Module 7: Multilevel Models for Binary Responses

R Practical

Camille Szmaragd and George Leckie¹ Centre for Multilevel Modelling

Pre-requisites

Modules 1-6

Contents

Introduction to the Bangladesh Demographic and Health Survey 2004 Dataset				
P7.1 T	wo-Level Random Intercept Model3			
P7.1.1 P7.1.2 P7.1.3	Interpretation of the null two-level model			
P7.2 Latent Variable Representation of a Random Intercept Model11				
P7.2.1 P7.2.2				
P7.3 Population-Averaged and Cluster-Specific Effects				
P7.4 P	redicted Probabilities from a Multilevel Model17			
P7.5 T	wo-Level Random Slope Model23			
P7.5.1 P7.5.2 P7.5.3	Interpretation of a random slope model25			
P7.6 A	dding Level 2 Explanatory Variables: Contextual Effects			
P7.6.1 P7.6.2				
P7.7 E	stimation of Binary Response Models: MCMC Methods47			
Referen	References47			

¹ This R practical is adapted from the corresponding MLwiN practical: Steele, F. (2008) Module 7: Multilevel Models for Binary Responses. LEMMA VLE, Centre for Multilevel Modelling. Accessed at http://www.cmm.bris.ac.uk/lemma/course/view.php?id=13.

Most of the sections within this module have online quizzes for you to test your understanding. To find the quizzes:

From within the LEMMA learning environment

- Go down to the section for Module 7: Multilevel Models for Binary Responses
- Click "<u>7.1 Two-Level Random Intercept Model</u>" to open Lesson 7.1
- Click Q1 to open the first question

Introduction to the Bangladesh Demographic and Health Survey 2004 Dataset

You will be analysing data from the Bangladesh Demographic and Health Survey (BDHS),² a nationally representative cross-sectional survey of women of reproductive age (13-49 years).

Our response variable is a binary indicator of whether a woman received antenatal care from a medically-trained provider (a doctor, nurse or midwife) at least once before her most recent live birth. To minimise recall errors, the question was asked only about children born within five years of the survey. For this reason, our analysis sample is restricted to women who had a live birth in the five-year period before the survey. Note that if a woman had more than one live birth during the reference period, we consider only the most recent.

These data were analysed in Module 6 using single-level models. In this module, we consider multilevel models to allow for and to explore between-community variance in antenatal care. The data have a two-level hierarchical structure with 5366 women at level 1, nested within 361 communities at level 2. In rural areas a community corresponds to a village, while an urban community is a neighbourhood based on census definitions.

We consider a range of predictors. At level 1, we consider variables such as a woman's age at the time of the birth and education. Level 2 variables include an indicator of whether the region of residence is classified as urban or rural. We will also derive community-level measures by aggregating woman-level variables, for example the proportion of respondents in the community who are in the top quintile of a wealth index.

²We thank MEASURE DHS for their permission to make these data available for training purposes. Additional information about the 2004 BDHS and other Demographic and Health Surveys, including details of how to register for a DHS Download Account, is available from www.measuredhs.com.

Variable name	Description and codes
comm	Community identifier
womid	Woman identifier
antemed	Received antenatal care at least once from a medically-trained provider, e.g. doctor, nurse or midwife (1=yes, 0=no)
bord	Birth order of child (ranges from 1 to 13)
mage	Mother's age at the child's birth (in years)
urban	Type of region of residence at survey (1=urban, 0=rural)
meduc	Mother's level of education at survey (1=none, 2=primary, 3=secondary or higher)
islam	Mother's religion (1=Islam, 0=other)
wealth	Household wealth index in quintiles (1=poorest to 5=richest)

The file contains the following variables:

The dataset also contains a number of extra variables derived from those above (see the practical for Module 6).

P7.1 Two-Level Random Intercept Model

Download the Rdataset for this lesson:

From within the LEMMA Learning Environment

- Go to Module 7: Multilevel Models for Binary Responses, and scroll down to RDatasets and Rfiles
- Right click "7.1.txt" and select Save Link As... to save the dataset to your computer

Read the dataset into R and create a dataframe object named mydata³:

```
> mydata <- read.table("7.1.txt", header = TRUE, sep = ",")</pre>
```

and use the str command to produce a summary of the dataset:

> str(mydata)				
'data.frame':	5366 obs. of 17 variables:			
\$ comm : int	1 1 1 1 1 1 1 1 1			
\$ womid : int	1 2 3 4 5 6 7 8 9 10			
<pre>\$ antemed: int</pre>	0 1 1 0 0 1 0 0 0 1			
<pre>\$ bord : int</pre>	4 2 3 6 6 4 2 3 1 1			
\$ mage : int	33 21 26 28 37 29 20 29 19 19			
\$ urban : int	0 0 0 0 0 0 0 0 0 0			
\$ meduc : int	2 3 2 1 2 2 3 3 3 3			
\$ islam : int	1 1 1 1 1 1 1 1 1			
\$ wealth : int	3 4 2 2 4 4 2 3 3 4			
\$ magec : num	9.37 -2.63 2.37 4.37 13.37			
\$ magecsq: num	87.72 6.94 5.6 19.06 178.64			
\$ meduc2 : int	1 0 1 0 1 1 0 0 0 0			
\$ meduc3 : int	0 1 0 0 0 0 1 1 1 1			
<pre>\$ wealth2: int</pre>	0 0 1 1 0 0 1 0 0 0			
<pre>\$ wealth3: int</pre>	1 0 0 0 0 0 1 1 0			
<pre>\$ wealth4: int</pre>	0 1 0 0 1 1 0 0 0 1			
<pre>\$ wealth5: int</pre>	0 0 0 0 0 0 0 0 0 0			

P7.1.1 Specifying and estimating a two-level model

We will begin by fitting a null or empty two-level model, that is a model with only an intercept and community effects.

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = \beta_0 + u_{0j}$$

The intercept β_0 is shared by all communities while the random effect u_{0j} is specific to community *j*. The random effect is assumed to follow a normal distribution with variance σ_{u0}^2 .

 $^{^{3}}$ At the beginning of your R session, you will need to set R's working directory to the file location where you saved the dataset. This can be done using the command line and the setwd function:

> setwd("C:\userdirectory\")

Or through selecting Change Dir... on the File menu.

R's main command for fitting multilevel models for binary and other discrete response variables is the glmer command which is part of an additional lme4 library⁴, which we used already in Module 5. This library can be installed through the R Packages menu; select Install Package(s) and then select the correct Mirror and package from the scroll-down menus. As you will see, there is a variety of additional packages that can be installed with R. You only need to install a package once to your own computer. If you then want to use the package, you simply need to call it from within R prior to using the command for the first time in each R session⁵:

```
> library(lme4)
Loading required package: Matrix
```

The syntax for glmer is similar to that for the lmer command which we introduced in Module 5. To fit the above model using the glmer command and to create a model object fit, we type:

```
> fit <- glmer(antemed ~ (1|comm), family = binomial("logit"), data = mydata)
```

The binary response variable (antemed) follows the command which is then followed by a ~ and then by a list of fixed part explanatory variables (excluding the constant as this is included by default⁶). The above model contains only an intercept and so no fixed part explanatory variables are specified. The level 2 random part of the model is specified in brackets by the list of random part explanatory variables (the constant has to be explicitly specified by 1, followed by a single vertical bar I and then by the level 2 identifier (comm). The family option is used to specify a binomial distribution for the response with a logit link function. The data option specifies the dataframe being used to fit the model.

We then display the results using the *summary* command, which gives the following output:

```
> summary(fit)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: antemed ~ (1 | comm)
Data: mydata
AIC BIC logLik deviance df.resid
6639.5 6652.7 -3317.8 6635.5 5364
Scaled residuals:
Min 1Q Median 3Q Max
-2.7779 -0.7458 0.3423 0.7118 2.6784
Random effects:
Groups Name Variance Std.Dev.
```

⁴lme4 is a package developed by Douglas Bates and Martin Maechler for fitting linear and generalized linear mixed-effect models. For more details about this library, see Module 5.

⁵You may get slightly different messages when calling library(lme4) as it will depend on your system and the version of R you have installed.

⁶ Note, to omit the constant you need to add -1 or 0 to the right-hand side of the "~" sign.

Before interpreting the model, we will discuss the estimation procedure that glmer uses⁷. The estimation procedure optimizes a function of the log likelihood using penalized iteratively re-weighted least squares. The log-likelihood is evaluated using the Laplacian approximation⁸. This approximation method may lead to unsatisfactory estimates, so we suggest that the reader uses the parameter estimates provided by R as a starting point and check their results using MCMC (for example with MLwiN or WinBUGS).

P7.1.2 Interpretation of the null two-level model

From the model estimates (using Laplacian approximation), we can say that the logodds of receiving antenatal care from a medically-trained provider in an 'average' community (one with $u_{0j} = 0$) is estimated as $\hat{\beta}_0 = 0.148$. The intercept for community *j* is $0.148 + u_{0j}$, where the variance of u_{0j} is estimated as $\hat{\sigma}_{u0}^2 = 1.464$.

The likelihood ratio statistic for testing the null hypothesis, that $\sigma_{u0}^2 = 0$, can be calculated by comparing the two-level model, with the corresponding single-level model without the level 2 random effects.

```
> fita <- glm(antemed ~ 1, data = mydata, family = binomial("logit"))
> logLik(fita)-logLik(fit)
'log Lik.' -399.8391 (df=1)
```

The test statistic is 799.8 ($-2^{*}(-399.83)$) with 1 degree of freedom, so there is strong evidence that the between-community variance is non-zero.⁹

We will now examine estimates of the community effects or residuals, \hat{u}_{0j} , obtained from the null model. To calculate the residuals and produce a 'caterpillar plot' with

http://www.stat.columbia.edu/~cook/movabletype/archives/2010/09/r_vs_stata_or_d.html.

⁷For further details see the PDF vignettes available on the lme4 website http://cran.r-project.org/web/packages/lme4, in particular the vignette entitled "Computational Methods" which deals with the statistical theory.

⁸In the glmerhelp file, it is noted that by specifying the option nAGQ=n, with n greater than 1, changes the approximation method to adaptive Gauss-Hermite approximation, with a greater value of n leading to more accurate evaluation of the log-likelihood. However, when we tried this in this and other examples we found that specifying different values of ndid not lead to any change in our estimates. This apparent bug may be fixed in later versions of lme4. We refer the reader to the following blog for a discussion of the different approximation methods available in R (glmer) and Stata (xtmelogit command):

⁹Note that the test statistic has a non-standard sampling distribution as the null hypothesis of a zero variance is on the boundary of the parameter space; we do not envisage a negative variance. In this case the correct p-value is half the one obtained from the tables of chi-squared distribution with 1 degree of freedom.

This document is only the first few pages of the full version.

To see the complete document please go to learning materials and register:

http://www.cmm.bris.ac.uk/lemma

The course is completely free. We ask for a few details about yourself for our research purposes only. We will not give any details to any other organisation unless it is with your express permission.