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Quantum Chemistry on a Quantum Computer

Why?	


!
1. Curiosity	


!
“A Quantum machine may be more efficient at 
simulating a quantum system than a classical 
machine.” 
                   Feynman 
!
!



Quantum Chemistry on a Quantum Computer

Why?	


!
1. Curiosity	



2. Difficulty	


!
“The fundamental laws necessary for the mathematical 
treatment of a large part of physics and the whole of 
chemistry are thus completely known, and the difficulty 
lies only in the fact that application of these laws leads 
to equations that are too complex to be solved.” 
!
                   Dirac 
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Quantum Chemistry on a Quantum Computer

Why?	


!
1. Curiosity	



2. Difficulty	



3. Importance	


!
!



Quantum Chemistry Programs on CPUs   (80 and counting)



The problem

!
Schrödinger Equation	


!
!
!
!
!
!
!
!
!
!
Water:    N = 3           n = 10	


!
Protein:  N = 10000   n = 50000 
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The problem
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The problem

Step 1.  Adiabatically separate electronic and nuclear motion	


!
!

!
Yields the time-independent Schrödinger Equation 	


for the electrons	


!
!
!
!
!
!
!
!
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The problem

Step 2.  Select a (finite) basis of 1-p functions    (LCAO, PW)	



!

!

• Mean field approximation (independent particle model)	



!

!

!

	

  Defines a set of one-particle states	



    and an n-particle Hilbert space
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The problem

Step 3.  Find the eigenstates	



!

!

!

Dimension of n-p Hilbert space is combinatorial in the number of 
electrons (n) and available1-p states (m)	



!

!

!

 Water:  m = 30  n = 10       :  1010	


!
Protein:  m = 150000  n = 50000  : 1010000
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Three layers of approximation

Simulation	


window

1-p Representation	


cut-off

n-p Representation	


cut-off

 (r, t)

basis set 	


incompleteness
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The problem

Step 3.  Find approximations to the eigenstates	



!

!

!

!

!

!

!

•               is acceptable	



•  Provided                “Chemical accuracy’’  	



!
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Classical Algorithm 1:  Coupled Cluster 

!

!

!

• Factorised many-body expansion	



!

!

• Obtain energy and coefficients via projection  (like PT)
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Classical Algorithm 1:  Coupled Cluster 

For many cases, convergence with respect to truncation of many-
body expansion is near exponential
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Coupled Cluster State of the art

• For insulators, the interactions are short range:            
polynomial number of parameters and operations:  O(n)	



!

m > 8800  	



n > 900  	



N > 450	



!

time 106 seconds	



(2 weeks, 1 CPU)	



!

Chemical accuracy for e.g. binding energies



Coupled Cluster success and failure

Simple example of  H2 with varying bond length
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Classical Algorithm 2:  DMRG

Tensor train factorisation of the CI vector	



!

!

!

!

!

!

!

State-of-the-art   	



!

m = 64  n = 30    :  1017



Classical Algorithm 3:  FCI-QMC

A stochastic realisation of the imaginary-time Schrödinger 
Equation in n-particle Hilbert-space	



!

!

!

The CI coefficients are represented through a population of  
walkers in Hilbert space.  After reaching steady state, energies and 
properties are extracted through time-averaging	



!

!

!

State-of-the-art  :  > 1020
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Classical Algorithm 4:  Density Functional Theory

There is an existence proof that there is a one-to-one mapping 
between the wave function and the electron density	



!

!

                                          for n-representable densities	



!

Kohn-Sham:  search over non-interacting mean-field states	



!

!
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Approximate Density Functionals in G09



State-of-the-art for DFT

Accuracy - twice “Chemical Accuracy” if the molecule under 
investigation resembles those the functionals were parameterised 
to get right. Else … 	



	

 (Important, but shrinking, class of problems for which DFT fails)

N = 16000	


!
m = 100000	


!
n = 50000 	


!
!
1000 time steps	


!
Blue Gene/Q



Summary

For a wide class of molecules, the electronic structure of the 
undistorted ground state is relatively easy.   Weakly correlated.	



DFT and CCSD(T) hit different sweet spots of accuracy vs cost	



!

An important class of systems have difficult electronic structure, 
usually characterised by many degenerate or near degenerate 
states and a poor mean field solution.        Strongly correlated.	



!

We don’t know how to solve these problems efficiently and 
reliably.



Quantum Chemistry on a Quantum Computer

Exploit the mapping of Fermionic creation and annihilation 
operators onto qubit operations	



!

!

!

Unitary-type operations can be used to prepare a state,  perform 
QFT, and evolve a state according to a Hamiltonian	



!

!

Trotter expansion makes it possible to decompose general angle 
unitaries from          into a sequence of local angle unitaries.

Ĥ =
X

pq

hpqa
†
paq +

X

pqrs

gpqrsa
†
pa

†
qaras
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Quantum Algorithm 1:  Phase Estimation

!

!

!

!

Requires that          has a large overlap with the true eigenstate	



For the easy cases, where CC works, this is probably possible	



Open question:  How to prepare good states for hard cases?	



!

!

!
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Quantum Algorithm 2:  Variational Approach

Decompose the Hamiltonian into a sum of unitary operations
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Quantum Algorithm 2:  Variational Approach

!

!

!

!

!

!

We will only have access to a limited space of unitaries	



!

Questions:	



Is unitary truncated coupled cluster better than regular?	



How easy or hard is the refinement of U?
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Quantum Algorithm 2:  Variational Approach

Numerical experiments for a 1-d periodic Hubbard Hamiltonian	



!

!

!

!

!

!

4 1-particle states for each spin 	



!

Half-filled case:  	



2 up spin particles, two down spin particles:    36 states
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Quantum Algorithm 2:  Variational Approach

Numerical experiments for a 1-d periodic Hubbard Hamiltonian

0 2 4 6 8 10

-4

-3

-2

-1

0

U/t

E FCI

CISD

UCC

| i = eT̂�T̂ †
|0i T =

X

ai

tai a
†
aai +

X

abij

tabij a
†
aa

†
bajai



Summary

Classical algorithms are efficient when the electronic structure is 
well approximated by one occupation number state	



!

Classical algorithms struggle when many occupation number 
states are required for a qualitatively correct ground state. This is 
where quantum algorithms will probably have the biggest impact.	



!

This situation occurs in e.g. superconducting materials and 
clusters of transition metal atoms in the body	



!

Many important topics have not been mentioned:	



	

 	

 Excited states for Fermionic systems	



	

 	

 Bosonic Hamiltonians for QM of nuclei


