg = c("red", "green"), col = c("red", "green")) > > plot(mymodel2@data$standlrt, xbu, type = "n") > for (i in 1:65) { + lines(mymodel2@data$standlrt[mymodel2@data$school == i], xbu[mymodel2@data$school == i], col = "blue") + } > lines(mymodel2@data$standlrt, xb, col = 1, lwd = 3) > lines(mymodel2@data$standlrt[mymodel2@data$school == 53], xbu[mymodel2@data$school == 53], col = "red") > lines(mymodel2@data$standlrt[mymodel2@data$school == 59], xbu[mymodel2@data$school == 59], col = "green") > legend(-3, 2, c("School 53", "School 59"), lty = 1, col = c("red", "green")) > > plot(mymodel2@data$standlrt, mymodel2@data$normexam, type = "p") > points(mymodel2@data$standlrt[mymodel2@data$school == 53], mymodel2@data$normexam[mymodel2@data$school == 53], col = "red") > points(mymodel2@data$standlrt[mymodel2@data$school == 59], mymodel2@data$normexam[mymodel2@data$school == 59], col = "green") > legend(-3, 3, c("School 53", "School 59"), lty = 1, col = c("red", "green")) > > u0var <- mymodel2@residual$lev_2_resi_var_Intercept > u0u1cov <- mymodel2@residual$lev_2_resi_cov_standlrt_Intercep > u1var <- mymodel2@residual$lev_2_resi_var_standlrt > > xbu_lo <- xbu - 1.96 * sqrt(u0var[mymodel2@data$school] + 2 * u0u1cov[mymodel2@data$school] * mymodel2@data$standlrt + + u1var[mymodel2@data$school] * mymodel2@data$standlrt^2) > xbu_hi <- xbu + 1.96 * sqrt(u0var[mymodel2@data$school] + 2 * u0u1cov[mymodel2@data$school] * mymodel2@data$standlrt + + u1var[mymodel2@data$school] * mymodel2@data$standlrt^2) > > plotdata <- as.data.frame(cbind(mymodel2@data$standlrt, mymodel2@data$school, xb, xbu, xbu_lo, xbu_hi)[order(mymodel2@data$standlrt), + ]) > colnames(plotdata) <- c("standlrt", "school", "xb", "xbu", "xbu_lo", "xbu_hi") > > plot(plotdata$standlrt, plotdata$xb, xlim = c(-4, 3), ylim = c(-2.5, 3), type = "l") > lines(plotdata$standlrt[plotdata$school == 53], plotdata$xbu[plotdata$school == 53], col = "red") > lines(plotdata$standlrt[plotdata$school == 53], plotdata$xbu_lo[plotdata$school == 53], lty = 3, col = "red") > lines(plotdata$standlrt[plotdata$school == 53], plotdata$xbu_hi[plotdata$school == 53], lty = 3, col = "red") > lines(plotdata$standlrt[plotdata$school == 59], plotdata$xbu[plotdata$school == 59], col = "green") > lines(plotdata$standlrt[plotdata$school == 59], plotdata$xbu_lo[plotdata$school == 59], lty = 3, col = "green") > lines(plotdata$standlrt[plotdata$school == 59], plotdata$xbu_hi[plotdata$school == 59], lty = 3, col = "green") > legend(-4, 3, c("School 53", "School 59"), lty = 1, col = c("red", "green")) > > # Chapter learning outcomes . . . . . . . . . . . . . . . . . . . . . 77 > > ############################################################################ > > proc.time() user system elapsed 11.79 1.26 14.87