
 

 

Module 10: Single-level and Multilevel 
Models for Nominal Responses Concepts 

 
Fiona Steele 

Centre for Multilevel Modelling 
 

 

Pre-requisites  
 

• Modules 5, 6 and 7 
 

 

Contents 
Introduction ............................................................................................ 1 

Introduction to the Example Dataset .............................................................. 1 

C10.1 Multinomial Logit Model for Single-Level Data ....................................... 3 

C10.1.1 The multinomial logit model ........................................................ 3 
C10.1.2 Interpretation of coefficients and predicted probabilities ..................... 4 
C10.1.3 Significance testing ................................................................... 6 

C10.2 Example: Means of Travel to Work ..................................................... 8 

C10.2.1 Correspondence between observed and predicted probabilities .............. 8 
C10.2.2 Allowing for a gender effect on mode of transport .............................. 9 
C10.2.3 Adding age and part-time (vs full-time) employment status .................. 11 
C10.2.4 Changing the reference category .................................................. 11 
C10.2.5 The ‘Independence of Irrelevant Alternatives’ Assumption ................... 12 

C10.3 Random Intercept Multinomial Logit Model ..........................................15 

C10.3.1 Interpretation ........................................................................ 15 
C10.3.2 Area differences in means of travel to work..................................... 17 

C10.4 Contextual Effects ........................................................................22 

C10.4.1 Random intercept multinomial logit model with a level 2 explanatory 
variable 22 
C10.4.2 Allowing for an effect of type of area on means of travel to work ........... 22 

C10.5 Conditional Logit Models: Incorporating Characteristics of Response 
Alternatives ............................................................................................25 

C10.5.1 Latent variable formulation of the multinomial logit model .................. 25 
C10.5.2 Conditional logit model ............................................................. 26 
C10.5.3 General discrete choice model: Combining the multinomial and conditional 
logit models ......................................................................................... 29 
C10.5.4 Link between conditional/multinomial logit and Poisson regression ......... 30 
C10.5.5 Multilevel conditional logit model................................................. 31 

 



Module 10 (Concepts): Single-level and Multilevel Models for Nominal Responses 

Centre for Multilevel Modelling, 2013 1 

Introduction 
 
In Module 6 we saw how multiple regression models can be generalised to handle 
binary responses, and in Module 7 these models were extended for the analysis of 
binary data with a two-level hierarchical structure. Module 9 considered single-level 
and multilevel models for categorical responses with more than two categories, 
where the numeric codes assigned to categories imply an ordering. Examples of 
ordinal variables include Likert scale items where respondents are asked to indicate 
their strength of agreement with a statement, and exam grades. In this module we 
look at models for nominal (or unordered) categorical responses, where the numeric 
codes assigned to categories are simply labels and serve only to distinguish between 
categories (see C1.3.8 for a classification scheme for variables).  
 
Examples of nominal responses include political party preferences (e.g. Labour, 
Conservative, Liberal Democrat, other in the UK), mode of transport and brand 
preference. Aggregating such variables to a binary response not only wastes 
potentially important information, but may result in misleading conclusions if 
predictors have different effects for different categories. For example, the choice 
between driving to work or using public transport may depend on the availability of 
free car-parking, while the choice between driving and walking is likely to depend 
strongly on the distance between home and work. Fortunately, multinomial 
regression methods have been developed that allow such distinctions between 
categories of a nominal response, and these have been extended to handle 
multilevel data structures. 
 
In this module, we begin by describing multinomial logit models for single-level 
nominal responses. As the coefficients of multinomial models can be difficult to 
interpret, we pay particular attention to calculating predicted response 
probabilities to aid interpretation. We then consider multilevel multinomial logit 
models for two-level structures. We shall see that models for nominal responses are 
direct extensions of the models for binary responses described in Modules 6 and 7. 
The same generalisations of the basic multilevel model – for example, random slopes 
and contextual effects – are possible for nominal responses. We end with a discussion 
of conditional logit models which are used when the effects of characteristics of the 
different response alternatives are of interest. For example, the choice between 
driving and using public transport may depend on their relative costs to an 
individual, according to where the individual lives and the travel time for each 
option.  
 

Introduction to the Example Dataset 
 
Our main example dataset for this module comes from the 2008 National Travel 
Survey (NTS)1. The 2008 NTS is one of a series of annual cross-sectional household 
surveys, designed to provide regular data on personal travel in Great Britain. We will 

                                         
1Department for Transport, National Travel Survey, 2002-2008 [computer file]. 5th edition. 
Colchester, Essex: UK Data Archive [distributor], June 2010. SN: 5340. The data are free to 
download after registration from http://www.data-archive.ac.uk/ 
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use data from personal face-to-face interviews (the survey also includes travel 
diaries), and restrict the sample to household members who were aged 16 or older. 
 
The response variable for the analysis is the mode of transport used to travel to 
work, which has been grouped into three categories: 
 

Code Label 

1 Car /motorcycle 

2 Bicycle or walking 

3 Public transport  

 
We consider three individual-level characteristics as explanatory variables (all 
categorical): 
 

• Gender 

• Age (16-19, 20-29, 30-39, 40-49, 50-59 years) 

• Employed part-time (versus full-time) 
 
The survey is based on a stratified two-stage random probability sample of private 
households in Great Britain. The primary sampling units (PSUs) at the first stage of 
sampling are postcode sectors. At the second stage, a sample of households was 
drawn from the selected PSUs.2  We will ignore the household level in this module, 
and treat the data as a two-level structure with individuals at level 1 and PSUs at 
level 2.  
 
We consider one PSU-level explanatory variable: 
 

• Type of area (London boroughs, metropolitan built-up areas, other urban 
areas over 250,000 population, urban 25,000-250,000 population, urban 
10,000-25,000 population, urban 3000-10,000 population, rural) 

 
After excluding a small number of individuals with missing data on at least one of 
the variables, the analysis file contains 8,512 individuals nested within 683 PSUs. 
 
Note that the same dataset was analysed in Module 9 for an ordinal response 
(frequency of walking). In this module, the analysis sample has been restricted to 
employed respondents aged less than 60 because means of travel to work was only 
asked of this group. 
 
 

  

                                         
2 See Anderson, Christophersen, Pickering, Southwood and Tipping (2009) National Travel Survey 
2008 Technical Report. Prepared for the Department of Transport. This report and other 
documentation can be downloaded with the dataset from http://www.data-archive.ac.uk/ 
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C10.1 Multinomial Logit Model for Single-Level Data 
 
In this module we focus on multinomial logit models, the most common approach 
for the analysis of nominal responses. Another model for nominal responses, the 
conditional logit model, is discussed in the final section C10.5. 
 

C10.1.1 The multinomial logit model 
 
Consider response variable y which takes values 1, 2, . . ., C. 
 
We define response probabilities for each category 𝑘 as 
 
Pr(𝑦 = 𝑘) = 𝜋𝑘 
 

where 𝜋1 + 𝜋2 + … 𝜋𝐶 = 1.  
 
As for binary and ordered logit models, one of the response categories is chosen as 
the reference. We then model the log-odds of being in one of the remaining 
categories rather than the reference category. If we take the first category as the 
reference, for example, we model the log-odds of being in category 𝑘 (𝑘 = 2,… , 𝐶) 
rather than category 1.  
 
We begin be considering models for a single-level nominal response. Suppose we 
have one continuous or binary explanatory variable 𝑥, then the model for the 
contrast between response category 𝑘 and the reference category 1 for individual 
𝑖 (𝑖 = 1,… , 𝑛) can be written 
 

log (
𝜋𝑘𝑖

𝜋1𝑖
) = 𝛽0𝑘 + 𝛽1𝑘𝑥𝑖,      𝑘 = 2,… , 𝐶              (10.1)    

 

Equation (10.1) consists of 𝐶 − 1 contrasts or sub-equations, one for each category 
apart from the reference, where 𝛽0𝑘 is the intercept and 𝛽1𝑘 the effect of 𝑥 for the 
contrast of category 𝑘 versus category 1. 
 
Before discussing interpretation of the multinomial logit model, we note that the 
binary logit described in Module 6 is a special case of (10.1). To see this, suppose 

that the response yi is binary but coded 1 and 2 (rather than the usual 0 and 1). 
Taking the first category as the reference (now coded 1 rather than 0) equation 
(10.1) reduces to a single contrast: 
 

log (
𝜋2𝑖

𝜋1𝑖
) = log (

𝜋2𝑖

1−𝜋2𝑖
) = 𝛽02 + 𝛽12𝑥𝑖, 

 
where 𝜋2𝑖 is the binary response probability. 
 
Remarks 
 

• The multinomial logit model given by (10.1) has the same predictor x in each 
equation. This restriction can be relaxed to allow a predictor to affect a 
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subset of contrasts. In some software packages, it is possible to directly 
specify the contrast(s) for which a particular predictor should be included. In 
other packages, a predictor is removed from a contrast by constraining its 
coefficient to equal zero. 
 

• The equations in (10.1) are estimated simultaneously, but an approximation 
to the multinomial logit model is obtained by estimating a series of binary 
logit models on subsets of the data. For example, the contrast of category 2 

versus 1 may be approximated by selecting respondents with 𝑦 = 1 or 𝑦 = 2 
and estimating a simple logit model for a new binary response distinguishing 
these two categories (coded 1 when 𝑦 = 2 and 0 when 𝑦 = 1).3  However, this 
approach does not extend to the multilevel case where we will typically wish 
to allow for correlations between random effects for the different contrasts. 

 

C10.1.2 Interpretation of coefficients and predicted probabilities 
 
The intercept 𝛽0𝑘 for contrast 𝑘 is the log of the probability of being in category 𝑘 
relative to the probability of being in category 1 when 𝑥 = 0, and its exponent 

exp(𝛽0𝑘) is the ratio of the probability of being in category 𝑘 to the probability of 
being in category 1. The left-hand side of equation (10.1) is commonly referred to 
as the log-odds of being in category 𝑘 rather than category 1, and we will refer to it 
as such as a shorthand even though we are really modelling the ratio of two 
probabilities.4  However, it is incorrect to refer to log(𝜋𝑘𝑖/𝜋1𝑖) as simply the odds of 

being in category 𝑘 (as we would for a binary response); if we do not explicitly refer 
to the reference category, the odds are log(𝜋𝑘𝑖/(1 − 𝜋𝑘𝑖)). This is an important 
difference between the binary logit model and the multinomial logit model for a 
multi-category response which has implications for the interpretation of coefficients 
from a multinomial model (as discussed below).  
 

The coefficient of 𝑥 for contrast 𝑘, 𝛽1𝑘, is the effect of a 1-unit increase in 𝑥 on the 
log-odds of being in category 𝑘 rather than category 1. As in the binary response 
case, we can interpret exp(𝛽1𝑘) as an odds ratio, comparing the odds of being in 
category 𝑘 rather than category 1 for two randomly selected individuals whose 𝑥 
values differ by 1 unit. 
 
As you can tell from the above, interpretation of the coefficients of a multinomial 
logit model (and the associated odds ratios) is rather awkward!  In a binary logit 
model, the coefficients are the effects of predictors on being in one of the response 
categories rather than the other, but in the multinomial generalisation we could 
have many pairwise contrasts to consider. It would be much easier to interpret the 
effects of a predictor on each response category, rather than on a contrast between 
two categories. Fortunately, we can calculate predicted response probabilities from 

the estimated coefficients for whatever values of 𝑥 we choose.  
 

                                         
3 This approximation was proposed by Begg, C.B. and Gray, R. (1984) “Calculation of polychotomous 
logistic regression parameters using individualized regressions”. Biometrika 71, 11-18.  
 
4 Exponentiated coefficients from a multinomial logit model are more accurately described as 
relative risk ratios, but this terminology is less commonly used than odds ratio. 
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Equation (10.1) can be rearranged to give the following expressions for the response 
probabilities: 
 

𝜋𝑘𝑖 = 
exp(𝛽0𝑘 + 𝛽1𝑘𝑥𝑖)

1 + ∑ exp(𝛽0𝑙 + 𝛽1𝑙𝑥𝑖)
𝐶
𝑙=2

,      𝑘 = 2,… , 𝐶                  (10.2) 

 
with the probability for the reference category calculated by subtraction: 
 

𝜋1𝑖 =  1 −∑𝜋𝑙𝑖

𝐶

𝑙=2

=
1

1 + ∑ exp(𝛽0𝑙 + 𝛽1𝑙𝑥𝑖)
𝐶
𝑙=2

                     (10.3) 

 
Predicted response probabilities are calculated by ‘plugging in’ the estimates for 
𝛽0𝑘 and 𝛽1𝑘 from the fitted model and applying (10.2) and (10.3) for selected values 
of 𝑥 (some examples will be given in C10.2). 
 
Retherford and Choe (1993, p.153)5 note that coefficients (or odds ratios) are not 
only difficult to interpret, but may even be misleading because the sign of 𝛽1𝑘 may 

not reflect the direction of the effect of x on either of the response probabilities 
being compared (𝜋𝑘  and 𝜋1). To illustrate the problem, suppose we fit a multinomial 
logit model to a three-category response taking category 1 as the reference, and 
including a single binary predictor 𝑥. We consider two scenarios where the 
coefficient of 𝑥 for the contrast of response categories 2 and 1,  
𝛽12 in equation (10.2), does not reflect the effect of 𝑥 on the response probabilities 
for these categories.  
 
In Table 10.1 the probabilities for categories 1 and 2 (𝜋1 and 𝜋2) are both lower for 
𝑥 = 1 than for 𝑥 = 0, so we would say that there is a negative association between 

being in categories 1 or 2 of the response and 𝑥. However, the ratio of 𝜋2 to 𝜋1 is 
constant across values of 𝑥, so that exp(𝛽12) = 1 which implies 𝛽12 = 0. Interpreting 
the coefficients of 𝑥, we might be tempted to incorrectly conclude that there is no 
relationship between 𝑥 and being in response category 2. The correct interpretation 

of 𝛽12 is that the probability of being in category 2 rather than category 1 does not 
depend on 𝑥.  
 

Table 10.1. Scenario where the response probabilities depend on 𝑥 but the regression 
coefficient for the contrast of category 2 versus 1 is zero 

𝑥 𝜋1 
 

𝜋2 
 

𝜋3 
 
𝜋2/𝜋1 𝜋3/𝜋1 

0 0.2 0.4 0.4 2 2 

1 0.1 0.2 0.7 2 7 

      

Ratio for 𝑥 = 1 versus 𝑥 = 0    1 3.5 

𝛽1𝑘    0 1.25 

 

                                         
5 Retherford, R. D., & Choe, M. K. (1993). Statistical Models for Causal Analysis. New York: Wiley. 
 



This document is only the first few pages of 
the full version. 
To see the complete document please go to 
learning materials and register: 
http://www.cmm.bris.ac.uk/lemma 
The course is completely free. We ask for a 
few details about yourself for our research 
purposes only. We will not give any details to 
any other organisation unless it is with your 
express permission. 
 
 


