Quantum Chemistry Algorithms: Classical vs Quantum

Dr. David P. Tew

School of Chemistry, Bristol
Apr. 2015

Quantum Chemistry on a Quantum Computer
Why?
I. Curiosity
"A Quantum machine may be more efficient at simulating a quantum system than a classical machine."

Feynman

Quantum Chemistry on a Quantum Computer

Why?
I. Curiosity
2. Difficulty
"The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved."

$$
i \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi
$$

Dirac

Quantum Chemistry on a Quantum Computer

Why?

I. Curiosity
2. Difficulty
3. Importance

| Negative
 (z.B. Graphit) | Separator und | Elektrolyt |
| :---: | :---: | :---: | | Positive |
| :---: |
| (z.B. Hochenergie- |
| kathode) |

Quantum Chemistry Programs on CPUs (80 and counting)

Package \dagger	License † ¢	Language \dagger	Basis \quad ¢	Periodic ${ }^{\ddagger}$	-	Mol. mech. \dagger	Semi-emp. \dagger	HF	Post-HF	DFT \dagger	GPU \dagger
ABINIT	GPL	Fortran	PW	3d		Yes	No	No	No	Yes	Yes
ACES II	GPL	Fortran	GTO	No		No	No	Yes	Yes	Yes	
ACES III	GPL	Fortran/C++	GTO	No		No	No	Yes	Yes	No	Yes
ADF	Commercial	Fortran	STO	Any		Yes	$Y e s^{4}$	Yes	No	Yes	
Atomistix Toolkit (ATK)	Commercial	C++/Python	NAO/EHT	$3 d^{9}$		Yes	Yes	No	No	Yes	
BigDFT	GPL	Fortran	Wavelet	Any		Yes	No	Yes	No	Yes	Yes
CADPAC	Academic	Fortran	GTO	No		No	No	Yes	Yes	Yes	
CASINO (QMC)	Academic	Fortran 95	GTO / PW / Spline / Grid / STO	Any		No	No	Yes	Yes	No	
CASTEP	Academic (UK) / Commercial	Fortran	PW	3d		Yes	No	$Y e s^{5}$	No	Yes	
CFOUR	Academic	Fortran	GTO	No		No	No	Yes	Yes	No	
COLUMBUS	Academic	Fortran	GTO	No		No	No	Yes	Yes	No	
CONQUEST	Academic	Fortran 90	NAO/Spline	3d		Yes	No	Yes ${ }^{5}$	No	Yes	
CP2K	GPL	Fortran 95	Hybrid GTO / PW	3d		Yes	Yes	Yes	Yes	Yes	Yes
CPMD	Academic	Fortran	PW	3d		Yes	No	Yes	No	Yes	
CRYSTAL	Academic (UK) / Commercial	Fortran	GTO	Any		Yes	No	Yes	Yes ${ }^{10}$	Yes	
DACAPO	GPL ? ${ }^{1}$	Fortran	PW	3d		Yes	No	No	No	Yes	
DALTON	Academic	Fortran	GTO	No		No	No	Yes	Yes	Yes	
DFTB+ ${ }^{\text {d }}$	Academic / Commercial	Fortran 95	NAO	Any		Yes	Yes	No	No	No	
DFT + + ${ }^{\text {a }}$	GPL	C++	PW / Wavelet	3d		Yes	No	No	No	Yes	
DIRAC	Academic	Fortran 77, Fortran 90, C	GTO	No		No	No	Yes	Yes	Yes	
DMol3	Commercial	Fortran 90	NAO	Any		No	No	No	No	Yes	
ELK	GPL	Fortran 95	FP-LAPW	3d		No	No	Yes	No	Yes	
Empire ${ }^{\text {a }}$	Academic / Commercial	Fortran	Minimal STO	Any		No	Yes	No	No	No	
ErgoSCF ${ }^{\text {P }}$	GPL	C++	GTO	No		No	No	Yes	No	Yes	
ERKALE*	GPL	C++	GTO	No		No	No	Yes	No	Yes	
EXCITING	GPL	Fortran 95	FP-LAPW	3d		No	No	Yes	No	Yes	
FLEUR ${ }^{\text {er }}$	Academic	Fortran 95	FP-(L)APW+lo	3d, 2d, 1d		No	No	Yes	Yes	Yes	
FHI-aims ${ }^{\text {a }}$	Commercial	Fortran	NAO	Any		Yes	No	Yes	Yes	Yes	
FreeON	GPL	Fortran 95	GTO	Any		Yes	No	Yes	Yes	Yes	
Firefly / PC GAMESS	Academic	Fortran, C, Assembly	GTO	No		Yes ${ }^{3}$	Yes	Yes	Yes	Yes	Yes
GAMESS (UK)	Academic (UK) / Commercial	Fortran	GTO	No		No	Yes	Yes	Yes	Yes	Yes
GAMESS (US)	Academic	Fortran	GTO	No		Yes ${ }^{2}$	Yes	Yes	Yes	Yes	Yes
Gaussian	Commercial	Fortran	GTO	Any		Yes	Yes	Yes	Yes	Yes	
GPAW	GPL	Python/C	Grid / NAO / PW	3d		Yes	No	Yes ${ }^{5}$	No	Yes	Yes
HilapW	Unknown	Unknown	FLAPW	3d		No	No	No	No	Yes	
Jaguar	Commercial	Fortran/C	GTO	No		Yes	No ${ }^{11}$	Yes	Yes	Yes	

The problem
$\hbar=4 \pi \epsilon_{0}=m_{e}=e=1$

Schrödinger Equation

$$
i \frac{\partial \Psi}{\partial t}=\hat{H} \Psi
$$

$$
\hat{H}=-\sum_{i} \frac{1}{2 m_{i}} \nabla_{i}^{2}+\sum_{i>j} \frac{Z_{i} Z_{j}}{r_{i j}}
$$

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}, \mathbf{R}_{1}, \mathbf{R}_{2}, \ldots, \mathbf{R}_{N}, t\right)
$$

$$
\text { Water: } N=3 \quad n=10
$$

$$
\text { Protein: } N=10000 n=50000
$$

The problem

$$
\begin{array}{cl}
i \frac{\partial \Psi}{\partial t}=\hat{H} \Psi \quad & \hat{H}=-\sum_{i} \frac{1}{2 m_{i}} \nabla_{i}^{2}+\sum_{i>j} \frac{Z_{i} Z_{j}}{r_{i j}} \\
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}, \mathbf{R}_{1}, \mathbf{R}_{2}, \ldots, \mathbf{R}_{N}, t\right) \\
\hat{H}|\psi\rangle=E|\psi\rangle \quad \hat{H}=\sum_{p q} h_{p q} a_{p}^{\dagger} a_{q}+\sum_{p q r s} g_{p q r s} a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s} \\
|\psi\rangle=\sum_{P} C_{P}|P\rangle
\end{array}
$$

The problem

Step I. Adiabatically separate electronic and nuclear motion

$$
\Psi(\mathbf{r}, \mathbf{R}, t) \rightarrow \psi_{e}(\mathbf{r} ; \mathbf{R}) \psi_{n}(\mathbf{R}, t)
$$

Yields the time-independent Schrödinger Equation for the electrons

$$
\begin{aligned}
& \hat{H} \Psi=E \Psi \\
& \hat{H}=-\frac{1}{2} \sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{r_{i I}}+\sum_{i>j} \frac{1}{r_{i j}} \\
& \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}\right)
\end{aligned}
$$

Water Molecule
-

The problem

Step 2. Select a (finite) basis of I-p functions (LCAO, PW)

$$
\chi_{\mu}(\mathbf{r})=x^{i} y^{j} z^{k} e^{-\alpha r^{2}} \quad \phi_{p}(\mathbf{r})=\sum_{\mu} c_{\mu p} \chi_{\mu}(\mathbf{r})
$$

- Mean field approximation (independent particle model)

$$
\begin{aligned}
& \psi_{\mathrm{HF}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}\right)=\hat{\mathcal{A}} \prod_{i} \phi_{i}\left(\mathbf{r}_{i}\right) \\
& \hat{F} \phi_{p}(\mathbf{r})=\varepsilon_{p} \phi_{p}(\mathbf{r})
\end{aligned}
$$

Defines a set of one-particle states and an n-particle Hilbert space

$$
\hat{H}=\sum_{p q} h_{p q} a_{p}^{\dagger} a_{q}+\sum_{p q r s} g_{p q r s} a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s}
$$

The problem
Step 3. Find the eigenstates

$$
\hat{H}|\psi\rangle=E|\psi\rangle \quad \hat{H}=\sum_{p q} h_{p q} a_{p}^{\dagger} a_{q}+\sum_{p q r s} g_{p q r s} a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s}
$$

Dimension of n-p Hilbert space is combinatorial in the number of electrons (n) and availablel-p states (m)

$$
|\psi\rangle=\sum_{P} C_{P}|P\rangle \quad\binom{m}{n}
$$

Water: $\mathrm{m}=30 \mathrm{n}=10: 10^{10}$
Protein: $m=150000 n=50000: 10^{10000}$

Three layers of approximation

The problem

Step 3. Find approximations to the eigenstates

$$
\hat{H}|\psi\rangle=E|\psi\rangle \quad \hat{H}=\sum_{p q} h_{p q} a_{p}^{\dagger} a_{q}+\sum_{p q r s} g_{p q r s} a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s}
$$

- $E+\epsilon$ is acceptable
- Provided $\epsilon / n<$ "Chemical accuracy"

Classical Algorithm I: Coupled Cluster

$$
\hat{H}=\sum_{p q} h_{p q} a_{p}^{\dagger} a_{q}+\sum_{p q r s} g_{p q r s} a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s}
$$

- Factorised many-body expansion

$$
|\psi\rangle=e^{T}|0\rangle \quad T=\sum_{a i} t_{i}^{a} a_{a}^{\dagger} a_{i}+\sum_{a b i j} t_{i j}^{a b} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}
$$

- Obtain energy and coefficients via projection (like PT)

$$
n^{2} m^{4}
$$

Classical Algorithm I: Coupled Cluster

For many cases, convergence with respect to truncation of manybody expansion is near exponential

$$
|\psi\rangle=e^{T_{1}+T_{2}+T_{3}+\ldots}|0\rangle
$$

Coupled Cluster State of the art

- For insulators, the interactions are short range: polynomial number of parameters and operations: $O(n)$
$\mathrm{m}>8800$
$n>900$
$\mathrm{N}>450$
time 10^{6} seconds
(2 weeks, I CPU)

Chemical accuracy for e.g. binding energies

Coupled Cluster success and failure

Simple example of H_{2} with varying bond length

Classical Algorithm 2: DMRG

Tensor train factorisation of the Cl vector

State-of-the-art

$$
\mathrm{m}=64 \mathrm{n}=30 \quad: 10^{17}
$$

Classical Algorithm 3: FCI-QMC

A stochastic realisation of the imaginary-time Schrödinger Equation in n-particle Hilbert-space

$$
i \frac{\partial \Psi}{\partial t}=\hat{H} \Psi \quad \rightarrow \quad \frac{\partial \Psi}{\partial \tau}=-\hat{H} \Psi
$$

The Cl coefficients are represented through a population of walkers in Hilbert space. After reaching steady state, energies and properties are extracted through time-averaging

$$
-\frac{\partial C_{P}}{\partial \tau}=\left(H_{P P}-E\right) C_{P}+\sum_{Q \neq P} H_{P Q} C_{Q}
$$

State-of-the-art : > 10^{20}

Classical Algorithm 4: Density Functional Theory

There is an existence proof that there is a one-to-one mapping between the wave function and the electron density

$$
\begin{gathered}
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}\right) \leftrightarrow \rho(\mathbf{r}) \\
\min _{\rho} E[\rho] \quad \text { for n-representable densities }
\end{gathered}
$$

Kohn-Sham: search over non-interacting mean-field states

$$
\begin{aligned}
& \hat{\mathcal{A}} \prod_{i} \phi_{i}\left(\mathbf{r}_{i}\right) \rightarrow \rho(\mathbf{r}) \\
& E[\rho]=T_{s}+V[\rho]+J[\rho]+V_{x c}[\rho]
\end{aligned}
$$

Approximate Density Functionals in G09

EXCHANGE	correlation	exchange ONLY	PURE	HYBRID	range-separated HYBRID
S	VWN	HFS	VSXC	B3LYP	HSEH1PBE
XA	VWN5	XAlpha	HCTH	B3P86	OHSE2PBE
B	LYP	HFB	HCTH93	B3PW91	OHSE1PBE
PW91	PL		HCTH147	B1B95	wB97XD
mPW	P86		HCTH407	mPW1PW91	wB97
G96	PW91		tHCTH	mPW1LYP	wB97X
PBE	B95		M06L	mPW1PBE	LC-wPBE
O	PBE		B97D	mPW3PBE	CAM-B3LYP
TPSS	TPSS		B97D3	B98	HISSbPBE
BRx	KCIS		SOGGA11	B971	M11
PKZB	BRC		M11L	B972	N12SX
wPBEh	PKZB		N12	PBE1PBE	MN12SX
PBEh	VP86		MN12L	B1LYP	
	V5LYP			O3LYP	
				BHandH	
LONG RANGE				BHandHLYP	
CORRECTION				BMK	
LC-				M06	
				M06HF	
				M062X	
				tHCTHhyb	
				APFD	
				APF	
				SOGGA11X	
				PBEh1PBE	
				TPSSh	
				X3LYP	

State-of-the-art for DFT

Accuracy - twice "Chemical Accuracy" if the molecule under investigation resembles those the functionals were parameterised to get right. Else ...
(Important, but shrinking, class of problems for which DFT fails)

$N=16000$
$m=100000$
$n=50000$

1000 time steps
Blue Gene/Q

For a wide class of molecules, the electronic structure of the undistorted ground state is relatively easy. Weakly correlated.
DFT and $\operatorname{CCSD}(\mathrm{T})$ hit different sweet spots of accuracy vs cost

An important class of systems have difficult electronic structure, usually characterised by many degenerate or near degenerate states and a poor mean field solution. Strongly correlated.

We don't know how to solve these problems efficiently and reliably.

Quantum Chemistry on a Quantum Computer

Exploit the mapping of Fermionic creation and annihilation operators onto qubit operations

$$
\hat{H}=\sum_{p q} h_{p q} a_{p}^{\dagger} a_{q}+\sum_{p q r s} g_{p q r s} a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s}
$$

Unitary-type operations can be used to prepare a state, perform QFT, and evolve a state according to a Hamiltonian

$$
|\psi\rangle=U|0\rangle \quad e^{i \hat{H} t}|\psi\rangle
$$

Trotter expansion makes it possible to decompose general angle unitaries from $e^{i \hat{H} t}$ into a sequence of local angle unitaries.

Quantum Algorithm I: Phase Estimation

Requires that $|\psi\rangle$ has a large overlap with the true eigenstate For the easy cases, where CC works, this is probably possible Open question: How to prepare good states for hard cases?

Quantum Algorithm 2: Variational Approach

Decompose the Hamiltonian into a sum of unitary operations

$$
\begin{aligned}
\hat{H} & =\sum_{p q} h_{p q} a_{p}^{\dagger} a_{q}+\sum_{p q r s} g_{p q r s} a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s} \\
& =\sum_{i} c_{i} U_{i}
\end{aligned}
$$

Quantum Algorithm 2: Variational Approach

We will only have access to a limited space of unitaries

$$
U=e^{\hat{T}-\hat{T}^{\dagger}}
$$

Questions:
Is unitary truncated coupled cluster better than regular? How easy or hard is the refinement of U ?

Quantum Algorithm 2: Variational Approach

Numerical experiments for a I-d periodic Hubbard Hamiltonian

$$
\hat{H}=-t \sum_{\langle i, j\rangle \sigma} a_{i \sigma}^{\dagger} a_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

4 I-particle states for each spin

Half-filled case:
2 up spin particles, two down spin particles: 36 states

Quantum Algorithm 2: Variational Approach

Numerical experiments for a I-d periodic Hubbard Hamiltonian

$$
|\psi\rangle=e^{\hat{T}-\hat{T}^{\dagger}}|0\rangle \quad T=\sum_{a i} t_{i}^{a} a_{a}^{\dagger} a_{i}+\sum_{a b i j} t_{i j}^{a b} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}
$$

Classical algorithms are efficient when the electronic structure is well approximated by one occupation number state

Classical algorithms struggle when many occupation number states are required for a qualitatively correct ground state. This is where quantum algorithms will probably have the biggest impact.

This situation occurs in e.g. superconducting materials and clusters of transition metal atoms in the body

Many important topics have not been mentioned:
Excited states for Fermionic systems
Bosonic Hamiltonians for QM of nuclei

