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Quantum Chemistry on a Quantum Computer
Why?

|. Curiosity

“A Quantum machine may be more efficient at
simulating a quantum system than a classical
machine.”

Feynman



Quantum Chemistry on a Quantum Computer
Why?

|. Curiosity
2. Difficulty

“The fundamental laws necessary for the mathematical

treatment of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty

lies only In the fact that application of these laws leads
to equations that are too complex to be solved.”

Dirac
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Quantum Chemistry on a Quantum Computer

Why?

|. Curiosity
2. Difficulty

3. Importance
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Quantum Chemistry Programs on CPUs (80 and counting)

Package ¢ License! N Language N Basis ¢  Periodic? ¢ Mol mech. ¢ Semi-emp. ¢ HF ¢ PostHF ¢ DFT ¢ GPU ¢
ABINIT GPL Fortran PW 3d Yes Yes Yes
ACES Il GPL Fortran GTO Yes Yes Yes
ACES Ill GPL Fortran/C++ GTO Yes  Yes Yes
ADF Commercial Fortran STO Any Yes Yes® Yes Yes
Atomistix ToolKit (ATK) | Commercial C++/Python NAO/EHT ad? Yes Yes Yes
BigDFT GPL Fortran Wavelet Any Yes Yes Yes  Yes
CADPAC Academic Fortran GTO Yes Yes Yes
CASINO (QMC) Academic Fortran 95 GTO / PW / Spline / Grid / STO Any Yes  Yes
CASTEP Academic (UK) / Commercial | Fortran PW 3d Yes Yes® Yes
CFOUR Academic Fortran GTO Yes  Yes
COLUMBUS Academic Fortran GTO Yes  Yes
CONQUEST Academic Fortran 90 NAO/Spline 3ad Yes Yes® Yes
cP2K GPL Fortran 95 Hybrid GTO / PW 3d Yes Yes Yes  Yes Yes  Yes
CPMD Academic Fortran PW 3d Yes Yes Yes
CRYSTAL Academic (UK) / Commercial | Fortran GTO Any Yes Yes  vYes'®  Yes
DACAPO GpL?! Fortran PW 3d Yes Yes
DALTON Academic Fortran GTO Yes  Yes Yes
DFTB+& Academic / Commercial Fortran 95 NAO Any Yes Yes
DFT++ @ GPL C++ PW / Wavelet 3d Yes Yes
DIRAC Academic Fortran 77, Fortran 90, C | GTO Yes  Yes Yes
DMol3 Commercial Fortran 90 NAO Any Yes
ELK GPL Fortran 95 FP-LAPW ad Yes Yes
Empire & Academic / Commercial Fortran Minimal STO Any Yes
ErgoSCF @ GPL C++ GTO Yes Yes
ERKALE GPL C++ GTO Yes Yes
EXCITING GPL Fortran 95 FP-LAPW 3d Yes Yes
FLEUR® Academic Fortran 95 FP-(LJAPW+io 3d, 2d, 1d Yes  Yes Yes
FHI-aims & Commercial Fortran NAO Any Yes Yes Yes Yes
FreeON GPL Fortran 95 GTO Any Yes Yes  Yes Yes
Firefly / PC GAMESS | Academic Fortran, C, Assembly | GTO Yes® Yes Yes  Yes Yes  Yes
GAMESS (UK) Academic (UK) / Commercial | Fortran GTO Yes Yes  Yes Yes  Yes
GAMESS (US) Academic Fortran GTO Yes? Yes Yes  Yes Yes  Yes
Gaussian Commercial Fortran GTO Any Yes Yes Yes  Yes Yes
GPAW# GPL Python / C Grid / NAO / PW 3d Yes Yes® Yes  Yes
HILAPW @ Unknown Unknown FLAPW ad Yes
Jaguar Commercial Fortran /C GTO Yes Yes Yes Yes




The problem
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Schrodinger Equation
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Water: N =3 n=10

Protein: N = 10000 n = 50000
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The problem
i = ngi P+ "
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‘ some steps

[A{h@ = E|) H = Z hpqa;gaq + Z gpqrsa;a:garas

pqrs

) =) Cp|P)



The problem

Step |. Adiabatically separate electronic and nuclear motion

U(r, R, 1) — 1o (r: R), (R, 1)

Water Molecule

Yields the time-independent Schrodinger Equation
for the electrons

HU = EVU
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The problem

Step 2. Select a (finite) basis of |-p functions (LCAQO, PW)

L — 2
Xu(r) = z'y 2 e Pp(r) = ZCMPXH(P)
7!
® Mean field approximation (independent particle model)

YHF(T1,T2, ..., ) = AH¢Z(PZ)
F¢p(r) = €pPp(T) Z

Defines a set of one-particle states

and an n-particle Hilbert space

H = Z hpqa aq + Z gpqma aras

pqrs




The problem

Step 3. Find the eigenstates

]:]W> — EW> H = Z hpqa;f?aq + Z gpqrsa;ajza"“as
pq p

qrs

Dimension of n-p Hilbert space is combinatorial in the number of
electrons (n) and available|-p states (m)

|¢>:;CP|P> <m>

n

000000000000000000000000

Water: m=30 n=10 . 1010

Protein: m = 150000 n = 50000 : |(Q"0090




Three layers of approximation
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The problem

Step 3. Find approximations to the eigenstates

I:IW> — EW> H = Z hpqa;aq + Z gpqrsa;r?ajza"“as
pq

pqrs

Exact

o [V 4 € isacceptable

® Provided ¢/n < “Chemical accuracy”



Classical Algorithm |: Coupled Cluster

pqrs

H = Z hpqa Gqg + Z gpqrsa a’ras ..... Q

® Factorised many-body expansion

) = e’|0) T = Zt bai + ) t¥alalaja;

abij

® Obtain energy and coefficients via projection (like PT)

0T T




Classical Algorithm |: Coupled Cluster

For many cases, convergence with respect to truncation of many-
body expansion is near exponential
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Coupled Cluster State of the art

® For insulators, the interactions are short range:
polynomial number of parameters and operations: O(n)

m > 8800
n > 900
N > 450

time 10® seconds
(2 weeks, | CPU)

Chemical accuracy for e.g. binding energies



Coupled Cluster success and failure

Simple example of H with varying bond length Q—O

Energy (Ep)

0 1 2 3 4 5 6 7 8
Bond Length (a;)

Works well Fails




Classical Algorithm 2: DMRG

Tensor train factorisation of the Cl vector

NyNyN3Ng,

B N an, Ny n,
Comre™ = z Ai1 Aﬁ Jip. Ai2fi‘i3:ﬁ, A

U3 )ig e

hinR) |

State-of-the-art

m=64 n=30 : 10V




Classical Algorithm 3: FCI-QMC

A stochastic realisation of the imaginary-time Schrodinger
Equation in n-particle Hilbert-space

NoA A O A
— = HVY _

The Cl coefficients are represented through a population of
walkers in Hilbert space. After reaching steady state, energies and
properties are extracted through time-averaging

0Cp
ot

= (Hpp — E)Cp + Z HpgCq
QP

State-of-the-art : > 020



Classical Algorithm 4: Density Functional Theory

There is an existence proof that there is a one-to-one mapping
between the wave function and the electron density

w(r17r27 R ,I'n) A p(I’)

mpin Elp) for n-representable densities

Kohn-Sham: search over non-interacting mean-field states
Al ] ¢i(xi) = po(r)
1

Elp| =Ts + Vip| + Jlp] + Viclp]



Approximate Density Functionals in GO9

EXCHANGE CORRELATION

S
XA
B
PW91
mPW
G96
PBE
0
TPSS
BRx
PKZB
wPBEh
PBEh

LONG RANGE
CORRECTION

LC-

VWN
VWNS
LYP
PL
P86
PW91
B95
PBE
TPSS
KCIS
BRC
PKZB
VP86
VSLYP

EXCHANGE

XAlpha
HFB HCTH93 B3PWYIl OHSEIPBE

RANGE-SEPARATED

PURE HYBRID HYBRID
VSXC B3LYP HSEH1PBE
HCTH B3P86 OHSE2PBE

HCTH147 BIB9S wB97XD
HCTH407 mPW1PW91 wB97
tHCTH mPWILYP wB97X
M0O6LL. mPWIPBE LC-wPBE
B97D mPW3PBE CAM-B3LYP

B97D3 B98 HISSbPBE
SOGGAI1l B971 M11
MI11L B972 N12SX

N12 PBE1PBE MNI12SX
MNI12L BILYP
O3LYP
BHandH
BHandHLYP
BMK
Mo06
MO6HF
M062X
tHCTHhyb
APFD
APF
SOGGAI11X
PBEh1PBE
TPSSh
X3LYP



State-of-the-art for DFT

Accuracy - twice “Chemical Accuracy” if the molecule under
investigation resembles those the functionals were parameterised
to get right. Else ...

(Important, but shrinking, class of problems for which DFT fails)

N = 16000
m = 100000
n = 50000

1000 time steps

Blue Gene/Q



Summary

For a wide class of molecules, the electronic structure of the
undistorted ground state is relatively easy. VVeakly correlated.

DFT and CCSD(T) hit different sweet spots of accuracy vs cost

An important class of systems have difficult electronic structure,
usually characterised by many degenerate or near degenerate
states and a poor mean field solution. Strongly correlated.

We don’t know how to solve these problems efficiently and
reliably.



Quantum Chemistry on a Quantum Computer

Exploit the mapping of Fermionic creation and annihilation
operators onto qubit operations

H = Z hpqa;;aq + Z gpqrsa;ga:;aras
pq p

qrs

Unitary-type operations can be used to prepare a state, perform
QFT, and evolve a state according to a Hamiltonian

) = U|0) et (o)

Trotter expansion makes it possible to decompose general angle
unitaries from ¢! into a sequence of local angle unitaries.



Quantum Algorithm |: Phase Estimation

Prepare QFT
¥) = UJ0) E

Requires that %) has a large overlap with the true eigenstate
For the easy cases, where CC works, this is probably possible

Open question: How to prepare good states for hard cases!

Prepare Adiabatic map QFT
0) ei((l—t)ﬁ+tﬁ)‘0> E




Quantum Algorithm 2: Variational Approach

Decompose the Hamiltonian into a sum of unitary operations
H = Z hpqa;;aq -+ Z gpqrsa;;a};aras
pq

pqgrs
= E c;U;
i

Prepare Measure
y) = UI0) E
Refine U !i
—
— /@




Quantum Algorithm 2: Variational Approach

Prepare Measure

¥) =U|0) E

Refine U 2J,'
/-

—

——

We will only have access to a limited space of unitaries
Ay alli
[J — 6T T
Questions:

Is unitary truncated coupled cluster better than regular?

How easy or hard is the refinement of U!?



Quantum Algorithm 2: Variational Approach

Numerical experiments for a |-d periodic Hubbard Hamiltonian

O—O

H— —t Z a;faajg + UZ”%”N
(1,)0 )

O——=0O

4 |-particle states for each spin g B

Half-filled case:

2 up spin particles, two down spin particles: 36 states



Quantum Algorithm 2: Variational Approach

Numerical experiments for a |-d periodic Hubbard Hamiltonian

) = e =T7|0) T — Zt"’ fa;+ Y t%%alafa;a;

abij
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Summary

Classical algorithms are efficient when the electronic structure is
well approximated by one occupation number state

Classical algorithms struggle when many occupation number
states are required for a qualitatively correct ground state. This is
where quantum algorithms will probably have the biggest impact.

This situation occurs in e.g. superconducting materials and
clusters of transition metal atoms in the body

Many important topics have not been mentioned:
Excited states for Fermionic systems

Bosonic Hamiltonians for QM of nuclei



