Scientists at the University of Bristol have discovered a previously unknown route by which GM genes may escape into the natural environment.
By studying plant-fungi-bacteria interactions at plant wound sites, the team have identified a natural process stimulated by a hormone released by the wounded plant that would allow synthetic genes to move across organisms and out into the wild.
The bacterium Agrobacterium tumefaciens transforms plant tissue as part of its infection process. This natural process provides an important toolbox for scientists to genetically manipulate many species of plants. Recently this technology has been developed for non-plant organisms including fungi by the Bailey & Foster Group in Bristol’s School of Biological Sciences.
Their success has come from adding the plant wound hormone acetosyringone, which triggers Agrobacterium transformation mechanisms and allows foreign genes to modify cells (genetic transformation). In the natural environment Agrobacterium and fungi likely encounter each other at plant wound sites where acetosyringone is present, raising the possibility of natural gene transfer from bacterium to fungus.