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1. Introduction 
This chapter considers the natural hazard Risk Manager as an agent for choosing between 
interventions that affect the impact of future hazards.  As such, it is possible to proceed broadly 
quantitatively, and to set aside the many less-quantifiable concerns that arise during a period of 
real-time hazard management.  Thus the aim is to describe a framework in which it is possible 
to address questions such as “Should we build a firebreak at this location, or leave things as 
they are?”.  This chapter only considers one source of uncertainty, which is the inherent 
uncertainty of the hazard itself, often termed aleatory uncertainty.  Chapter 3 of this volume 
considers the extent to which a quantitative analysis can be extended to include more general 
epistemic uncertainties. 

The objective is a precise definition of the common notions of natural hazard risk and 
uncertainty assessment, within the framework of probability.  To this end, Section 2 provides a 
brief justification for the use of probability as the calculus of uncertainty that is appropriate for 
natural hazards.  Section 3 then defines quantitative risk in a limited but precise way.  Section 4, 
the heart of the chapter, considers the three stages in which one passes from the hazard itself 
to an evaluation of risk, noting that at each stage there are opportunities for the Risk Manager’s 
intervention. Section 5 considers the implications of using simulation as the primary 
computational tool for assessing risk, the uncertainties engendered by limits in computing 
resources, and ways to quantify these uncertainties.  Section 6 describes different types of 
hazard map.  Section 7 concludes with a summary. 

Note that I have not provided references for natural hazards examples; plenty can be found in 
the rest of this volume.  Most of the references seem to be to statistics books. 

2. Why probability? 
Hazard losses are uncertain, and therefore a calculus that accommodates uncertainties is 
necessary to quantify them.  The role of quantification within a formally valid framework was 
discussed Chapter 1 of this volume.  This chapter and Chapter 3 advocate the use of 
probabilities and the probability calculus, and this is in fact the dominant method for quantifying 



uncertainty, not just in natural hazards, but in almost every endeavour with substantial 
uncertainty.  However, probability is not the only calculus for uncertainty.  A standard reference 
such as Halpern (2003) covers alternative approaches such as lower and upper probabilities, 
Dempster-Shafer belief functions, possibility measures, ranking functions, and relative 
likelihood.  Therefore this section provides a brief justification for the use of the probability 
calculus in natural hazards risk assessment. 

The first point to note is that no uncertainty calculus can do a complete job of handling 
uncertainty.  Each calculus represents a normative description of how, on the basis of certain 
axioms and principles, one can make inferences about uncertain events, and adjust those 
inferences in the light of additional information.  The need for such a framework is attested by 
the fact that people are demonstrably not good at handling uncertainty in even quite simple 
situations.  Gigerenzer (2003) provides an enjoyable and informative introduction, while Lindley 
(1985) provides an introduction to the use of probability in reasoning and decision-making. 

To illustrate, consider the axioms and principles of the probability calculus.  The three axioms 
concern probabilities defined on events (or propositions) that are either true or false.  They are: 

1. All probabilities are non-negative; 
2. The probability of the certain event is 1; 
3. If events A and B cannot both be true, then Pr(A or B) = Pr(A) + Pr(B). 

These axioms, and their generalisations, are discussed in most textbooks in probability and 
statistics; see, e.g., Grimmett and Stirzaker (2001), chapter 1, or DeGroot and Schervish (2002), 
chapter 1. 

There are really two principles in probability.  The first is a principle for extending probability 
assessments from a limited set of events to a more complete set that is appropriate for the 
information that might be collected, and the decisions that must be made.  In fact, formal 
treatments using the probability calculus usually sidestep this issue, by starting from the notion 
that probabilities have already been assigned to all events in a field.  A field is a collection of 
sets of events, including the null event, which is closed under complements and unions. The 
assertion is that this field is appropriate in the sense given above; i.e. it contains all the events 
of interest.  But there are more general approaches to extending probability assessments, 
discussed, for example, in Paris (1994, chapter 6). 

The second principle of the probability calculus is that inferences are adjusted by conditioning, 
so that if event B were found to be true, then the adjusted probability of A would be Pr(A and B) 
/ Pr(B).  The axioms and the principle of conditionalisation have several different justifications, 
including: probabilities as relative frequencies, as subjective degrees of belief, as logical 
consequences of more primitive axioms for reasoning.  These are outlined in Hacking (2001), 
with a much more forensic but technical assessment in Walley (1991), especially chapters 1 and 
5. 

Halpern (2003, page 24) lists the three most serious problems with probability as (i) probability 
is not good at representing ignorance, (ii) an agent may not be willing to assign probabilities to 
all events, and (iii) probability calculations can be expensive.  In the context of natural hazards, I 
think (ii) is the most concerning, and (iii) can be an issue, although is becoming less so as 



statistical computational techniques continue to improve, along with computer power.  (i), as 
Halpern himself notes, can be handled (in principle and at least partially in practice as well) 
within the probability calculus by extending the set of events.  This is effectively the approach 
explored in Chapter 3 of this volume. 

All uncertainty calculuses have axioms and principles.  In each case, the agent will find herself 
asking, of the axioms and principles: Do I believe that?  Should I believe that?  These questions 
do not have simple answers, which should not be surprising in the light of the proliferation of 
competing approaches to uncertainty representation. Consequently, an agent does not sign up 
for a particular uncertainty calculus with the conviction that it is exactly what is required for her 
situation.  It is very important for her to understand the limitations of her chosen calculus, so as 
not to overstate the result, and to have methods for addressing the limitations informally. 

In natural hazards things become more complicated, because the agent is the Risk Manager, 
who must satisfy an Auditor.  What seems to be a compelling calculus to the Risk Manager, 
possibly after detailed study and reflection, may seem much less so to the Auditor, and to the 
stakeholders he represents.  Overall, this line of reasoning suggests favouring calculuses with 
simple axioms, and easily-stated limitations. 

On this basis, the probability calculus is highly favoured: its axioms are the simplest, and its 
main limitation is that it is necessary to specify probabilities for all events in an appropriate field.  
In practice this limitation can be addressed informally using sensitivity analysis, in which 
alternative choices for hard-to-specify probability distributions are tried out.  The tractability of 
probability calculations makes sensitivity analysis a feasible strategy for all but the largest 
problems.  And the universality of probabilistic reasoning makes communication relatively 
straightforward.  That is not to say, though, that these issues are clear-cut.  It is important for all 
parties to appreciate that not all aspects of uncertainty can be expressed as probabilities, and 
that a probabilistic analysis may create the false impression that all uncertainty has been 
accounted for. 

3. A quantitative definition of risk 
Risk is a multivalent and multivariate concept, yet it is often treated as though it was a well-
defined scalar, for example in statements comparing the ‘riskiness’ of different hazards. This 
indicates the nature of quantified risk as a summary measure whose role is to represent the 
gross features of a hazard, and to operate at the first stage of a ‘triage’ of hazards and actions.1  
In their review of risk terminology, the UK Central Science Laboratory (CSL) recommends that 
the definition of risk “should include both probability and the degree of effect, including its 
severity, but in a way that keeps them distinct and gives rise to a single dimension.” (Hardy et 
al., 2007, page 70).  The presumption in this recommendation is that uncertainty be quantified in 
terms of probabilities, as discussed in the previous section.  I will adopt ‘loss’ as the 
portmanteau term for the quantifiable aspects of harm and damage that follow from a natural 
hazard event. 

                                                
1 ‘Triage’ in the sense of sorting by priority and expediency, as in the Emergency Room of a hospital. 



To illustrate, supervolcanoes are more risky than asteroid strikes because the loss in the two 
cases is the same order of magnitude (i.e. catastrophic), but the probability of a supervolcano is 
higher than an asteroid strike on human time-scales (Mason et al., 2004). 

If risk is a summary term then it should be derived from a more detailed analysis. The second 
stage of a triage is then to refer back to this detailed analysis for those hazards for which such 
an assessment is required.  To my mind, this constrains the operational definition of risk to be 
the mathematical expectation of loss, and the detailed analysis for which it is the summary is the 
loss probability distribution function.  The usual feature of this distribution for natural hazards 
would be a long right-hand tail (positive skewness), indicating that small losses are common, 
but occasionally very large losses occur.  If X denotes the unknown loss that a hazard induces 
over a specified time interval, then its distribution function is denoted 

FX(x) = Pr(X ≤ x), 

where ‘Pr’ denotes probability, and ‘x’ denotes the abscissa.  This distribution function is usually 
visualised in terms of the loss Exceedance Probability (EP) curve, which is the graph of 1 - FX(x) 
on the vertical axis against the ordinate x on the horizontal axis, as shown in Figure 2 (in 
statistics this would be called the ‘survivor function’).  This graph does not necessarily start at 
(0, 1); in fact it starts at (0, 1-p) where p is the probability that there are no losses during the 
time interval.  The EP curve must attain zero at some finite value for x because there is always 
a limit to how much can be lost; therefore, having bounded support, X must have finite 
moments, and so its mathematical expectation and variance certainly exist. 

[FIGURE 1 ABOUT HERE] 

Risk may then be defined as the mathematical expectation of loss, i.e. the sum of the product of 
each possible loss amount and its probability.  This is also referred to as the ‘mean loss’.  This 
definition has the features outlined in the CSL recommendation above: it is a scalar quantity 
measured in the same units as the loss, and incorporates both the loss estimates and their 
probabilities.  The same sized risk could indicate a hazard that will probably induce a medium-
sized loss, or a hazard that will probably induce a small loss but occasionally induce a very 
large loss.  These two cases cannot be distinguished in a scalar summary, but they can be 
distinguished in the underlying probability distributions. 

Within statistics this definition of risk as expected loss has a long provenance in the field of 
Decision Theory; see, e.g., Rice (1995), Chapter 15.  In Catastrophe Modelling for insurance, 
the EP curve and risk focus on financial loss for a one-year time interval. The risk is termed the 
Average Annual Loss (AAL), and represents the ‘fair price’ for an insurance premium. 

There is a very strong connection between this definition of risk and the EP curve: risk is the 
area under the EP curve.  The fact that the expected loss is equal to the area under the EP 
curve is a purely mathematical result (see, e.g., Grimmett and Stirzaker, 2001, page 93), but it 
is, from our point of view, a very useful one as well.  It indicates that the gross comparison of 
different hazards, or of different actions for the same hazard, can be done by plotting their EP 
curves on the same graph and comparing the area underneath them.  Then, in cases where this 



gross comparison is not sufficient, a more detailed assessment of the EP curve can be made, 
comparing, for example, the probabilities of very large losses. 

Summary.  The loss due to a hazard for a specified time interval is an uncertain quantity that is 
represented by a probability distribution; this is usually visualised in terms of an Exceedance 
Probability (EP) curve.  Risk is defined to be the expected (or mean) loss; it is a mathematical 
result that this is equal to the area under the EP curve. 

4. Structural modelling of hazard outcomes 
This section follows the flow of information and judgement from the hazard to the loss.  It 
proceeds in three stages: representing the aleatory uncertainty of hazard outcomes, 
representing the ‘footprint’ of a hazard outcome in space and time, and representing the loss of 
this hazard outcome as a loss operator applied to the footprint. Probabilities assigned to hazard 
outcomes ‘cascade’ through the stages to induce a probability distribution for loss. 

It is worth pausing to examine the need for such a tripartite representation.  After all, it would be 
much easier simply to construct a catalogue of ‘similar’ hazard events, and then use the 
collection of losses from those events as a proxy for the loss distribution.  Why bother with all 
the extra modelling? 

Two of the reasons are driven by the need for the scientific analysis to inform the Risk 
Manager’s decisions: non-stationary in the hazard domain, and the intention to intervene.  The 
natural hazard Risk Manager has to operate on time intervals of thirty years or more, over which 
many aspects of the hazard loss can be expected to change substantially; this is the problem of 
non-stationarity.  For example, increasing populations result in increasing city size, increasing 
population density in cities, changes in the quality of buildings and infrastructure, changes in 
land-surface characteristics in catchments.  In this situation historical losses are not a reliable 
guide to future losses over the whole of the time interval, and additional judgements are needed 
to perform the extrapolation. 

Second, the Risk Manager is concerned explicitly with evaluating actions, which represent 
interventions to change the loss that follows a hazard event.  For example: constructing 
defenses, changing building regulations, or relocating people living in hazardous areas.  For this 
purpose, it is important to model the hazard in a causal rather than a statistical way.  The key 
role of the tripartite representation is that it  provides a framework within which interventions can 
be modelled and compared.  Each possible intervention generates its own EP curve and its own 
risk.  Then the Risk Manager has the task of choosing between interventions according to their 
EP curves, taking account of the costs and benefits of intervening and the probability of 
completing the intervention successfully. 

A third reason is that the catalogue of observed hazard events is likely to be incomplete. This is 
a concern shared by insurers, who otherwise operate on short time intervals and are not 
concerned with interventions. There is a large probability that the next event will be unlike the 
catalogued ones, and so physical insights are required to extrapolate from the catalogue in 
order to build up a picture of what might happen.  In some ways this is also an issue of non-



stationarity.  The catalogue can be extended by widening the criteria under which events can be 
included.  In earthquake catalogues, for example, the events observed at a specified location 
may be augmented with events observed at other similar locations.  Effectively this makes a 
judgement of spatial and temporal stationary; hence non-stationarity is one reason why 
catalogues might be very incomplete. 

It is questionable to what extent any framework can encompass all features of natural hazards. 
The framework presented here seems sufficiently general, even if some ‘shoe-horning' is 
necessary for particular hazards.  It is sufficient to illustrate the main concepts, and there is also 
value in considering how well a particular hazard does or does not fit.  It also corresponds 
closely with the modular approach adopted by catastrophe modelling companies. 

4.1. The hazard process 
The specification of the hazard process comprises three stages: 

1. Specification of the hazard domain; 
2. Enumeration of the hazard events; and 
3. Assignment of probabilities to hazard outcomes. 

In Step 1, the hazard domain is simply the spatial region and the time interval over which the 
hazard is being considered.  This has to be specified a priori, in order that the probabilities in 
Step 3 are appropriately scaled, particularly over the time interval.  It would be common for the 
time interval to start ‘now’.  As already noted, the Risk Manager is likely to be considering time 
intervals of many years: thirty, for example, for a hazard such as an earthquake, longer for 
nuclear power installations, and longer again for nuclear waste repositories. 

In Step 2, each hazard event is described in terms of a tuple (a tuple is an ordered collection of 
values).  This tuple will always include the inception time of the event, therefore it is written (t, 
ω), where ω is a tuple that describes the hazard event that starts at time t.  For an earthquake, 
ω might comprise an epicentre, a focal depth, and a magnitude; or, perhaps, a marked point 
process representing a local sequence of shocks with specified epicentres, focal depths, and 
magnitudes.  For a rain storm, ω might comprise a time-series of precipitations, where each 
component in the time-series might itself be a spatial map.  Likewise with a hurricane, although 
in this case each component of the time-series might be a spatial map of wind velocities.  The 
set of all possible values of ω is denoted as Ω. 

In Step 3 it is important to distinguish between a hazard event, and a hazard outcome.  The 
hazard outcome is the collection of hazard events that occur in the hazard domain.  Therefore 
{(t, ω), (t’, ω’)} would be a hazard outcome, comprising two events: at time t, ω happened, and 
at time t’, ω’ happened.  The collection of all possible hazard outcomes is very large, and, from 
the Risk Manager’s point of view, each outcome must be assigned a probability.  In practice this 
assignment of probabilities can be ‘tamed’ as follows, recollecting that ω describes all features 
of the hazard event bar its inception time (i.e. including location and magnitude): 

Simplifying choices: 
1. Different ω correspond to probabilistically independent processes, and 
2. Each process is a homogeneous Poisson process with specified rate λω. 



Under these simplifying choices, the probability of any hazard outcome can be computed 
explicitly, once the rates have been specified.  The simplifying choices imply that the time 
between hazard events is Exponentially distributed with a rate equal to λ = ∑ω λω, and that the 
probability that the next event is ω is equal to λω / λ; see, e.g., Davison (2003), examples 2.35 
and 2.36. 

Interventions.  The Risk Manager has few opportunities to intervene in the hazard process, 
which in this case would take the form of changing the probabilities on the hazard outcomes.  
Examples would be controlled burning for forest fires, and controlled avalanches.  In situations 
where the trigger is sometimes man-made, the probabilities can be reduced by information 
campaigns, regulations, and physical exclusion.  Again, this applies mainly to forest fires and 
avalanches; also perhaps to terrorism.  One can also consider more speculative possibilities; for 
example, geo-engineering solutions such as cloud-seeding, to reduce the probability of large 
rain storms over land. 

4.2. The footprint function 
The footprint function represents the ‘imprint’ of a hazard outcome at all locations and times in 
the hazard domain.  The purpose of the distinction between the hazard outcome and its footprint 
is to separate the hazard outcome, which is treated as a priori uncertain, from its effect, which is 
determined a posteriori largely by physical considerations. For example, for inland flooding the 
hazard outcome would describe a sequence of storm events over a catchment.  The footprint 
function would turn that sequence of storm events into a sequence of time-evolving maps of 
water flows and water levels in the catchment. 

Often the footprint function will be expressed in terms of an initial condition and a hazard event.  
The initial condition describes the state of the hazard’s spatial domain just prior to the hazard 
event.  In the case of inland flooding, this might include the saturation of the catchment, the 
level of the reservoirs and rivers, and possibly the settings of adjustable flood defenses such as 
sluice gates.  The footprint function of a hazard outcome is then the concatenation of all of the 
hazard event footprint functions, where the initial condition for the first event depends on its 
inception time, and the initial conditions for the second and subsequent events depend on their 
inception times, and the hazard events that have gone before.  This is more sophisticated than 
current practice, which tends to be event-focused, but it shows that there is no difficulty, in 
principle, to generalising to hazard outcomes that comprise multiple events; nor, indeed, to 
outcomes that involve multiple hazards. 

Most natural hazards modelling currently uses deterministic footprint functions.  For flows 
(volcanoes, landslides, avalanches, tsunamis and coastal flooding) these are often based on the 
shallow water equations, single or multi-phase, or, for homogeneous flows, sliding block 
models.  Earthquakes use the equations of wave propagation through elastic media.  For inland 
flooding, there is a range of different footprint functions, from topographically explicit models, 
through compartmental models, to empirical models.  Sometimes physical insights are used to 
derive parametric relationships between a hazard event and particular features of the hazard 
footprint, and the parameters are then statistically fitted to a catalogue of similar events.  Woo 



(1999) contains many examples of of these types of relationships, based on dimensional or 
scaling arguments (often implying power laws). 

In this chapter we treat the footprint function (and the loss operators, below) as known.  In 
practice they are imperfectly known, which is an important source of epistemic uncertainty, 
discussed in Chapter 3 of this volume. 

Interventions.  The footprint function provides an important route through which the Risk 
Manager can model the effect of interventions.  These would be interventions that interfered 
physically with the impact of the hazard on the region.  For example, building a fire-break, a 
snow dam, or a levée.  Typically, these interventions change the topography and other land-
surface features local to the hazard event, and thus change the evolution of the event’s impact 
in space and time; for example, diverting a flow, or retarding it, to allow more time for 
evacuation. 

4.3.  The loss operator 
The footprint of the hazard is neutral with respect to losses.  Loss is a subjective quantity, and 
different Risk Managers with different constituencies will have different notions of loss, although 
these will typically centre on loss of life or limb, loss of ecosystem services, and financial loss 
due to damage to property.  The purpose of the functional separation between the footprint 
function and the loss operator is to allow for this distinction between what is generic (the hazard 
footprint) and what is subjective (the Risk Manager’s loss).  Any particular loss operator 
transforms a hazard outcome’s footprint into a scalar quantity.  Typically, this will take the form 
of the addition of the losses for each hazard event, where it is likely that the losses from later 
events will depend on the earlier ones.  For simplicity I will treat the loss operator as 
deterministic, but the generalisation to an uncertain loss operator is straightforward, and 
discussed in Chapter 3 of this volume. 

The nature of the loss operator depends on the hazard and the Risk Manager.  Consider, as an 
illustration, that the hazard is an earthquake and the Risk Manager represents an insurance 
company.  The buildings in the insurance portfolio are each identified by location, type, and 
value.  The type indicates the amount of ground acceleration the building can withstand, and a 
simple rule might be that accelerations above this amount destroy the building, while 
accelerations at or below this amount leave the building intact.  To compute the loss of an 
event, the footprint function is summarised in terms of a spatial map of peak ground 
acceleration, and this would be converted into a loss (in millions of dollars) by determining from 
this map which of the insured properties were destroyed.  (Naturally, this is a rather simplified 
account of what actually happens.) 

In the same situation, if the Risk Manager’s loss operator concerns loss of life, then the same 
peak ground acceleration map from the footprint function might be combined with maps of 
building type and population density.  A peak ground acceleration map is an example of an 
extremal hazard map, discussed in Section 6. 



Interventions.  Interventions in the loss operator concern changes in vulnerability.  For 
example, the Risk Manager for the insurance company can change the loss distribution by 
modifying the premiums for different types of property, or by refusing to insure certain types of 
building.  The Risk Manager concerned with loss of life could change building regulations, or 
rezone the city to move people away from areas with very high peak ground accelerations.  
Another example of an intervention to affect the loss operator is the installation of an early 
warning system, e.g. for tsunamis, or the implementation of a phased alert scheme, e.g. for 
wildfires.  This might be accompanied by a public education programme. 

4.4. Summary 
The chain from hazard to the distribution of loss has three components.  First, the hazard 
process itself, which comprises the enumeration of different hazard events, and then the 
assignment of probabilities to hazard outcomes.  The distinction between hazard events and 
hazard outcomes is crucial (see Section 4.1).  Second, the footprint function, which represents a 
hazard outcome in terms of its impact on the hazard domain.  Third, the loss operator, which 
varies between Risk Managers, and maps the hazard footprint into a scalar measure of loss.  
The Risk Manager has the opportunity to intervene in all three components: by changing the 
probabilities of the hazard outcomes, by changing the local topography and therefore the hazard 
footprint, or by changing the vulnerability, and therefore the loss operator.  This is summarised 
in Table 1. 
 

Table 1. Summary of the three components of the hazard risk assessment, with key 
concepts and opportunities for the Risk Manager’s intervention. 

 Concepts Opportunities for 
intervention 

Hazard process Hazard’s spatial-temporal domain, 
events and outcomes, probabilities, 
simplifying choices 

Reducing probability of 
human triggers: wildfires, 
avalanches 

Footprint function Objective, typically implementing 
physical equations or statistical 
regularities.  Shows the imprint of the 
hazard outcome in space and time, 
often in terms of individual hazard 
events. 

Change the topography of 
hazard’s spatial domain: 
levées, dams, firebreaks 

Loss operators Subjective, depending 
on constituency and 
Risk Manager.  Typically measuring 
loss of life, loss of ecosystem 
services, or financial damage 

Reduce vulnerability: 
regulations, rezoning and 
relocation, harden critical 
infrastructure. 

 

5. Estimating the EP curve 



The EP curve (see Section 3) represents the distribution function of the Risk Manager’s loss.  
There is a standard formula for computing the EP curve, which is simply to sum the probabilities 
for all outcomes which give rise to a loss greater than x, for each value of x.  In practice, this 
calculation would usually be done by simulation.  This has important implications for how the EP 
curve and quantities derived from it are reported, particularly high percentiles. 

5.1. Uncertainty and variability 
There is a very important distinction in statistics between uncertainty and variability (see, e.g., 
Cox, 2006, notably chapter 5), and a failure to understand this distinction lies at the heart of 
many suspect attempts to quantify uncertainty using variability.  Uncertainty about the loss 
induced by a hazard is represented in the form of a probability distribution function, the function 
denoted FX in Section 3.  From a probabilistic point of view, this probability distribution function 
is a complete description of uncertainty.  In practice, we are aware that when we construct such 
a function we are obliged to introduce various simplifications.  In this Chapter we have 
considered the aleatory uncertainty of the hazard outcomes as the only source of uncertainty.  
This is very great simplification!  In Chapter 3 of this volume, we extend our consideration to 
incorporate epistemic sources of uncertainty, such as incomplete information about the hazard 
outcome probabilities, or about the footprint function, or about the loss operator(s).  The effect of 
this extension is to make a better assessment of the probability distribution function of loss.  Or, 
as discussed in Chapter 3, to produce several different probability distributions, each one 
specified conditionally on certain simplifications. 

But representing our uncertainties probabilistically is not the only challenge.  The computational 
framework, in which uncertain hazard outcomes cascade through the footprint function and the 
loss operator(s), can always be simulated, but often this simulation will be expensive.  With 
limited resources, we will have an incomplete knowledge of the probability distribution of loss 
based upon the simulations we have, say n simulations in total.  To put this another way, were 
we to have done the n simulations again with a different random seed, the sample of losses 
would have been different, and the summary statistics, such as the expected loss, would have 
different values.  This is the problem of variability.  Expensive simulations mean that our 
knowledge of the loss distribution is limited, and that our numerical descriptions of it are only 
approximate. 

In statistics, variability is summarised by confidence intervals.  It is very important to appreciate 
that a confidence interval is not a repesentation of uncertainty.  The distribution function FX is a 
representation of uncertainty.  A confidence interval is a representation of variability of our 
estimate of some feature of FX (like its mean), which reflects the fact that n, the number of 
simulations we can afford to do in order to learn about this feature, is not infinite.  To state that 
the risk (i.e. mathematical expectation) of a hazard is $20.9M is a statement about uncertainty.  
To state that the 95% confidence interval for the risk of a hazard is [$17.1M, $25.3M] is a 
statement about both uncertainty and variability: the location of this interval is an assessment of 
uncertainty, while its width is an assessment of variability.  The latter will go down as n 
increases. 



I will focus here on the variability that arises from not being able to perform a large number of 
natural hazards simulations.  But in some situations, variability can also arise from the limited 
information about the hazard itself.  For example, a flood engineer might use the historical 
distribution of annual maximum river heights at some specified location to estimate the 
probabilities in the hazard process.  If the record does not go back very far, or if only the recent 
past is thought to be relevant because of changes in the environment, then estimates of the 
probabilities based on treating the historical measurements as probabilistically independent 
realisations from the hazard process will be imprecise.  I prefer to treat this as a manifestation of 
epistemic uncertainty about the hazard process, and this is discussed in Chapter 3 of this 
volume. 

This Section is about assessing confidence intervals for properties of the loss distribution.  My 
contention is that variability ought to be assessed because natural hazards loss simulations are 
expensive, and some important assessments of uncertainty, such as high percentiles of the loss 
distribution, will tend to be highly variable. 

5.2. Monte Carlo simulation and EP curve variability 
By simulating hazard outcomes we can estimate the EP curve; technically, simulation is an 
implementation of Monte Carlo integration (see, e.g., Evans and Swartz, 2000).  Better 
estimates, i.e. ones that tend to be closer to the true value, can be achieved at the expense of a 
larger number of simulations, or a more careful experimental design (e.g., applying variance 
reduction techniques such as control variables, or antithetic variables).  For complex 
applications, where resources constrain the number of simulations, measures of variability are 
required to indicate the closeness of the estimated EP curve to the true EP curve, and likewise 
for other quantities related to the EP curve, like the mean, or the 95th or 99.5th percentiles of 
the loss distribution. 

A Monte Carlo simulation is constructed for a specific hazard process, footprint function, and 
loss operator: uncertainty about these is the subject of Chapter 3 in this volume.  It has the 
following steps: 

1. Simulate a hazard outcome, 
2. Evaluate the footprint function for the outcome, 
3. Evaluate the loss operator for the footprint. 

Repeating this many times for probabilistically independent simulations of the hazard outcome 
will build up histogram of losses, which is an estimator of the probability distribution of losses.  If 
the footprint function or loss operator are stochastic, then they too can be simulated rather than 
simply evaluated. 

Step 1 can be complicated, bearing in mind the distinction between a hazard event and a 
hazard outcome: the latter being the concatenation of many events over the hazard domain.  
But accepting the simplifying choices described in Section 4.1 makes this step straightforward.  
The sequence of events that make up a hazard outcome may also affect the footprint function 
and the loss operator.  Simplifying choices in the same vein would be to treat the interval 
between hazard events as sufficiently long for the hazard domain to ‘reset’, so that the footprint 



and loss of later events does not depend on earlier ones.  This seems to be a common choice in 
catastrophe modelling. 

The variability of a Monte Carlo estimator can be quantified in terms of confidence intervals or 
confidence bands.  A 95% confidence band for the EP curve comprises a lower and upper curve 
with the property that the true EP curve will lie entirely within these curves at least 95% of the 
time.  Confidence bands for the EP curve can be computed using the Dvoretzky-Kiefer-
Wolfowitz Inequality, as described in Wasserman (2004), chapter 7.  For a 1-α confidence band 
the upper and lower curves are ± the square root of ln(2/α) / (2n) vertically about the empirical 
EP curve, where n is the number of simulations.  For example, with n = 1000, a 95% confidence 
band is ±0.043.  Figure 2 shows estimated EP curves and 95% confidence bands for different 
numbers of simulations. 

[FIGURE 2 ABOUT HERE] 

5.3. Estimating the risk 
The risk is defined to be the expected loss, as previously discussed.  This is easily estimated 
from a random sample, and a Normal confidence interval will likely suffice, or a Student-t 
interval if the number of simulations is small.  For the four simulations given above, the 
estimated risk and a 95% CI is: n = 10, $9.8M (5.2, 14.4); n = 100 $9.2M (7.6, 10.8); n = 1000, 
$9.7M (9.2, 10.2); n = 10000, $9.5M (9.4, 9.7).  With 10000 simulations, the proportional 
uncertainty is only a few percent. 

5.4. Estimating high percentiles 
The Solvency II Directive2 on Solvency Capital Requirement is described in terms of the 99.5th 
percentile of the loss distribution for a one-year time interval (Paragraph 64, page 7).  In the 
section ‘Statistical quality standards’ (Article 121, page 58) there is no guidance about how 
accurately this value needs to be estimated, and the issue that the 95% confidence interval for 
the 99.5th percentile may be very large is not explicitly addressed, although it has certainly been 
discussed by catastrophe modelling companies.  Here I outline briefly how such an interval 
might be assessed. 

First, an obvious point: estimators of the 99.5th percentile based on less than at least n = 1000 
simulations will tend to be unreliable.  For smaller n it will be very hard to quantify the variability 
of these estimators.  The technical reason is that convergence of the sampling distribution for 
estimators of high percentiles to a form which admits a pivotal statistic is slow.  Therefore 
confidence intervals based on asymptotic properties (as most confidence intervals will be, in 
practice) may have actual coverage quite different from their notional coverage of 1-α. Thus, 
while one can certainly estimate the 99.5th percentile with a small simulation, and indeed 
compute a confidence interval, an Auditor should treat these with caution. 

So how might we proceed in the case where n is at least 1000, and preferably much larger?  
One possibility for very high percentiles is to use a parametric approach based on Extreme 
                                                
2http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:0001:0155:EN:PDF 



Value Theory; see, e.g., de Haan and Ferreira (2006), Chapter 4—this is highly technical.  Often 
a more transparent approach will suffice.  A simple estimator of Q, the desired percentile, is to 
interpolate the ordered values of the simulated losses.  A 95% confidence interval for Q based 
on this estimator can be assessed using the Bootstrap.  By a loose analogy with the Exponential 
distribution, a nonparametric Bootstrap on the logarithm of Q should be effective; see Davison 
and Hinkley (1997), Sections 2.7 (notably Example 2.19) and 5.2.  But one must bear in mind 
that the Bootstrap is a very general technique with lots of opportunities for both good and bad 
judgements.  It would be wise to treat the bootstrap 95% confidence interval of the 99.5th 
percentile as merely indicative, unless the number of simulations is huge (tens of thousands). 

For the illustration, the estimated 99.5th percentile and approximate 95% confidence intervals 
are: n = 1000, $43.8M (36.9, 53.8); n = 5000, $42.3M (40.5, 45.2), n = 10000, $41.7M (40.3, 
43.4).  Here, even 10000 simulations gives a confidence interval with a width of several million 
dollars, which is a proportional uncertainty of about ten percent. 

6. A digression on terminology 
In natural hazards, one often finds statements such as “ω is an event with a return period of k 
years”, where k might be 100 or 200, or 1000.  Or, similarly, “ω is a one in k year event”.  
Personally, I do not find such terminology helpful, because it is an incomplete description of the 
event, and, in order to be useful, must apply within a strongly parameterised hazard process.  I 
would rather see these issues made explicit. 

The explicit statement would be “Considering the hazard process over the next w years, the 
marginal distribution of event ω is a homogeneous Poisson process with arrival rate 1/k.”  This 
makes the time interval over which the description holds explicit.  It also translates the absence 
of any further information into an explicit statement of homogeneity.  If such homogeneity were 
not appropriate, then more information should have been given in the first place.  The fact that 
such a statement is not qualified by any reference to other events suggests that the conditional 
distribution of ω is judged to be unaffected by the other events.  Hence such statements 
embody completely the simplifying choices of section 4.1. 

Perhaps we can take it as conventional that all statements about return periods embody these 
simplifying choices.  But what is still missing in the original statement is an explicit time domain: 
for how long into the future does event ω have an arrival rate of 1/k?  There is no convention 
about such an interval, and so all such statements need to be qualified.  But then we are in the 
realm of “ω is an event with a return period of k years, over the next w years”.  Many people will 
find two references to different numbers of years confusing.  But considering that this is a more 
precise statement than before, one wonders how much confusion there is currently.  Do people, 
for example householders, perhaps think that a return period of 1000 years is good for the next 
1000 years?  Or only for the next year?  Or for the next few years?  This is a source of needless 
ambiguity that can be totally eliminated with a little more precision. 



The same language crops up in another context as well.  The “one in k year loss” is 
synonymous with the 1 - 1/kth quantile of the one year loss distribution.  So why not say this?  
Rather than the “one in 200 year loss”, state “99.5th percentile of the one year loss distribution”. 

Personally, I think this evasive language reflects a reluctance to use explicit probabilistic 
constructions.  Such constructions would show clearly how subjective these assessments are, 
depending as they do on very strong judgements that would be hard to test with the limited data 
available.  The simplifying choices for the hazard process are very strong; and one does not get 
to the 99.5th percentile of the loss distribution without also making some strong judgements 
about distributional shapes.  But concealing this subjectivity is the wrong response, if our 
intention is to inform the Risk Manager.  Rather, we should get it out in the open, where it can 
be discussed and refined.  In some cases we will be forced into strong judgements for reasons 
of tractability. In this case, too, it is necessary to acknowledge these judgements explicitly, so 
that we can decide how much of a margin for error to include in the final assessment.  This is 
discussed in more detail in Chapter 3 of this volume. 

7. Creating hazard maps 
There is no general definition of a hazard map. Although the term tends to have recognised 
meaning within individual natural hazard fields, methods for producing such maps vary widely.  
One important distinction is whether the map shows features of the hazard footprint, or of the 
hazard loss. For losses, it makes sense to add losses over events (although the size of the loss 
from later events may depend on the earlier ones).  This is not true for aspects of the hazard 
footprint, even though these may relate strongly with losses per event. 

For example, for an earthquake event, peak ground acceleration at a given location is often 
taken to be strongly related to damage to buildings at that location.  But the addition of peak 
ground accelerations at a given location across the events in a hazard outcome does not largely 
determine the loss from a hazard outcome at that location: many small shocks do not incur the 
same loss as one large one, even if later losses are not affected by earlier ones. 

Therefore I favour reserving risk map for showing losses, in situations where the loss over the 
hazard domain is the sum of the losses over each location.  In this case, a risk map would show 
the expected loss at each location, and the total risk of the hazard would be the sum of the risks 
in each location.  (Technically, this follows from the linear property of expectations: if risk were 
not defined as an expectation, there would be no reason for risk maps to have this appealing 
property.)  In other words, risk maps summarise the losses from hazard outcomes. 

What about maps that summarise probabilistic aspects of the hazard footprint, for which 
(probabilistic) hazard map seems appropriate?  Even within a single hazard, such as volcanoes, 
there are a number of different ways of visualising the uncertain spatial footprint of the hazard.  
This variety seems strange, because in fact it is very clear what features a probabilistic hazard 
map ought to have.  These are summarised in Table 2. 

 



Table 2: Features to be found in a probabilistic hazard map. 

 

1. Clearly stated time interval over which the probabilities apply. 

2. Clearly stated extremal operator, which summarises hazard outcomes over the time 
index. 

3. Clearly stated threshold for which probabilities of exceedance will be computed in 
each pixel. 

4. Contours or shading indicating regions of similar probability. 

 

 

The first stage of constructing a hazard map is to reduce the hazard footprint to a spatial map. 
This means summarising over the time index, if one is present. A standard summary would be 
to take the maximum of some component over time, and for this reason I refer to the resulting 
maps as extremal hazard maps: note that these are constructed for a specific outcome (or 
event).  Whatever summary is taken, the general principle for informing the Risk Manager is to 
use the value that relates best to loss at the location, and this will typically be a maximum value.  
For flooding, for example, the summary might be the maximum depth of inundation over the 
hazard outcome, at each location.  An illustration for an earthquake is shown in Panel A of 
Figure 3. 

[FIGURE 3 ABOUT HERE] 

The second stage is then to attach probabilistic information from the hazard process to each 
extremal hazard map. If the extremal hazard maps show hazard outcomes then attaching 
probabilities is straightforward, since we have assigned probabilities directly to hazard outcomes 
over the hazard domain.  Likewise, if the simplifying choices have been used, then any 
particular concatenation of events into a hazard outcome can be assigned an explicit probability 
based on the rates of each outcome.  Other situations, in which more complicated hazard 
processes have been used, or where the footprint of a later event depends on the earlier ones, 
will probably have to be handed through simulation. 

The third stage is to display the resulting set of probability-weighted extremal hazard maps as a 
single map. Each pixel has its own distribution for the summary value, but this is too much 
information to show on one map (although a visualisation tool would give the user the option to 
click on a pixel and see a distribution).  Therefore further information reduction is required.  The 
most useful approach, in terms of staying close to losses, seems to be to construct a map 
showing the probability of exceedance of some specified threshold, at each location; this is what 
I term a probabilistic hazard map. It will often be possible to identify a threshold at which losses 
become serious, and then this map can be interpreted loosely as ‘probability of serious loss 
from the hazard over the next w years’, where w is specified.  Such a map identifies hazard 



zones, but it would be incorrect, in my treatment, to call them risk zones (because there is no 
explicit representation of loss).  An illustration of a probabilistic hazard map for earthquakes is 
shown in Panel B of Figure 3. 

UK Environment Agency flood maps.  What would one expect to find in a probabilistic flood 
hazard map?  I would expect the map to reflect a specified time interval that was relevant to 
Risk managers and households, something between one to five years (or else produce maps for 
different time intervals), and to show the probability of inundation at each location; i.e. a 
threshold set at zero inches, or maybe slightly more to allow for some imprecision.  Then these 
probabilities could be displayed using a simple colour scale of, say, white for probability less 
than 10-3, light blue for probability less than 10-2, dark blue for probability less than 10-1, and red 
or pink for probability not less than 10-1. 

The UK Environment Agency produces flood maps that are superficially similar to this, at least 
in appearance.3  The threshold seems to be zero inches, and there are dark blue areas around 
rivers and coasts, light blue areas outside these, and white elsewhere (there is no pink—
perhaps that would be too scary).  There is a distinction between the probabilities of coastal and 
inland flooding, but this is largely immaterial given the scale of the colour scheme.  However, 
the checklist in Table 2 reveals some concerns.  No time interval is specified, and in fact the 
zones do not show probabilities, but instead the extent of 1 in 100 year (probability = 0.01 in one 
year, dark blue) and 1 in 1000 year (probability = 0.001 in one year, light blue) events.  This 
focus on events rather than outcomes makes it impossible to infer probabilities for hazard 
outcomes for a specific time interval except under the very restrictive condition that these are 
the only two flooding events that can occur.  In this case, the interpretation in section 6 would 
allow us to convert the EA flood map into a probabilistic hazard map for any specified time 
interval.  But of course this is a totally indefensible condition. 

The origin and development of the EA flood maps is complicated; see, for example, Porter 
(2009).  They were never meant to be probabilistic hazard maps, and this focus on two 
particular events was driven in part by the requirements of Planning Policy Statement 25.4  
Unfortunately, from the point of view of risk management, town planners, actuaries, businesses, 
and householders cannot inspect the map and infer a probability for flood inundation over a 
specified period.  But a probabilistic hazard map would have been much more expensive to 
compute, because a much wider range of events would have had to have been assimilated. 

8. Summary 
Ambiguity and imprecision are unavoidable when considering complex systems, such as natural 
hazards and their impacts.  That is not to say, though, that one cannot be systematic in 
developing a formal treatment that would serve the needs of the Risk Manager.  Such a 
treatment removes needless ambiguity by the use of a controlled vocabulary.  Natural hazards, 
for all their diversity, show enough common features to warrant a common controlled 

                                                
3http://www.environment-agency.gov.uk/homeandleisure/37837.aspx 
4 http://www.communities.gov.uk/documents/planningandbuilding/pdf/planningpolicystatement25.pdf 



vocabulary.  This Chapter is an attempt to specify such a vocabulary within a probabilistic 
framework, defining: hazard domain, hazard event, hazard outcome, footprint function, loss 
operator, EP curve, risk, extremal hazard map, probabilistic hazard map, and risk map.  The 
entry points where judgements are required are the probabilities of the hazard outcomes, the 
footprint function, and the loss operator(s). All other aspects of the hazards analysis presented 
here then follow automatically, and their production is effectively an issue of statistical technique 
and computation. 

Two issues are worth highlighting.  First, there is a crucial distinction between hazard events 
and hazard outcomes, which encompasses both the distinction between one event and many, 
and between a single hazard type and different hazard types.  This follows from the 
specification of a hazard domain in which several different hazard events spanning more than 
one hazard type might occur.  This is central to the role of the Risk Manager, who is concerned 
with losses per se, but less so to the insurer, who is able through a contract to limit losses to 
certain hazard types.  This distinction infiltrates other aspects of the analysis; for example the 
EP curve is a description of outcomes, not events, likewise risk maps and hazard maps as 
defined here.  The probabilistic link between events and outcomes is complicated, but can be 
tamed using the two simplifying choices described in Section 4.1.  Similarly, footprint functions 
and loss operators are defined on outcomes not events, but there are obvious simplifications 
that allow definitions on events to be extended to outcomes. 

Second, the use of simulation to construct EP curves and their related quantities should be seen 
as an exercise in statistical estimation.  Hence EP curves should be presented with confidence 
bands to assess variability, and risk and quantiles should be presented with confidence 
intervals.  The high percentiles required by regulators, e.g. 99.5th percentile for Solvency II, 
present serious problems for estimation, and the confidence intervals of such percentiles may 
be both wide and unreliable. 

It is also important to reiterate the point made in Section 2.  The probability calculus seems to 
be a good choice for quantifying uncertainty and risk in natural hazards.  But it is by no means 
perfect, and nor is it the only choice.  Sensitivity analysis with respect to hard-to-specify 
probabilities is crucial when assessing the robustness of the analysis.  The importance of 
sensitivity analysis favours a simpler framework that can easily be replicated across different 
choices for the probabilities (and also for other aspects such as structural and parametric 
choices in the footprint function, see Chapter 3 of this volume), over a more complicated 
framework which is too expensive to be run more than a handful of times.  From the point of 
view of the Risk Manager, and bearing in mind how much uncertainty is involved in natural 
hazards, I would favour simpler frameworks that function as tools, rather than a more 
complicated framework that we are forced to accept as ‘truth’.  This issue pervades 
environmental science; Salt (2008) is a good reality check for modellers who may be in too 
deep. 

Finally, with the tools to hand, the Risk Manager is ready to start making difficult decisions.  Her 
role is not simply to report the risk of doing nothing, but to manage the risk, by evaluating and 
choosing between different interventions.  Each intervention, in changing the hazard outcome 



probabilities, the footprint function, or the loss operator, changes the EP curve.  Ultimately, 
therefore, the Risk Manager will be faced with one diagram containing an EP curve for each 
intervention.  As each intervention also has a financial and social cost, and also a probability of 
successful completion, the Risk Manager is not able to proceed on the basis of the EP curves 
alone, but must perform a very demanding synthesis of all of these aspects of the problem. It is 
not clear that anything other than very general guidelines can be given for such a challenging 
problem.  But what is clear is that the Risk Manager will be well-served by a set of EP curves 
and probabilistic hazard maps that are transparently and defensibly derived.  The purpose of 
this Chapter has been to make this derivation as transparent and defensible as possible. 
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