Module 6: Regression Models for Binary Responses

R Practical

Camille Szmaragd and George Leckie¹ Centre for Multilevel Modelling

Pre-requisites

Modules 1-3

Contents

Introductio	on to the Bangladesh Demographic and Health Survey 2004 Dataset	2
P6.1.1 P6.1.2	Mean and standard deviation of the response variable	
P6.3 Ger	eralised Linear Models	15
P6.4 Late	ent Variable Representation of a Generalised Linear Model	16
P6.5 App	lication of Logit and Probit Models in Analyses of Antenatal Care Uptake .	17
P6.5.1 P6.5.2 P6.5.3 P6.5.4 P6.5.5	Probabilities, odds and odds ratios Interpretation of a logit model Comparison of probit and logit coefficients Interpretation of a probit model Significance testing and confidence intervals	18 21 22
P6.6 Add	ling Further Predictors in the Analysis of Antenatal Care	27
P6.6.1 P6.6.2	Extending the logit model	
P6.7 Inte	eraction Effects	33
P6.8 Mod	Helling Proportions	37
P6.8.1 P6.8.2 P6.8.3	Creating a community-level dataset	38
Poforonco		42

¹ This R practical is adapted from the corresponding MLwiN practical: Steele, F. (2008) Module 6: Regression Models for Binary Responses. LEMMA VLE, Centre for Multilevel Modelling. Accessed at http://www.cmm.bris.ac.uk/lemma/course/view.php?id=13.

All of the sections within this module have online quizzes for you to test your understanding. To find the quizzes:

EXAMPLE

From within the LEMMA learning environment

- Go down to the section for Module 6: Regression Models for Binary Responses
- Click "6.1 Preliminaries: Mean and Variance of Binary Data" to open Lesson 6.1
- Click Q1 to open the first question

Introduction to the Bangladesh Demographic and Health Survey 2004 Dataset

You will be analysing data from the Bangladesh Demographic and Health Survey (BDHS), a nationally representative cross-sectional survey of women of reproductive age (13-49 years).²

Our response variable is a binary indicator of whether a woman received antenatal care from a medically-trained provider (a doctor, nurse or midwife) at least once before her most recent live birth. To minimise recall errors, the question was asked only about children born within five years of the survey. For this reason, our analysis sample is restricted to women who had a live birth in the five-year period before the survey. Note that if a woman had more than one live birth during the reference period, we consider only the most recent.

We consider a range of predictors, including the woman's age at the time of the birth, her level of education, and an indicator of whether she was living in an urban or rural area at the time of the survey. The dataset contains the following variables:

Variable name	Description and codes
comm	Community identifier (not used until P6.8)
womid	Woman identifier
antemed	Received antenatal care at least once from a medically-trained provider, e.g. doctor, nurse or midwife (1=yes, 0=no)
bord	Birth order of child (ranges from 1 to 13)
mage	Mother's age at the child's birth (in years)
urban	Type of region of residence at survey (1=urban, 0=rural)
meduc	Mother's level of education at survey (1=none, 2=primary, 3=secondary or higher)
islam	Mother's religion (1=Islam, 0=other)
wealth	Household wealth index in quintiles (1=poorest to 5=richest)

²We thank MEASURE DHS for their permission to make these data available for training purposes. Additional information about the 2004 BDHS and other Demographic and Health Surveys, including details of how to register for a DHS Download Account, is available from www.measuredhs.com.

P6.1 Preliminaries: Mean and Variance of Binary Data

Download the R dataset for this lesson:

From within the LEMMA Learning Environment

- Go to Module 6: Regression Models for Binary Responses, and scroll down to RDatasets and Rfiles
- Right click "6.1.txt" and select Save Link As... to save the dataset to your computer.

Read the dataset into R using the read.table command and create a dataframe object called mydata³:

```
> mydata <- read.table("6.1.txt", sep = ",", header = TRUE)
```

and use the strcommand to produce a summary of the dataset:

```
> str(mydata)
'data.frame': 5366 obs. of 9 variables:
$ comm : int 1 1 1 1 1 1 1 1 1 1 1 ...
$ womid : int 1 2 3 4 5 6 7 8 9 10 ...
$ antemed: int 0 1 1 0 0 1 0 0 0 1 ...
$ bord : int 4 2 3 6 6 4 2 3 1 1 ...
$ mage : int 33 21 26 28 37 29 20 29 19 19 ...
$ urban : int 0 0 0 0 0 0 0 0 0 ...
$ meduc : int 2 3 2 1 2 2 3 3 3 3 ...
$ islam : int 1 1 1 1 1 1 1 1 1 ...
$ wealth : int 3 4 2 2 4 4 2 3 3 4 ...
```

There are 5,366 women in the dataset.

P6.1.1 Mean and standard deviation of the response variable

We will begin by tabulating our response variable, **antemed**to obtain the frequencies, percentages and cumulative percentages for **antemed**:

```
> setwd("C:/userdirectory")
```

Or through selecting Change dir... on the File menu.

³At the beginning of your R session, you will need to set R's working directory to the file location where you saved the dataset. This can be done using the command line and the setwd function:

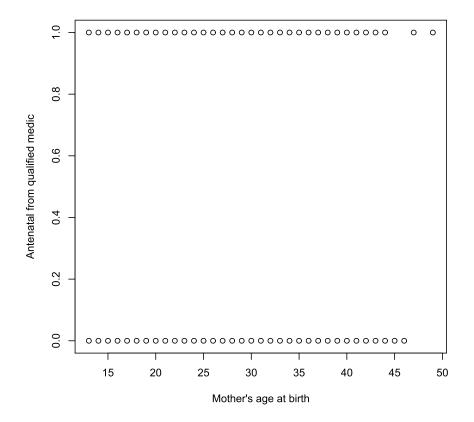
The sample estimate of the proportion of women receiving antenatal care is $\hat{\pi} = 0.513.^4$

Next, we will calculate a range of summary statistics for **antemed** and also its standard deviation.

Notice that the mean of 0.513 is equal to the proportion receiving antenatal care that we obtained from the tabulation.

Using the formula for the standard deviation of a binary variable given in C6.1, we obtain

 $s=\sqrt{\widehat{\pi}(1-\widehat{\pi})}=\sqrt{0.513(1-0.513)}=0.4998$, which agrees with the sd value in the output.


P6.1.2 Bivariate relationships between the response and explanatory variables

Before fitting any models to the relationship between **antemed** and explanatory variables, we will first examine the bivariate relationship between **antemed** and three potential predictors: maternal age (**mage**), type of region of residence (**urban**) and maternal education (**meduc**).

We begin with mage, a continuous variable. Let's start with a scatterplot of antemed versus mage.

```
> plot(mydata$mage, mydata$antemed,xlab="Mother's age at birth",
ylab="Antenatal from qualified medic")
```

⁴Throughout the practical we will frequently refer to antenatal care from a medically-trained provider simply as antenatal care.

Clearly the scatterplot is not very informative because our response takes only two values. Instead we will plot the proportion receiving antenatal care (i.e. the mean of **antemed**) against **mage**. To do this, we calculate the mean of **antemed** for each distinct value of **mage**. To create a new variable equal to the mean of another variable, we can use the tapplycommandwith the meanoption:

```
> propantemed <- tapply(mydata$antemed, mydata$mage, mean)</pre>
```

Here, tapply calculates the mean of antemed(the first variable in tapply) for each different value of mage.

We can now repeat the above plotcommand but swap antemedforpropantemed:

```
> plot(names(propantemed), propantemed, xlim = c(10, 50), xlab = "Mother age at birth")
```

This document is only the first few pages of the full version.

To see the complete document please go to learning materials and register:

http://www.cmm.bris.ac.uk/lemma

The course is completely free. We ask for a few details about yourself for our research purposes only. We will not give any details to any other organisation unless it is with your express permission.