R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ############################################################################ > # MLwiN User Manual > # > # 4 Random Intercept and Random Slope Models . . . . . . . . . . . . . .47 > # > # Rasbash, J., Steele, F., Browne, W. J. and Goldstein, H. (2012). > # A User's Guide to MLwiN, v2.26. Centre for Multilevel Modelling, > # University of Bristol. > ############################################################################ > # R script to replicate all analyses using R2MLwiN > # > # Zhang, Z., Charlton, C., Parker, R, Leckie, G., and Browne, W.J. > # Centre for Multilevel Modelling, 2012 > # http://www.bristol.ac.uk/cmm/software/R2MLwiN/ > ############################################################################ > > library(R2MLwiN) R2MLwiN: A package to run models implemented in MLwiN from R Copyright 2013-2024 Zhengzheng Zhang, Christopher M. J. Charlton, Richard M. A. Parker, William J. Browne and George Leckie Support provided by the Economic and Social Research Council (ESRC) (Grants RES-149-25-1084, RES-576-25-0032 and ES/K007246/1) To cite R2MLwiN in publications use: Zhengzheng Zhang, Richard M. A. Parker, Christopher M. J. Charlton, George Leckie, William J. Browne (2016). R2MLwiN: A Package to Run MLwiN from within R. Journal of Statistical Software, 72(10), 1-43. doi:10.18637/jss.v072.i10 A BibTeX entry for LaTeX users is @Article{, title = {{R2MLwiN}: A Package to Run {MLwiN} from within {R}}, author = {Zhengzheng Zhang and Richard M. A. Parker and Christopher M. J. Charlton and George Leckie and William J. Browne}, journal = {Journal of Statistical Software}, year = {2016}, volume = {72}, number = {10}, pages = {1--43}, doi = {10.18637/jss.v072.i10}, } The MLwiN_path option is currently set to C:/Program Files/MLwiN v3.13/ To change this use: options(MLwiN_path="") > # MLwiN folder > mlwin <- getOption("MLwiN_path") > while (!file.access(mlwin, mode = 1) == 0) { + cat("Please specify the root MLwiN folder or the full path to the MLwiN executable:\n") + mlwin <- scan(what = character(0), sep = "\n") + mlwin <- gsub("\\", "/", mlwin, fixed = TRUE) + } > options(MLwiN_path = mlwin) > > > # 4.1 Random intercept models . . . . . . . . . . . . . . . . . . . . . . 47 > > data(tutorial, package = "R2MLwiN") > > plot(tutorial$standlrt, tutorial$normexam, asp = 1) > > (mymodel1 <- runMLwiN(normexam ~ 1 + standlrt + (1 | student), data = tutorial)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence achieved TOLE 2 MAXI 20 NEXT iteration 2 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Normal) Estimation algorithm: IGLS Elapsed time : 0.1s Number of obs: 4059 (from total 4059) The model converged after 3 iterations. Log likelihood: -4880.3 Deviance statistic: 9760.5 --------------------------------------------------------------------------------------------------- The model formula: normexam ~ 1 + standlrt + (1 | student) Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept -0.00119 0.01264 -0.09 0.9249 -0.02596 0.02358 standlrt 0.59506 0.01273 46.76 0 *** 0.57011 0.62000 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept 0.64842 0.01439 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > (mymodel2 <- runMLwiN(normexam ~ 1 + standlrt + (1 | school) + (1 | student), estoptions = list(resi.store = TRUE), + data = tutorial)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Normal) N min mean max N_complete min_complete mean_complete max_complete school 65 2 62.44615 198 65 2 62.44615 198 Estimation algorithm: IGLS Elapsed time : 0.31s Number of obs: 4059 (from total 4059) The model converged after 4 iterations. Log likelihood: -4678.6 Deviance statistic: 9357.2 --------------------------------------------------------------------------------------------------- The model formula: normexam ~ 1 + standlrt + (1 | school) + (1 | student) Level 2: school Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept 0.00239 0.04002 0.06 0.9524 -0.07605 0.08083 standlrt 0.56337 0.01247 45.19 0 *** 0.53894 0.58780 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the school level: Coef. Std. Err. var_Intercept 0.09213 0.01815 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept 0.56573 0.01266 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > # 4.2 Graphing predicted school lines from a random intercept model . . . 51 > > xb <- predict(mymodel2) > > plot(tutorial$standlrt, xb, type = "l") > > u0 <- mymodel2@residual$lev_2_resi_est_Intercept > > xbu <- xb + u0[mymodel2@data$school] > > head(u0) [1] 0.37376013 0.50204279 0.50388852 0.01813113 0.24043062 0.54139498 > > plot(tutorial$standlrt, xbu, type = "l") > > pred <- as.data.frame(cbind(mymodel2@data$school, mymodel2@data$standlrt, xbu)[order(mymodel2@data$school, mymodel2@data$standlrt), + ]) > > colnames(pred) <- c("school", "standlrt", "xbu") > > if (!require(lattice)) { + warning("package lattice required to run this example") + } else { + xyplot(xbu ~ standlrt, type = "l", group = school, data = pred) + } Loading required package: lattice > > # 4.3 The effect of clustering on the standard errors of coeficients . . .58 > > (mymodel3 <- runMLwiN(normexam ~ 1 + standlrt + schgend + (1 | school) + (1 | student), data = tutorial)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Normal) N min mean max N_complete min_complete mean_complete max_complete school 65 2 62.44615 198 65 2 62.44615 198 Estimation algorithm: IGLS Elapsed time : 0.18s Number of obs: 4059 (from total 4059) The model converged after 4 iterations. Log likelihood: -4674.7 Deviance statistic: 9349.4 --------------------------------------------------------------------------------------------------- The model formula: normexam ~ 1 + standlrt + schgend + (1 | school) + (1 | student) Level 2: school Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept -0.08704 0.05112 -1.70 0.08863 . -0.18723 0.01315 standlrt 0.56379 0.01246 45.26 0 *** 0.53938 0.58821 schgendboysch 0.09688 0.10891 0.89 0.3737 -0.11658 0.31034 schgendgirlsch 0.24511 0.08497 2.88 0.003919 ** 0.07857 0.41165 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the school level: Coef. Std. Err. var_Intercept 0.07999 0.01599 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept 0.56576 0.01266 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > (mymodel4 <- runMLwiN(normexam ~ 1 + standlrt + schgend + (1 | student), data = tutorial)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence achieved TOLE 2 MAXI 20 NEXT iteration 2 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Normal) Estimation algorithm: IGLS Elapsed time : 0.19s Number of obs: 4059 (from total 4059) The model converged after 3 iterations. Log likelihood: -4843.6 Deviance statistic: 9687.1 --------------------------------------------------------------------------------------------------- The model formula: normexam ~ 1 + standlrt + schgend + (1 | student) Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept -0.09608 0.01713 -5.61 2.052e-08 *** -0.12967 -0.06250 standlrt 0.59433 0.01261 47.12 0 *** 0.56961 0.61905 schgendboysch 0.11777 0.03918 3.01 0.002647 ** 0.04098 0.19456 schgendgirlsch 0.23584 0.02750 8.58 9.732e-18 *** 0.18195 0.28974 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept 0.63680 0.01414 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > # 4.4 Does the coeficient of standlrt vary across schools? Introducing a random slope . . . . . . . . . . . . . . > # . . . . . . . . . . . . . .59 > > (mymodel5 <- runMLwiN(normexam ~ 1 + standlrt + (1 + standlrt | school) + (1 | student), estoptions = list(resi.store = TRUE), + data = tutorial)) /nogui option ignored ECHO 0 Echoing is ON BATC 1 Batch mode is ON MAXI 2 STAR iteration 0 iteration 1 Convergence not achieved TOLE 2 MAXI 20 NEXT iteration 2 iteration 3 Convergence achieved ECHO 0 Execution completed -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- MLwiN (version: 3.13) multilevel model (Normal) N min mean max N_complete min_complete mean_complete max_complete school 65 2 62.44615 198 65 2 62.44615 198 Estimation algorithm: IGLS Elapsed time : 0.3s Number of obs: 4059 (from total 4059) The model converged after 4 iterations. Log likelihood: -4658.4 Deviance statistic: 9316.9 --------------------------------------------------------------------------------------------------- The model formula: normexam ~ 1 + standlrt + (1 + standlrt | school) + (1 | student) Level 2: school Level 1: student --------------------------------------------------------------------------------------------------- The fixed part estimates: Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval] Intercept -0.01151 0.03978 -0.29 0.7724 -0.08948 0.06647 standlrt 0.55673 0.01994 27.92 1.344e-171 *** 0.51765 0.59581 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --------------------------------------------------------------------------------------------------- The random part estimates at the school level: Coef. Std. Err. var_Intercept 0.09044 0.01792 cov_Intercept_standlrt 0.01804 0.00672 var_standlrt 0.01454 0.00441 --------------------------------------------------------------------------------------------------- The random part estimates at the student level: Coef. Std. Err. var_Intercept 0.55366 0.01248 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- > > # 4.5 Graphing predicted school lines from a random slope model . . . . . 62 > > xb <- predict(mymodel5) > > u <- cbind(mymodel5@residual$lev_2_resi_est_Intercept, mymodel5@residual$lev_2_resi_est_standlrt) > > rphat <- rowSums(as.matrix(mymodel5@data[, c("Intercept", "standlrt")]) * as.matrix(u[tutorial$school, ])) > > xbu <- xb + rphat > > pred <- as.data.frame(cbind(mymodel5@data$school, mymodel5@data$standlrt, xbu)[order(mymodel5@data$school, mymodel5@data$standlrt), + ]) > > colnames(pred) <- c("school", "standlrt", "xbu") > > if (!require(lattice)) { + warning("package lattice required to run this example") + } else { + xyplot(xbu ~ standlrt, type = "l", group = school, data = pred) + } > > > # Chapter learning outcomes . . . . . . . . . . . . . . . . . . . . . 64 > > ############################################################################ > > proc.time() user system elapsed 8.76 1.06 12.01