Module 5: Introduction to Multilevel Modelling

Stata Practical

George Leckie ¹ Centre for Multilevel Modelling

Pre-requisites

• Modules 1-4

Contents

Introd	uctic	on to the Scottish Youth Cohort Trends Dataset	1
P5.1	Con	nparing Groups using Multilevel Modelling	3
P5.1 P5.1	.1 .2	A multilevel model of attainment with school effects Examining school effects (residuals)	3 7
P5.2	Add	ling Student-level Explanatory Variables: Random Intercept Models	10
P5.3	Allo	wing for Different Slopes across Schools: Random Slope Models	15
P5.3 P5.3 P5.3 P5.3 P5.3 P5.3	8.1 8.2 8.3 8.4 8.5 8.6	Testing for random slopes Interpretation of random cohort effects across schools Examining intercept and slope residuals for schools Between-school variance as a function of cohort Adding a random coefficient for gender (dichotomousx) Adding a random coefficient for social class (categoricalx)	16 17 17 19 20 23
P5.4	Add	ling Level 2 Explanatory Variables	29
P5.4 P5.4	4.1 4.2	Contextual effects Cross-level interactions	31 34
P5.5	Con	nplex Level 1 Variation	37
P5.5 P5.5 P5.5	5.1 5.2 5.3	Within-school variance as a function of cohort (continuous x) Within-school variance as a function of gender (dichotomous x) Within-school variance as a function of cohort and gender	37 37 39
P5.6	Refe	erences	40

¹ This Stata practical is adapted from the corresponding MLwiN practical: Steele, F. (2008) Module 5: Introduction to Multilevel Modelling. LEMMA VLE, Centre for Multilevel Modelling. Accessed at http://www.cmm.bris.ac.uk/lemma/course/view.php?id=13.

Some of the sections within this module have online quizzes for you to test your understanding. To find the quizzes:

EXAMPLE

From within the LEMMA learning environment

- Go down to the section for Module 5: Introduction to Multilevel Modelling
- Click "<u>5.1 Comparing Groups Using Multilevel Modelling</u>" to open Lesson 5.1
- Click Q1 to open the first question

Introduction to the Scottish Youth Cohort Trends Dataset

You will be analysing data from the Scottish School Leavers Survey (SSLS), a nationally representative survey of young people. We use data from seven cohorts of young people collected in the first sweep of the study, carried out at the end of the final year of compulsory schooling (aged 16-17) when most sample members had taken Standard grades.²

In the practical for Module 3 on multiple regression, we considered the predictors of attainment in Standard grades (subject-based examinations, typically taken in up to eight subjects). In this practical, we extend the (previously single-level) multiple regression analysis to allow for dependency of exam scores within schools and to examine the extent of between-school variation in attainment. We also consider the effects on attainment of several school-level predictors.

The dependent variable is a total attainment score. Each subject is graded on a scale from 1 (highest) to 7 (lowest) and, after recoding so that a high numeric value denotes a high grade, the total is taken across subjects. The analysis dataset contains the student-level variables considered in Module 3 together with a school identifier and three school-level variables:

Variable name	Description and codes
caseid	Anonymised student identifier
schoolid	Anonymised school identifier
score	Point score calculated from awards in Standard grades taken at age 16. Scores range from 0 to 75, with a higher score indicating a higher attainment

 $^{^2}$ We are grateful to Linda Croxford (Centre for Educational Sociology, University of Edinburgh) for providing us with these data. The dataset was constructed as part of an ESRC-funded project on Education and Youth Transitions in England, Wales and Scotland 1984-2002.

Further analyses of the data can be found in Croxford, L. and Raffe, D. (2006) "Education Markets and Social Class Inequality: A Comparison of Trends in England, Scotland and Wales". In R. Teese (Ed.) *Inequality Revisited*. Berlin: Springer.

cohort90	The sample includes the following cohorts: 1984, 1986, 1988, 1990, 1996 and 1998. The cohort90 variable is calculated by subtracting 1990 from each value. Thus values range from -6 (corresponding to 1984) to 8 (1998), with 1990 coded as zero
female	Sex of student (1 = female, 0 = male)
sclass	Social class, defined as the higher class of mother or father (1 = managerial and professional, 2 = intermediate, 3 = working, 4 = unclassified)
schtype	School type, distinguishing independent schools from state- funded schools (1 = independent, 0 = state-funded)
schurban	Urban-rural classification of school (1 = urban, 0 = town or rural)
schdenom	School denomination (1 = Roman Catholic, 0 = non- denominational)

There are 33,988 students in 508 schools.

P5.1 Comparing Groups using Multilevel Modelling

Load "5.1.dta" into memory and open the do-file for this lesson:

From within the LEMMA Learning Environment

- Go to Module 5: Introduction to Multilevel Modelling, and scroll down to Stata Datasets and Do-files
- Click " 5.1.dta" to open the dataset

and use the describe command to produce a summary of the dataset:

. describ	be				
Contains obs: vars: size:	data ,	from 5.1 33,988 9 713,748 (.dta 99.9% of m	emory free)	3 Sep 200909:31
variable	name	storage type	display format	value label	variable label
caseid schoolid score cohort90 female sclass schtype schurban schdenom		float int byte byte byte byte byte byte	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		Case ID School ID Score Cohort Female Social class School type School urban-rural classification School denomination
Contod by	· ·				

Sorted by:

P5.1.1 A multilevel model of attainment with school effects

We will start with the simplest multilevel model which allows for school effects on attainment, but without explanatory variables. This 'null' model may be written

$$\mathbf{score}_{ij} = \beta_0 + u_{0j} + e_{ij}$$

where \mathbf{score}_{ij} is the attainment of student *i* in school *j*, β_0 is the overall mean across schools, u_{0j} is the effect of school *j* on attainment, and e_{ij} is a student-level residual. The school effects u_{0j} , which we will also refer to as school (or level 2) residuals, are assumed to follow a normal distribution with mean zero and variance σ_{u0}^2 .

Stata's main command for fitting multilevel models for continuous response variables is the xtmixed command.³ To fit the above model using the xtmixed

³ Note, two-level random intercept models can equally be fitted with the xtreg command (with the mle option);see help xtreg. We do not discuss the xtreg command as it cannot be used to fit more complicated multilevel models while xtmixed can. However, we do note that xtreg (with the mle option) fits models considerably faster than xtmixed and is therefore recommended for fitting two-level random intercept models. See Rabe-Hesketh and Skrondal (2008) for examples of two-level random intercept models fitted with both commands.

command, we type: xtmixed score || schoolid:, mle variance
nostderr.

The response variable (**score**) follows the command which is then followed by the list of fixed part explanatory variables (excluding the constant as this is included by default⁴). The above model contains only an intercept and so no fixed part explanatory variables are specified. The level 2 random part of the model is specified after two vertical bars ||. The level 2 identifier (**schoolid**) is specified first followed by a colon and then the list of random part explanatory variables (again excluding the constant as this is included by default). The mle option is used to request maximum likelihood estimation (as opposed to the default of restricted maximum likelihood estimation). The variance option reports the variances of the random intercept and any random coefficients included in the model (as opposed to the default of standard deviations). The nostderr option is specified to avoid calculating standard errors for the random part parameters. This speeds up the time it takes to fit each xtmixed model and we can still use likelihood ratio tests to compare nested models with different random part specifications.

Issuing the xtmixed command gives the following output:

. xtmixed score schoolid:, mle variance nostderr								
Performing EM optimization:								
Performing gradient-based opt	imization:							
Iteration 0: log likelihood = -143269.53 Iteration 1: log likelihood = -143269.53								
Mixed-effects ML regression Number of obs = Group variable: schoolid Number of groups =								
			Obs per g:	roup:	min = avg = max =	1 66.9 190		
Log likelihood = -143269.53 Wald chi2(0) = Prob > chi2 =						:		
score Coef. S	td. Err.	Z	P> z	[95%	Conf.	Interval]		
_cons 30.6006 .	3694317 8	2.83	0.000	29.8	7652	31.32467		
Random-effects Parameters	Estimate	Std	. Err.	[95%	Conf.	Interval]		
schoolid: Identity var(_cons)	 61.02457							
var(Residual)	258.3572		•		•	·		
LR test vs. linear regression	: chibar2(01) = 3'	749.78 Prol	o >= (chibar	2 = 0.0000		

⁴ Note, the noconstant option can be used to omit the constant; see help xtmixed.

Before interpreting the model, we willdiscuss the estimation procedure that xtmixeduses.⁵ The default estimation option is to fit the model using the EM (expectation maximisation) algorithm until convergence (or 20 iterations have been reached). At that point, maximization switches to a gradient-based method, unless the emonly option is specified, in which case maximization stops.⁶ In the analysis which follows we will mainly use this default estimation option.

While the default estimation options are normally the preferred approach, complicated models can be very slow to iterate. The advantage of specifying emonly is that EM iterations are typically much faster than those for gradient-based methods. However, the disadvantage is that it can take a large number of EM iterations to converge (if at all).

The overall mean attainment (across schools) is estimated as 30.60. The mean for school *j* is estimated as 30.60 + \hat{u}_{0j} , where \hat{u}_{0j} is the school residual which we will estimate in a moment. A school with \hat{u}_{0j} >0 has a mean that is higher than average, while \hat{u}_{0j} <0 for a below-average school. (We will obtain confidence intervals for residuals to determine whether differences from the overall mean can be considered 'real' or due to chance.)

Before we continue, we store the results using the estimates store command:

```
. estimates store nullmodel
```

We can then explore other model specifications with the option of restoring these estimates later (by using the estimates restore command) without having to refit this model. This will be particularly helpful when we fit more complex models that are slower to converge. We can even store each model we fit under a different name so that we can restore any previously fitted model at a later point.

Partitioning variance

The between-school (level 2) variance $var(_cons)$ in attainment is estimated as $\hat{\sigma}_{u0}^2 = 61.02$, and the within-school between-student (level 1) variance var(Residual) is estimated as $\hat{\sigma}_e^2 = 258.36$. Thus the total variance is 61.02 + 258.36 = 319.38.

The variance partition coefficient (VPC) is 61.02/319.38 = 0.19, which indicates that 19% of the variance in attainment can be attributed to differences between schools. Note, however, that we have not accounted for intake ability (measured by exams taken on entry to secondary school) so the school effects are not value-added. Previous studies have found that between-school variance in *progress*, i.e. after accounting for intake attainment, is close to 10%.

⁵ For further details see help xtmixed.

⁶ By default, the gradient-based method is Newton-Raphson iterations, but other methods are available by specifying the appropriate maximize options; see help xtmixed.

This document is only the first few pages of the full version.

To see the complete document please go to learning materials and register:

http://www.cmm.bris.ac.uk/lemma

The course is completely free. We ask for a few details about yourself for our research purposes only. We will not give any details to any other organisation unless it is with your express permission.