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Projection of the Change in Weather Extremes .2

Using Super-High-Resolution Atmospheric Models  «axusuin
in the KAKUSHIN Program

Akio Kitoh (MRI/IMA), Shoji Kusunoki (MRI/IMA), Elichi Nakakita (DPRI/Kvoto-Univ.),
Kunivoshi Takeuchi (ICHARM/PWRI)
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Points in climate change assessment
on Japanese hazard

* There are various types of hazards
that bring disasters.

» Spacio-temporal information with high
resolution is required for representing
reasonable extreme river discharge in
Japan.
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Innovative Program of Climate Change Projection for the 21st Century L

Minimum Target of DPRI

Precipitation (Monsoon Asia)
LLand slide and Debris flow
Mainly western Japan
River discharge
Japanese major large river basins (with fine resolution)
All Japanese river basins (with medium resolution)
Storm surge and wave
Tokyo, Ise (Nagaya) and Osaka Bays, Global
Damage by strong wind
Whole Japanese archipelago
Inundation
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Points in climate change assessment
on Japanese hazard

* There are various types of hazards
that bring disasters.

» Spacio-temporal information with high
resolution is required for representing
reasonable extreme river discharge in
Japan.
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Features of Japanese River(1)
 Short length and steep slope.
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Features of Japanese River(2)

 Large peak discharge, short duration
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Projected typhoon by GCM20
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It is the typhoon resolving output from GCM20 that has
realized the impact assessment on Japanese river regime
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Typhoon
Range : 1000km
Duration : 1 day to a few days
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Prediction and evaluation of disaster environment in Japan

DPRI / Kyoto-Univ.
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Outline
L I—_—

* Impact of AGCMZ20 on extreme events
climate impact assessment in Japan

* Typical climate change assessment on
disaster environment in Japan — projection of
change in design value

* Heading to adaptation :importance of taking
a worst case scenario into consideration.




Stochastic typhoon model

Typhoon Numbers/yr: Present - Future %’%
K
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Yasuda et al (2009)



Probability of typhoon attack for 100yrs
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Increase in Number of localized heavy rainfall

during Baiu season in 25 years
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Impact Assessment on Land slides |§

-Total rainfall versus maximum hourly rainfall=
risk of Top 20 data of total rainfall and 3

: maximum hourly rainfall from
shallow landslide Takeda City, Oita, Japan
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Projected changes in total and maximum hourly rainfall in Japan
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Increase in land slide risk

Increase by 10 ~20% in whole area °/§o
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Introducing reservoir operation models into
U/ distributed runoff model

DPRI-KU System of distributed runoff model

Reservoir operation model - Example of combined computation
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Change of the Percentage Difference of the Mean Monthly Streamflow Discharge, Soil
Detachment and Unstable Slope Probability in the Future Climate Condition with Respect to

the Present Climate Condition
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River discharge

Flood flow change Draught flow change
(Q1: Annual Maximum discharge) (Qsss discharge)
100yrs return period 10yrs return period
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Possible changes in the number of floods requiring dam operation
and emergency dam release (Yodo River)
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100-years return values of Storm surge
(deviation from the average year value)
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Change in wave height

Period averaged: Future - Present
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Change in building risks by severe wind
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There is high uncertainty in

projected desiin value 1‘

1ge for disaster mitigation
luding large scale disaster)

— 4 Iherels high uncettaintyin _ _ _ _ Projected design value

It is almost certain that
| ' average of design value would
increase.

Range for disaster prevention
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Uncertainty inherent to GCM projection
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Accuracy of estimated annual max. discharge

Accuracy of 100 years return value (Jackknife method)
With 25-years single time series
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of projection
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Schematic of
return value’s uncertainty
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Outline

e Impact of AGCM20 on extreme events climate
Impact assessment In Japan

« Typical climate change assessment on disaster
environment in Japan — projection of change in
design value

* Heading to adaptation :importance of
taking a worst case scenario into
consideration
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There is high uncertainty in
projected design value

We may be almost sure that average of extreme design
value would increase.

However, projected increase in the design value is
merely rough estimation,

because, for example, the worst case typhoon for a
specific river basin may not be realized (computed) in a
single projected time series.

Therefore, it is very important to estimate river discharge
when a worst case typhoon would pass through, even
though we cannot estimate return period.
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i Virtual Shifting of typhoon’s initial position
T - for making a Worst scenario -
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Track and precipitation
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Simulation of River Discharge using
Precipitation Output _(Tone River Basin)
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River Discharge by the virtual shifting of typhoon
which was projected by GCM

Possibility of peak discharge, almost

_double of current design discharge
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Heading to adaptation

a [6)
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sluding large scale disaster)
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Summary (1)

. The AGCM and RCM with super-high spatio-temporal
resolutions (20 km-1 hour) made It possible to evaluate

extreme hazard (ex. Max. discharge).

. However, this does not mean that we can evaluate the
changes in such a high spatial resolution.

. We can get approximate projection on changes of
return values of extreme events.

. However, there is a risk that the return period does not

have enough accuracy because there is no guarantee
that quite extreme events could be properly projected
within the limited number of ensembles. (Single time
series output from the AGCM20 and RCM)

. In this sense, it may be difficult to project correct
design hazard for water management and flood control

SO Oon.
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Summary (2)

5. On the other hand, the risk management deal with
phenomena beyond design hazards. In this sense, It IS
very important to take into account the result from a
worst case scenario as one of the forcing hazard for
disaster risk management under climate change.

6. Taking into consideration above items, | think, it is
very important for climate change adaptation to
discriminate more between planning with an
uncertain design level and risk management with a
Worst case scenario.

/. Of cause, making the number of ensembles increase Is
essential for the Kakushin follow-up program.
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Research division and center#

KU
Related to Kakushin and Its Follow-on Programs
Organization

Committee for Cooperative Research (CCR) e, Natural Disaster Research Council (NDRC)
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Thank you for your kind attention!
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Heading to adaptation
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riticalj Edge of Survivability
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(including large scale disaster)
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Methods of Impact assessment

Output from GCM and/or RCM

mHydrological Regime, Ocean Wave
Direct and Continual Utilization of
Time-series of GCM/RCM outputs

mStrom Surge, Land Slides, Inundation
Statistical Evaluation of Extreme forcing
Design rainfall, Design typhoon

Hazard models
B Run-off Model
B Ocean Wave Model

v

Evaluation of changes in hazards

L

Hazard models
M Storm Surge Model
ML and Slide Model, Inundation Model

v

Evaluation of changes in hazards

L

Evaluation of Changes in Disaster Risks

Evaluation of Changes in Disaster Risks

v

v

([/// Proposal of Adaptation Measures
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Impact Assessment on River Regime ( Flood )

Increasing Ratio of Annual Max. Discharge
( 100 yrs return period )
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Impact Assessment on River Regime ( Drought )

[Drought Discharge: The 355t largest daily discharge in a year. J
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Design value for river discharge and storm surge

Range for disaster mitigation
(including critically large scale
disaster)

First, change in the design
value is focused on

Design value
b y return
value

Range for disaster prevention
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