Module 9: Single-level and Multilevel Models for Ordinal Responses

Stata Practical¹

George Leckie, Tim Morris & Fiona Steele Centre for Multilevel Modelling

Pre-requisites

Modules 5, 6 and 7

If you find this module helpful and wish to cite it in your research, please use the following citation:

Leckie, G., Morris, T., Steele, F. (2016). Single-level and Multilevel Models for Ordinal Responses - Stata Practical. LEMMA VLE Module 9, 1-44. URL: http://www.bristol.ac.uk/cmm/learning/online-course/.

Contents

Introducti	Introduction to the Eurobarometer 2009 Dataset on Interest in EU Elections					
P9.1 Cu	mulative Logit Model for Single-Level Data	. 3				
P9.1.1 P9.1.2 P9.1.3 P9.1.4	Specifying and estimating and cumulative logit model Adding gender Testing the proportional odds assumption Adding further explanatory variables	.3 .5 .8 10				
P9.2 Co	ntinuation Ratio Model	15				
P9.3 Rai	ndom Intercept Cumulative Logit Model	19				
P9.3.1 P9.3.2 P9.3.3	Specifying and estimating a simple two-level model Interpretation of the null two-level model Adding explanatory variables	19 21 24				
P9.4 Rai	ndom Slope Cumulative Logit Model	26				
P9.4.1 P9.4.2	Specifying and testing a random slope for age Interpretation of the random slope model	27 32				
P9.5 Co	ntextual Effects	38				

¹ This Stata practical is adapted from the corresponding MLwiN practical: Steele, F. (2011). Singlelevel and Multilevel Models for Ordinal Responses - Stata Practical. LEMMA VLE Module 9, 1-48. Accessed at <u>http://www.bristol.ac.uk/cmm/learning/course.html</u>

Introduction to the Eurobarometer 2009 Dataset on Interest in EU Elections

You will be analysing data from the Eurobarometer Opinion and Social Questionnaire from spring 2009.² The analysis sample contains residents of the 29 European Union Member States³ who were aged 15 years and over, selected using a multi-stage probability design.

Our response variable is an ordinal indicator of the level of interest in European elections. Respondents were asked:

The next European elections will be held in June 2009. How interested or disinterested would you say you are in these elections?

and presented with the following response alternatives: Very interested, Somewhat interested, Somewhat disinterested, Very disinterested, and Don't know.

After excluding the small number of "don't knows" and respondents from candidate EU states who were not asked this question, the sample size is 26,126. For purposes of illustration, and to speed up model estimation, we take a 50% sample and exclude a small percentage of individuals with missing values on any of the explanatory variable considered. The analysis sample contains 10,340 individuals with the sample size for each state ranging from 98 to 509. The data therefore have a two-level hierarchical structure with individuals at level 1, nested within states at level 2.

We consider several predictor variables. The dataset contains only individual-level variables, but we will derive state-level aggregates for consideration as level 2 predictors. The individual-level variables are gender, age, occupation type, and an index of left-right political attitudes.⁴

The file contains the following variables:

Variable name	Description and codes
state	EU state identifier

² Eurobarometer 71.1: European Parliament and Elections, Economic Crisis, Climate Change, and Chemical Products, January-February 2009 (Study No. ZA4971). Go to <u>http://www.gesis.org/en/eurobarometer-data-service/</u> for further information on the Eurobarometer series and to download datasets.

³ The survey was also conducted in the three candidate countries (Croatia, Turkey and Macedonia) and in the Turkish Cypriot Community, but they are not included in our analysis file because the response variable (interest in EU elections) was not available for respondents in these countries.

⁴ Respondents were asked to rate their political views on a 10-point scale in response to the question: "In political matters people talk of 'the left' and 'the right'. How would you place your views on this scale?"

person	Individual identifier
electint	Interest in EU elections (1=very low, 2=low, 3=some, 4=very high) ⁵
female	Individual gender (1=female, 0=male)
agecen50	Individual age in years (centred at 50)
agecen50sq	Individual age in years (centred at 50) squared
occtype	Occupation type (1=manager, 2=other employed, 3=looking after home/family, 4=unemployed, 5=retired, 6=student)
lrplace	Placement on scale of left-right political attitudes (a 10-point scale with high values indicating more right wing views)
commtype	Type of community of residence (1=rural, 2=mid-sized town, 3=large town or city)

Load "9.1.dta" into memory and open the do-file "9.1.do" for this lesson.

From within the LEMMA Learning Environment

- Go to Module 9: Single-Level and Multilevel Models for Ordinal Responses, and scroll down to Stata datasets and dofiles
- Click "9.1.dta" to open the dataset

Use the summarize command to view the variables in the dataset:

. summarize					
Variable	Obs	Mean	Std. Dev.	Min	Max
state person electint female agecen50	10,340 10,340 10,340 10,340 10,340 10,340	14.81576 5170.5 2.455222 .5267892 6407157	8.942563 2985.045 .9038433 .499306 17.60089	1 1 1 0 -35	30 10340 4 1 48
agecen50sq occtype lrplace commtype	10,340 10,340 10,340 10,340 10,340	310.1721 3.234816 5.292843 1.904449	323.4805 1.620245 2.307556 .794336	0 1 1 1	2304 6 10 3

⁵ The coding of the original variable was reversed so that high values indicate greater interest. 'Very high' corresponds to 'very interested', 'some' to 'somewhat interested', 'low' to 'somewhat disinterested', and 'very low' to 'very disinterested'.

P9.1 Cumulative Logit Model for Single-Level Data

Load "9.1.dta" into memory, and if it is not already in use open the do-file "9.1.do" for this lesson.

From within the LEMMA Learning Environment

 Go to Module 9: Single-Level and Multilevel Models for Ordinal Responses, and scroll down to Stata datasets and dofiles Click "9.1.dta" to open the dataset

P9.1.1 Specifying and estimating and cumulative logit model

We will begin by examining the distribution of our response variable, level of interest in EU elections. Use the tabulate command to view the number (Freq.) and percentage (Percent) of respondents in each response category

. tabulate e	lectint		
Interest in European elections	 Freq.	Percent	Cum.
vlow low some vhigh	1,773 3,255 4,144 1,168	17.15 31.48 40.08 11.30	17.15 48.63 88.70 100.00
Total	+ 10,340	100.00	

The percentage in each of the four response category is shown. The cumulative response percentages, working upwards from the 'very low' category are 17.2%, 48.6%, 88.7%, 100%⁶.

Our first model will simply reproduce the cumulative probabilities, from which we can derive the response probabilities. The model is a single-level ordered logistic regression with no covariates. Let $y_i = s$ denote the ordinal response for respondent i (i = 1, ..., n) where s = 1,2,3,4 denotes the four response categories "vlow", "low", "some" and "vhigh". The model can then be written as

$$logit{Pr(y_i > s | x_{1i})} \equiv log\left\{\frac{Pr(y_i > s)}{1 - Pr(y_i > s)}\right\} = -\kappa_s, \qquad s = 1, 2, 3$$

where the only parameters to be estimated are the three cut points κ_1 , κ_2 and κ_3 .

We fit the above model using the ologit command. The model converges after one iteration:

. ologit electint

⁶ Note that the ologit and meologit estimation commands for fitting single-level and multilevel ordinal response models cumulate the response category probabilities the other way around.

Module 9 (Stata Practical): Single-level and Multilevel Models for Ordinal Responses

Iteration 0: Iteration 1:	log likeliho log likeliho	od = -13224.8 od = -13224.8	23 23				
Ordered logist	ic regression			Number of LR chi2(0 Prob > ch	obs) i2	= = =	10,340 0.00
Log likelihood	= -13224.823			Pseudo R2		=	0.0000
electint	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
/cut1 /cut2 /cut3	-1.575245 0549461 2.060862	.026091 .0196759 .0310675			-1.626 0935 1.999	5382 5101 971	-1.524107 0163822 2.121754

The first cut point /cut1 is estimated to be -1.575 and tells us that the log-odds of having low, some or very high interest in EU elections (s > 1) relative to very low interest (s = 1) is 1.575. This corresponds to a probability of having low, some or very high interest in EU elections of exp(1.575)/[1+exp(1.575)] = 0.828. It follows that the probability of having instead very low interest in EU elections is simply 1 - 0.828 or 0.172.

The second cut point /cut2 is estimated to be -0.055 and so the the log-odds of having some or very high interest in EU elections is 0.055, which corresponds to a probability of 0.514. The probability of having instead very low or low interest in EU elections is 1 - 0.514 or 0.486.

Finally, the third cut point /cut3 is estimated to be 2.061 and so the log-odds of having very high interest in EU elections is -2.061 which corresponds to a probability of 0.113. The probability of having instead very low, low or some interest in EU elections is 1 - 0.113 or 0.887.

Reassuringly, these probabilities all agree with the cumulative percentages from our earlier tabulation of **electint**.

We could have carried out these calculations using Stata's post estimation predict command to calculate the predicted probability for each category of **electint**.

. predict p*

(option pr assumed; predicted probabilities)

Stata generates four new variables **p1**, **p2**, **p3** and **p4** which store, for each respondent, the predicted probability of each response category. We can use the summarize command to display summary statistics of the predictions:

. summarize pl-p	4				
Variable	Obs	Mean	Std. Dev.	Min	Max
p1 p2 p3 p4	10,340 10,340 10,340 10,340 10,340	.17147 .3147969 .4007737 .1129594	0 0 0 0	.17147 .3147969 .4007737 .1129594	.17147 .3147969 .4007737 .1129594

The model includes no covariates and so the predicted probabilities are the same for all 10,340 respondents. The predicted probabilities from the model match the response category percentages reported in the earlier one-way tabulation of **electint**. We can also obtain the cumulative probabilities presented in that tabulation by summing the category-specific probabilities appropriately. We do this by generating a new variable for each cumulative probability using the generate command:

```
. generate p12 = p1 + p2
```

```
. generate p123 = p1 + p2 + p3
```

. generate p1234 = p1 + p2 + p3 + p4

Summarizing these new variables gives the cumulative response probabilities:

```
. summarize p1 p12 p123 p1234
```

Variable		Obs	Mean	Std. Dev.	. Min	Max
p1		10,340	.17147	0	.17147	.17147
p12		10,340	.4862669	0	.4862669	.4862669
p123		10,340	.8870406	0	.8870406	.8870406
p1234		10,340	1	0	1	1

These values 0.171, 0.486 and 0.887 agree with our earlier one-way tabulation of **electint**. Finally, we remove all these newly generated variables from the dataset using the drop command:

. drop p1-p1234

P9.1.2 Adding gender

We will next allow for gender differences in election interest, but before including gender in our model we look at a tabulation of **electint** by **female**. Use the tabulate command with the option row to display row percentages alongside cell and row and column total frequencies:

. tabulate f	emale electint,	row					
+ Key frequency row percentage ++							
female	Interest vlow	in Eurc low	ppean election some	s vhigh	Total		
0	765	1,463	2,036	629	4,893		
	15.63	29.90	41.61	12.86	100.00		
1	1,008	1,792	2,108	539	5,447		
	18.51	32.90	38.70	9.90	100.00		
Total	1,773	3,255	4,144	1,168	10,340		
	17.15	31.48	40.08	11.30	100.00		

This document is only the first few pages of the full version.

To see the complete document please go to learning materials and register:

http://www.cmm.bris.ac.uk/lemma

The course is completely free. We ask for a few details about yourself for our research purposes only. We will not give any details to any other organisation unless it is with your express permission.