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Abstract 
The estimation of exposure effects on study outcomes is almost always complicated by non-random exposure 
selection - even randomised controlled trials can be affected by participant non-compliance.  If the selection 
mechanism is non-ignorable then inferences based on estimators that fail to adjust for its effects will be 
misleading.  Potentially consistent estimators of the exposure effect can be obtained if the data are expanded to 
include one or more instrumental variables (IVs).  An IV must satisfy core conditions constraining it to be 
associated with the exposure, and indirectly (but not directly) associated with the outcome through this 
association.  Here we consider IV estimators for studies in which the outcome is represented by a binary 
variable.  While work on this problem has been carried out in statistics and econometrics, the estimators and 
their associated identifying assumptions have existed in the separate domains of structural models and potential 
outcomes with almost no overlap.  In this paper, we review and integrate the work in these areas and reassess the 
issues of parameter identification and estimator consistency.  Identification of maximum likelihood estimators 
comes from strong parametric modelling assumptions, with consistency depending on these assumptions being 
correct.  Our main focus is on three semi-parametric estimators based on the generalised method of moments, 
marginal structural models and structural mean models (SMM).  By inspecting the identifying assumptions for 
each method, we show that these estimators are inconsistent even if the true model generating the data is simple, 
and argue that this implies that consistency is obtained only under implausible conditions.  Identification for 
SMMs can also be obtained under strong exposure-restricting design constraints that are often appropriate for 
randomised controlled trials, but not for observational studies.  Finally, while estimation of local causal 
parameters is possible if the selection mechanism is monotonic, not all SMMs identify a local parameter. 
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1. Introduction 

 

The estimation of exposure effects on study outcomes is almost always complicated by non-random 

exposure selection: it is rare even for randomised controlled trials to be perfectly conducted, usually 

being affected by, for example, participant non-compliance.  If the selection mechanism is non-

ignorable then inferences based on estimators that fail to adjust for its effects will be misleading.  In 

epidemiology, the impact of non-ignorable selection is termed ‘confounding’ bias due to confounding 

variables associated with both outcome Y and exposure X.  The usual strategy is to adjust for this bias 

by including all observed confounding variables C, but the impact of unobserved confounding 

variables is often thought to be problematic.  In economics, the problem is commonly framed as that 

of a regression model from which variables have been omitted.  If the exposure is ‘exogenous’ then 

none of the omitted variables are associated with exposure X.  However, if this assumption is 

implausible then the exposure is instead said to be ‘endogenous’.  An endogenous exposure X is 

associated with the model error term, possibly even after conditioning on other available covariates C.  

In either the unobserved confounding or endogenous exposure set-ups, the effect of X on Y is not 

identified without further information being introduced into the analysis.  A widely used approach in 

economics is to introduce an instrumental variable (IV) Z that is associated with X, but is only 

associated with Y indirectly through its association with X.  IVs are also used in disciplines other than 

economics: for example, there has recently been great interest in the use of genetic IVs in 

epidemiology to exploit the idea of ‘Mendelian randomisation’ (e.g., Lawlor et al., 2008); and in the 

analysis of randomised experiments with non-compliance, the IV is randomisation indicator Z 

indicating the experimental group to which each unit is randomised (e.g., Angrist et al., 1996). 

 

We begin by reviewing IV estimators for linear regression models.  The highest objective of 

regression analysis is to estimate the ‘causal’ effect of the exposure (i.e., what happens if we change X 

while holding everything else fixed) rather than simply its association with Y.  Thus, we view the 

regression model as ‘structural’ in that its parameters have a causal interpretation (e.g., Goldberger, 

1972).  An example of a simple linear structural model is UXY ++= 10 ββ , where C is omitted for 

notational simplicity and U represents the error term, or the combined effect of all the omitted 

variables.  In this model, β1 represents the effect on Y of a unit increase in X while holding U fixed.  

To connect the structural model from economics with the potential outcomes approaches used 

elsewhere, it is useful to write this model as 

 

,

),(

10 ux

uUxXYEy

++=
===

ββ
      (1) 

 
following a notation similar to that of Pearl (2000, ch.5).  This notation makes clear that E(Y | X = x, U 

= u) is an expectation in which X and U wholly determine the observed value y.  If exposure is binary, 
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taking values 1 and 0 for the exposed and unexposed categories, respectively, then the regression slope 

is straightforwardly interpreted as the average treatment effect (ATE) of X.   

 

Unless X is exogenous, the ordinary least squares (OLS) estimator of β1 in linear model (1) is 

inconsistent.  If X is endogenous, however, the classical IV estimator ),Cov(),Cov(ˆ
1 ZXZYIV =β  is 

consistent for β1 under model (1), provided that additional ‘core conditions’ are satisfied by the joint 

distribution of (U, X, Y, Z).  Didelez and Sheehan (2007) write the core conditions as: 

 

1. Z is associated with X, 

2. Z is conditionally independent of Y given X and U, 

3. Z is independent of U. 

 

Figure 1 contains a directed acyclic graph (e.g., Pearl, 2000) representing these assumptions.  

 

[FIGURE 1 ABOUT HERE.] 

 

Core conditions 1-3 are required for estimators based on a fully specified parametric model for (X, Y, 

U, Z).  However, for semi-parametric estimators the independence assumption can be replaced by, for 

example, conditional mean independence in which condition 2 becomes E(Y | X, U, Z) = E(Y | X, U) 

and condition 3 E(U | Z) = E(U).  For simple linear structural models, condition 3 can be further 

relaxed: rather than the weaker E(U | Z) = E(U), the classical IV estimator comes from the stronger 

moment conditions 

 
0)()( == UEZUE ,      (2) 

 
where U = Y – β0 – Xβ1 under model (1).  The two-stage least-squares (2SLS) estimator is a 

generalisation of (2) to include multiple exposures, more than one of which may be endogenous, 

which is identified provided there is at least one IV for each endogenous covariate.  Stage one of 2SLS 

estimation involves fitting the ‘reduced-form’ model for the regression of X on Z using OLS, and 

using these predicted values in fitting linear model (1) at stage two.  Provided the structural model is 

linear, the 2SLS estimator is consistent whether or not the true regression of X on Z is linear.  

Identification of treatment effect parameters under more general models has been considered by 

Imbens and Angrist (1994), Angrist et al. (1996) and Abadie (2003) among others; see also Tan 

(2006) for more recent work. 

 

In this paper, we focus initially on IV estimators for non-linear regression models for binary Y, or 

more precisely, logistic and probit regression models.  More generally, we focus on causal effects of X 

on Y.  The consistency of maximum likelihood estimators for probit models is already well established 
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(e.g., Rivers and Vuong, 1988), but other estimators have also been proposed, based on the generalised 

method of moments (e.g., Angrist, 2001) and on potential outcome models: specifically, marginal 

structural models (e.g., Robins et al., 2000) and structural mean models (Robins, 1989; Robins, 1994).  

The attraction of these estimators is that full parametric specification of a model for (X, Y, U, Z) is not 

required. 

 

Chesher (2008) has recently clarified the identification of structural models for discrete Y through a 

series of formal results, in which the assumptions embodied in the structural model for Y and X and 

core conditions 1-3 have been shown to be insufficient to identify the structural parameters.  In the 

light of these results, we revisit all of these estimators to establish the context in which identification is 

obtained (or not).  For the estimators based on potential outcomes, we do this by viewing potential 

outcomes models as semi-parametric structural models, and considering identification under simple 

models for the data generating process.  From a practical perspective, we argue that, if identification 

cannot be achieved under simple structural models, the burden of proof shifts to any researcher using 

these methods to posit less simple but substantively plausible data generating processes under which it 

is. 

 

The paper is organised as follows:  In Section 2, structural and potential outcome models for binary Y 

are introduced, and the link between the two approaches is discussed.  In Section 3, we summarise 

recent results on parameter identification for discrete Y and discuss their implications for IV 

estimation, and in Section 4 review likelihood-based estimation in the light of these results.  In the 

remainder of the paper, we focus on semi-parametric estimators.  The generalised method of moments 

is considered for binary structural models (Angrist, 2001; Johnson et al., 2008) in Section 5.  The next 

two sections concern methods based on potential outcomes: in Section 6, the marginal estimator based 

on a marginal structural model (Ten Have et al., 2003); and second, in Section 7, estimators based on 

structural mean models (e.g., Vansteelandt and Goetghebeur, 2003; Hernán and Robins, 2006).  In 

Section 8 we consider estimation under monotonic selection mechanisms, and in Section 9 we discuss 

the findings and draw conclusions. 

 

2. Models for binary outcomes 

 

2.1. Regression models  

A generalised linear model for the regression of binary Y on X is  

 

10)}({ ββµ xxb += ,      (3) 

 
where µ(x) is the mean function and b(a) is a link function; C has again been omitted to simplify the 

subsequent development.  We focus on the two most widely used models for binary Y, namely, the 

logistic model where b(a) = logit(a) = log{a/(1 – a)}, and the probit model where b(a) = Φ–1(a) is the 



 6 

inverse cumulative distribution function (CDF) of the standard normal distribution.  The logistic 

model is widely used in biomedical and social science disciplines because β1 is interpretable as a log 

odds ratio.  In economics, it is the probit model that is most widely used; the slope parameter itself 

does not have an obvious interpretation, but it can be used to calculate the partial effect (PE).  The PE 

of X at x* is defined to be the expectation of the derivative of the mean function at X = x* and is 

analogous to the ATE. 

 

No explicit reference has been made to U in (3) because to do so is unnecessary if X is exogenous.  

However, if X is endogenous then it is important to understand the hidden role played by U.  Using the 

notation introduced for linear model (1), a simple structural model for binary Y is given by 

 

),0(

),(

10 >++=
===
uxI

uUxXYEy

ββ
      (4) 

 
where I(a) is the indicator function.  It is again seen that the structural model wholly determines the 

observed value of the binary outcome.  An alternative, the unobserved heterogeneity model, shall be 

discussed further on in Section 5.  However, whatever structural model is chosen, an essential feature 

is that it must involve a non-smooth function to ensure the support of Y is the set {0, 1}.   

 

If X is exogenous then integrating (4) over the marginal distribution of U 

)()()},({ xxXYEUxXYEEU µ==== , and so the mean function of Y given X in (3) is correctly 

specified.  The distribution of U is assumed to be normal for the probit model and logistic for the 

logistic model where, as well as constraining E(U) = 0, the scale of U is set arbitrarily so that Var(U) = 

1 for normal U and 3)Var( 2π=U  for logistic U.  However, if X is endogenous then U is not 

independent of X and )()},({1| xUxXYEE XU µ≠== . 

 

2.2. Potential outcome models 

Potential outcome models distinguish between the selected exposure X and what happens if the 

exposure is set to χ by some hypothetical intervention or experiment.  Instead of a structural model, a 

set of potential outcomes is defined for each unit in the study population.  Units are indexed by i 

(which has been suppressed until now) and the potential outcome of unit i at exposure level χ is 

denoted by )(χiY , a suitably defined function of χ.  In practice, only exposure level Xi is observed for 

unit i, and the observed outcome is related to the potential outcome by )( iii XYY = ; this relationship is 

called the ‘consistency assumption’.  The target of inference in the potential outcomes framework is a 

meaningful expectation taken over the entire population.  For example, for binary X the ATE from 

Section 1 is )}0()1({ ii YYE − , the causal risk ratio (CRR) is )}0({)}1({ ii YEYE , and the causal odds 

ratio (COR) is 
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)}0(1{)}0({

)}1(1{)}1({

ii

ii

YEYE

YEYE

−
−

. 

 

As already stated, it is unnecessary to specify a parametric model for Yi(χ) in this framework.  The 

endogeneity or unobserved confounding problem simply results in an association between Yi(χ) and Xi.  

However, throughout this paper we shall assume that Ui is the common cause behind this association, 

and thus we restrict attention to the wide range of non-ignorable selection models that are encountered 

in practice in disciplines like epidemiology and economics.  With this in mind, we note how the 

simple binary structural model (4) can be written in terms of potential outcomes: suppress i and denote 

)(χχ YY = , then )0()( 10 >++=== uIuUYEy χββχχ , where expectation over i has been replaced 

by expectation over the population distribution of U.  As χ is fixed, integrating out U leads (if X is 

binary) to exp(β1) = COR under the logistic model.  The potential outcomes models to be discussed in 

Sections 6 and 7 can thus be interpreted as semi-parametric, in that neither the error structure nor its 

distribution is explicitly specified. 

  

IV estimators can therefore be developed in the potential outcomes context.  Following Angrist et al. 

(1996), core conditions equivalent to 1-3 are: 

 
(i) )Pr( zZxX ==  is a nontrivial function of z, 

(ii)  Conditional mean independence (CMI): )()( χχ YEzZYE == , 

(iii)  Exclusion restriction: χχ YYz = , 

 
where Yzχ is the joint potential outcome, defined to be the outcome the participant would have obtained 

if her IV was set to z and exposure to χ.  Note that the definition of the Yzχ implies that Z is a causal 

antecedent of X, and so the edge between Z and X in Figure 1 should be directed; see Hernán and 

Robins (2006) for a full discussion of the issue of causal and non-causal IVs.  

 

Two other assumptions are often stated as core conditions within this framework (e.g., Angrist et al., 

1996).  These are that the selection mechanism for Z is ignorable (Rosenbaum and Rubin, 1983), and 

that the stable unit treatment value assumption (SUTVA) holds.  The SUTVA requires that the 

potential outcomes for two or more people are independent, which is also implicit in the definition of 

the structural model, and is a commonly made working assumption.  In randomised experiments, it is 

trivial to assume that Z is ignorable, but generally it is a strong assumption that is sometimes plausible 

only after conditioning on covariates.  In the frameworks defined thus far, selection is ignorable only if 

Pr(Z = z | C = c, U = u, Y = y, X = x) = Pr(Z = z | C = c) or Pr(Z = z | C = c, Yχ = yχ, X = x) = Pr(Z = z | 

C = c).  
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3. Parameter identification 

 

We saw in Section 1 that the ATE is identified under the simple linear structural model (1) provided 

that IV Z satisfies the three core conditions.  In contrast, identification for structural model parameters 

for discrete Y is a more precarious issue.  Chesher (2008) considered this problem and his arguments 

are now summarised.   

 

Identification requires that constraints implied by the model and the IV core conditions are sufficiently 

tight to ensure only one value of the model parameter is determined by the observed data.  In general, 

the structural model is written Y = h(X, U*), where h is some function of the endogeneous covariate X 

and a normalised latent variable U*.  Note that nothing more than this is assumed, and that the 

normalisation of U to be U* ~ Uniform (0,1) is for mathematical convenience, but makes no difference 

in practice: for example, the logistic model can be written Y = I{β0 + Xβ1 + logit(U*) > 0} using the 

integral probability transform.  Within this framework, it has previously been shown that the IV core 

conditions are sufficient for identification if h is strictly monotonic (Chernozhukov and Hansen, 

2005).  However, the restriction on h for discrete Y is that it is weakly monotonic, that is, a step-

function of U* for fixed X.  For the logistic model, conditionally on X = x the step function can be 

written as )}expit({ 10
* ββ xUIY x −−>= , where Ux

∗ is a random variable following the conditional 

distribution of U* given X = x with CDF )Pr()( *

|* ττ ≤= xXU
UxF , which is non-uniform and depends 

on x, and )}exp(1{)exp()expit( aaa +=  is a convenient way to express the mean function of the 

logistic model. 

 

Chesher (2008) shows that the constraints implied by core conditions 2-3 can be written 

 

,)},|),({Pr(

,)},|),({Pr(

,)},|{Pr( *

ττ

ττ

ττ

<=<

≥=≤

==≤

=

=

=

zZXXhYE

zZXXhYE

zZXUE

zZX

zZX

zZX

 

 
which can be expressed as functions of the model parameters and the observed data, namely, the 

conditional distributions of X given Z, and of Y given X and Z.  In the simple double binary case, 

where both X and Z are dichotomous, the structural model is parameterised in terms of its two cut-off 

points, denoted by γ0 = expit(–β0) and γ1 = expit(–β0 –β1).  It is shown that the observed data (non-

parametrically) identify FU*|X(γ0|x = 0) and FU*|X(γ1| x = 1), that is, the data tell us something about one 

point of each conditional CDF.  However, non-parametric identification requires that FU*|X(γ0| x = 1) 

and FU*|X(γ1| x = 0) are also uniquely determined, but Chesher (2008) shows that the data define only 

intervals within which each point must lie.  Therefore, identification comes about only by 

parametrically specifying FU*|X. 
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4. Likelihood-based estimation 

 

From Section 3, we saw that identification of a binary structural model like (4) requires assumptions 

about the conditional distribution of U given X.  A natural way to incorporate such assumptions is to 

use a likelihood function.  The cost is that U given X is unobserved and maximum likelihood (ML) 

estimators can be highly sensitive to incorrect modelling assumptions.  We now review ML estimators 

for probit models with continuous X (Rivers and Vuong, 1988).  Normality has considerable benefits 

in terms of modelling the key assumptions, and guarantees consistency and asymptotic efficiency if 

these assumptions hold. 

 

The probit estimator is based on the following pair of models 

 

,

),0(

10

10

VZX

UXIY

++=
>++=

αα
ββ

      (5) 

 

where the second part of (5) is called the reduced form model, and 
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It is important to distinguish the role played by the reduced-form model here to that for the 2SLS 

estimator.  The linear reduced-form yields a consistent 2SLS estimator, whether or not the true 

reduced-form model is linear, whereas here the reduced-form model encodes additional assumptions 

that implicitly determine the crucial U given X distribution and identify the model.  The ML estimator 

based on the model above is sensitive to this choice and will be inconsistent if it is incorrectly 

specified. 

 

Rivers and Vuong (1988) further considered the properties of two simple estimators for probit models 

analogous to 2SLS.  Both are conditional ML estimators because they involve replacing nuisance 

parameters by consistent estimators thereof (e.g., Severini, 2000).  To recap, stage one involves fitting 

the reduced-form model (5) for X on Z, with stage two depending on which two-stage method is 

chosen: the ‘plug-in’ method involves replacing X in structural model (5) with its predicted value from 

fitting reduced-form model (5); alternatively, the ‘control variable’ method involves including an 

estimate of residual V in (5) as an additional covariate.  Whereas the plug-in and control variable 2SLS 

estimators are equivalent, for probit models the control variable approach has a major advantage: the 

plug-in does not identify the structural parameter (only a scaled parameter is identified), while the 
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control variable method does identify the structural parameters by first identifying σuv (Rivers and 

Vuong, 1988).  A semi-parametric control variable approach has been developed by Blundell and 

Powell (2004) using non-parametric estimation techniques to relax distributional assumptions. 

 

Consistency of both conditional ML estimators hinges crucially on the reduced-form model being 

linear in V.  For this reason, neither the plug-in nor the control variable methods produce consistent 

estimators for discrete X.  For example, suppose X is binary and follows a probit reduced-form model 

X = I(α0 + Zα1+ V > 0) where ),0(~ 2
vNV σ ; then the plug-in estimator is inconsistent because 

]}0)0({[)( 1100 zZUVZIIEzZYE =>+>+++== βααβ , and so the stage-two model cannot be a 

probit regression; similarly for the control variable method.  However, ML estimators can be 

constructed by incorporating this reduced-form model directly into the likelihood, at the cost of losing 

the operational simplicity of the two-stage estimator.   

 

In theory, the likelihood for any parametric model can be specified, but practical difficulties in 

specifying a suitable model occur if either U or V is non-normal.  Despite this, conditional ML 

estimators have been proposed for logistic models.  Palmer et al. (2008) use plug-in and control 

variable approaches for logistic models under a linear reduced-form model for endogenous X.  The 

proposed estimators are developed with respect to the ‘unobserved heterogeneity’ structural model 

(see Section 5.1), rather than the simple structure in (4), for the important special case where the 

unobserved heterogeneity is normally distributed.  However, the authors demonstrate neither estimator 

can be consistent, which is ultimately due to non-normality of U violating the conditions required for 

the stage-two likelihood to be a true conditional likelihood.  Likewise, Nagelkerke et al. (2000) 

construct an IV estimator using arguments analogous to those for the control variable estimator above 

but for discrete X.  This control variable approach is based on an additive error structure for the 

reduced-form model E(X | Z = z, V = v) = E(X | Z = z) + v, which leads to an inconsistent estimator if X 

is binary (see the arguments against this error structure in Section 5.3).  The same estimator was 

considered for binary Y in a simulation study by Ten Have et al. (2003) and its bias was shown to be 

strongly related to the association between X and U. 

 

5. The generalised method of moments (GMM) 

 

5.1. GMM and the unobserved heterogeneity model 

A family of estimators based on the generalised method of moments (GMM) has been developed in 

the econometrics literature.  Johnson et al. (2008) give a concise overview of GMM estimators in a 

statistical context, while Wooldridge (2002, ch.14) gives a more complete account.  GMM estimation 

is a generalisation of the method of moments to allow for one or more endogenous covariates, where 

multiple IVs may be available for each.  Situations involving only one endogenous exposure and one 
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IV are considered here, so strictly speaking only method of moments estimators are considered, but 

this is done without loss of generality. 

 

GMM estimators for non-linear structural models exploit the condition E(U | Z) = E(U) = 0 (which 

implies E(ZU) = 0 as in moment condition (2)).  Thus, to develop a GMM estimator it must be 

possible to express U as the error for a logistic or probit structural model and to substitute this 

expression into the moment condition.  Models satisfying this condition are called ‘mean separable’.  

Linear models are clearly mean separable because u = y – β0 – xβ1.  However, it is clear that the 

structural models for binary Y are not mean separable because they involve the indicator function.   

 

A strategy to obviate the presence of the indicator function is to consider an alternative error structure.  

For instance, the structural model 

 
)0(),,( 10 >+++===== uwxIuUwWxXYEy ββ ,      (6) 

 
is obtained by replacing U in simple structural model (4) with W + U, where W represents omitted 

variables associated with X and Y, and U represents the usual error term associated only with Y.  

Model (6) is called a mixed effects or unobserved heterogeneity model.  If U is assumed to follow a 

logistic distribution then 

 
)expit(),( 10 wxwWxXYE ++=== ββ ,      (7) 

 
recalling that )}exp(1{)exp()expit( aaa += .  Note that (7) does not wholly determine observed 

outcome y, it is the conditional probability that Y = 1 given X and (unobserved heterogeneity) W.  

Unobserved heterogeneity model (7) cannot be represented using the formulation of Chesher (2008) 

discussed in Section 3.  However, as shall become apparent here and further on, this does not solve the 

identification problem for semi-parametric estimators because the resulting mean function is not mean 

separable.   

 

By changing the error structure, the interpretation of β1 in (6) has also changed: it is now the 

conditional log-odds ratio given W = w.  In econometrics, the target parameter for unobserved 

heterogeneity models like (6) is the ‘average partial effect’ (APE) rather than the PE, defined as the 

expected value of the PE over the distribution of W for a fixed value x*.  We now consider two 

approaches exploiting this alternative error structure. 

 

5.2. A rare event approximation  

An exponential mean model is 

 
)exp(),( 10 wxwWxXYE ++=== ββ ,      (8) 
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which is used for constructing estimators for the risk ratio for non-negative Y (see Angrist (2001) and 

Section 8).  If the outcome event probability is reasonably considered to be ‘small’, then this is 

superficially a reasonable approximation for logistic model (7).  Once more, GMM estimators have 

already been applied to endogenous Poisson regression models with exponential mean functions; for 

example, Mullahy (1997) constructs an estimator based on the ‘multiplicative’ moment condition 

 

0)
~

(0)
~

( =⇒== UZEzZUE ,     (9) 

 

where 1)exp(
~

1 −−−= βα XYU  and α = β0 + log[E{exp(W)}].  Under regularity conditions, the GMM 

estimator is consistent for α  and relative risk β1, but not β0.  However, the confounding of β0 poses no 

problem if one targets the APE, which equals exp(α){exp(β1) – 1} under exponential mean model (8). 

 

It would appear to follow that an estimator based on (9) is a sensible way to proceed if the event 

probability is rare.  However, if we assume that exp(β0 + xβ1 + w) ∈ (0, δ) for all (x, w) for some fixed 

(β0, β1) where δ is close to zero, then 

 

)()
~

( δOzZUE == , 

 
under logistic model (7), which indicates that the moment condition error is of the same order as the 

event probability itself.  Contrast this with the situation if X is exogenous: if exponential mean model 

(8) is true then a consistent estimator comes from the ‘additive’ (i.e. Poisson first-order) moment 

condition 0})exp({ 10 ==+− xXXYE ββ .  Under the logistic model (7),  

 
)(})exp({ 2

10 δββ OxXXYE ==+− , 

 
in other words, the moment condition error is an order smaller than the event probability itself.  (See 

Appendix 1 for a more detailed argument.)  It follows from this that, if X is endogenous, the bias of the 

estimator will increase quickly as the event becomes less rare.  Conversely, in cases where the bias is 

small then the outcome event must be very rare, thus requiring large sample sizes to ensure the 

estimator is accurate and has an approximately normal sampling distribution. 

 

5.3. Additive error structure approximation 

Johnson et al. (2008) propose a GMM estimator based on 

 
wxwWxXYE ++=== )expit(),( 10 ββ .      (10)  

 
The moment conditions follow from substituting the residual into moment conditions E(W) = E(ZW) = 

0.  However, the structural model implied by this model is implausible because the support of W is 
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bounded by X (i.e., –expit(β0 + xβ1) ≤ w ≤ 1 – expit(β0 + xβ1)), and so (10) is structurally implausible 

because it contradicts the implicit assumption that W is causally antecedent to X and Y.  Another 

criticism is that the effect of the omitted variables is not ‘symmetric’ in the sense that the effect on Y 

of omitted W is on a different scale to that of X (Mullahy, 1997). 

 

Johnson et al. (2008) do not argue that (10) is plausible, but that it is a first-order approximation of 

unobserved heterogeneity model (7); that is, expit(β0 + xβ1 + w) ≈ µ(x) + wυ, where µ(x) = expit(β0 + 

xβ1), )}(1){( xx µµυ −=  and )(XEx = , which is based on two successive first-order Taylor series 

expansions: first an expansion of expit(β0 + xβ1 + w) around w = 0, and second of µ(x){1 – µ(x)} 

around xx = .  However, the first-step approximation here is poor: consider the first approximation 

but do not drop the second-order term, then the moment condition becomes 

 

].2)}(21)}{(1){()}(1){([

})(){expit(})({
2

10

zZXXXWXXWE

zZXWXEzZXYE

=−−+−=

=−++≈=−

µµµµµ

µββµ
 

 
Clearly, to equal zero this approximation depends heavily on independence between X and W, and the 

W2 term indicates that second-order moments including the variance of W must also be small.  The 

second-step of the approximation is additionally restrictive, and taken together rules out GMM based 

on (10) as a good approximation in general. 

 

6. The marginal estimator 

 

In this section, we consider estimators based on the potential outcomes approach, namely, marginal 

structural models, and go on to consider estimators based on structural mean models in Section 7.  As 

discussed in Section 2.2, we treat both of these approaches as semi-parametric because neither 

involves full parametric specification of U in the structural model.  We now consider the behaviour of 

these potential outcomes estimators under the structural models already introduced, simple model (4) 

and unobserved heterogeneity model (6).  If identification and consistency cannot be obtained under 

such simple models, we argue that these estimators are not generally identified, at least without further 

(possibly application-specific) assumptions. 

 

Ten Have et al. (2003) propose a ‘marginal’ estimator based on a marginal structural model (MSM) 

for binary outcomes.  Generally, a MSM has the form )()( χψχ gYE =  (e.g., Robins et al., 2000; 

Hogan and Lancaster, 2004).  Ten Have et al. (2003) consider the logistic MSM 

 
)expit()( 10 χψψχ +=YE ,      (11) 
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recalling that χ is used to denote that exposure has been set by external intervention rather than by the 

selection mechanism that generated the study data.  Dependence on covariates comes through 

extending (11) to include C in the linear predictor, with the proviso being that the effect of exposure in 

(11) is now covariate-conditional.  Due to (11) (and its probit equivalent) being non-collapsible (e.g., 

Greenland et al., 1999), this effect does not equal the population effect of X, which can only be 

estimated by averaging the covariate-conditional effects over the sample covariate distribution. 

 

The marginal estimator comes from the moment condition 

 

0]
~

)}([{ =− UZEZE ,      (12) 

 

where )(
~

XgYU ψ−=  is the MSM ‘residual’.  Clearly, this approach is analogous to the GMM 

estimator from Section 5.2: if U
~

 is a residual such that 0)
~

( =UE  then (12) is analogous to solving 

0)
~

( == zZUE  and hence 0)
~

( =UZE .  Ten Have et al. (2003) proposed that (12) holds for an 

unobserved heterogeneity model (6) with only two further relatively weak conditions on the IV.  

Before inspecting this result more closely, we shall make some observations. 

 

Strictly, the only distributional assumptions about U and W made by unobserved heterogeneity model 

(6) (or whatever error structure is assumed) are that the underlying structural model leads to (11) 

following integration.  However, Ten Have et al. (2003) assume that U in (6) is logistic to obtain a 

logistic unobserved heterogeneity model (7).  Generally, this model is non-collapsible, so their 

solution was to choose normal W because the resulting MSM (11) is approximately logistic.  In fact, 

this is an unnecessary restriction because it is done to keep the parameters of conditional model (7) as 

target parameters.  The parameters of MSM (11) are simply those of a marginal model, and their 

relationship with those of conditional (on W) model (7) is analogous to that between ‘cluster-specific’ 

and ‘population averaged’ models (e.g., Neuhaus et al., 1991).  Nothing has been lost by this change 

of focus: ψ1 is directly interpretable as the causal odds ratio (or covariate-conditional causal odds 

ratio) and thus a more appropriate target parameter than β1 in (7).  

 

Returning to consistency, close inspection of the consistency proof by Ten Have et al. (2003) reveals 

that either of two further strong conditions are required, namely, X ╨ W | Z or E(Yχ | W = w) = E(Yχ) (╨ 

is the symbol for conditional independence).  We present a formal result and a justification of this in 

Appendix 2.  Both of these conditions correspond to X being exogenous, and so consistency is 

obtained only in trivial circumstances.  In essence, without either of these conditions holding it follows 

that 0)
~

( ≠= zZUE , and so U
~

 is not a ‘proper’ residual and the analogy with the GMM estimator 

breaks down.  In practice therefore, the marginal estimator is at best an approximation.  The 
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simulation results presented by Ten Have et al. (2003) demonstrate that the bias depends on the 

association between X and W and between W and Y, and this is not simply finite sample bias. 

 

7. Structural mean models (SMMs) 

 

Structural mean models (SMMs) are a class of semi-parametric models for estimating causal 

parameters for the exposed population, which were originally developed for the analysis of 

randomised controlled trials affected by non-ignorable non-compliance (e.g., Robins, 1989; Robins, 

1994; Hernán and Robins, 2006).  Vansteelandt and Goetghebeur (2003) introduced the family of 

generalised SMMs that includes logistic and probit SMMs as special cases along with a class of 

estimators for these models; Robins et al. (1999) originally proposed the logistic SMM.   

 

Generally, a SMM has the form 

 

),()},({)},({ 0 zxzZxXYEbzZxXYEb ψη===−== , 

 

where b(a) is a link function and ),( zxψη  is a parametric function constrained such that ),0( zψη  = 0 

for all z.  Covariates C are included by a suitable specification of η, which is often parametric to 

prevent the ‘curse of dimensionality’ leading to poorly performing estimators.  SMMs are most easily 

explained for the special case where X and Z are both binary, and so X and Z are taken to be binary 

throughout this section.  Three examples of saturated SMMs with one parameter for each combination 

of (x, z) are given below: 

 

Example 7.1a: The additive SMM is 

 
a
zxzZxXYEzZxXYE ψ===−== ),(),( 0 . 

 
It follows that ),1ATE(),1(),1( 01 zZXzZXYEzZXYEa

z =====−===ψ , namely, the ATE 

among the exposed population with Z = z. 

 

Example 7.1b: The multiplicative SMM is 

 
m
zxzZxXYEzZxXYE ψ===−== )},(log{)},(log{ 0 . 

 
It follows that ),1CRR()exp( zZXm

z ===ψ , namely, the CRR among the exposed population 

with Z = z. 

 

Example 7.1c: The logistic SMM (Vansteelandt and Goetghebeur, 2003) is: 



 16 

 
l

zxzZxXYEzZxXYE ψ===−== )},(logit{)},(logit{ 0 . 

 
It follows that ),1COR()exp( zZXz ===lψ , namely, the COR among the exposed population 

with Z = z. 

 

The SMM estimator comes from exploiting the moment conditions implied by the randomisation, or 

conditional mean independence (CMI), assumption (core condition ii).  From the CMI assumption, it 

follows that 

 

,0)}0,({)}1,({  

)()}0,({)}1,({

00|01|

00
0|

0
1|

==−=⇒

====

==

==

ZXYEEZXYEE

YEZXYEEZXYEE

ZXZX

ZXZX
      (13) 

 
where E(Y0 | X = x, Z = z) = b–1[b{ E(Y | X = x, Z = z)} – xψz], with superscripts dropped here to 

indicate generic parameters for any of the SMMs presented above. 

 

An important assumption regarding SMMs is that of ‘no effect modification by Z’ (NEM) or ψz = ψ.  

Without the NEM assumption the SMM estimator is not identified (Robins and Rotnitzky, 2004).  The 

crucial importance of this assumption shall be considered again further on.  Estimators for the three 

SMMs considered in Example 7.1 under the NEM assumption are given below: 

 

Example 7.2a: For the additive SMM in Example 7.1a, the SMM estimator can be written 

 

)0()1(

)0()1(
ˆ

=−=
=−=

=
ZXEZXE

ZYEZYE
aψ , 

 
which equals the classical IV estimator from Section 1 in the case where both X and Z are binary.   

 

Example 7.2b: For the multiplicative SMM in Example 7.1b, the SMM estimator comes from 

solving 

}1)exp({}0)exp({ =−==− ZXYEZXYE mm ψψ .      (14) 

 

Hernàn and Robins (2006) note that (14) has a closed form solution (see also Angrist (2001, 

eq.21)), given by 

}0)1{(}1)1{(

)0()1(
)ˆexp(

=−−=−
=−=

=
ZYXEZYXE

ZXYEZXYE
mψ .      (15) 

 

Example 7.2c: For the logistic SMM in Example 7.1c, the SMM estimator comes from solving 
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])}1,(t{expit[logi])}0,(t{expit[logi

1|0|

ll ψψ XZXYEEXZXYEE
ZXZX

−==−=
==

,      (16) 

 
which does not have a closed-form solution. 

 

An important distinction between the SMMs for binary Y (logistic and probit) and other SMMs is that 

the moment condition is not a function of the observed data (Y, X, Z) alone, and so cannot be estimated 

using the usual SMM estimators (Robins, 1999).  SMMs for binary Y depend additionally on the 

‘association model’ E(Y|X = x, Z = z).  In fact, this dependence on the association model for 

identification can be seen as a semi-parametric expression of the result in Section 3: for example, 

under structural model (4) the association model is 

 

,),|(),(

),|(

),,|(),(

,|

,|

,|

∫ ===

==

=====

==

==

u
ZXU

zZxXU

zZxXU

zxudFuUxXYE

UxXYEE

zZUxXYEEzZxXYE

  

 
where FU|X,Z(u | x, z) = Pr(U ≤ u | X = x, Z = z).  In other words, identification depends on specification 

of U given X and Z (and hence U given X because FU|X(u | x) = E{ FU|X,Z(u | x, Z) | X = x}). 

 

Vansteelandt and Goetghebeur (2003) developed an estimator for the logistic SMM that takes 

advantage of user-specified parametric assumptions about the association model.  For the simple 

saturated models considered here, this identifying restriction is not particularly strong, but generally, 

and particularly if covariates are introduced, parametric assumptions on the association model are 

required to avoid the curse of dimensionality and are thus more important.  The simplest example of 

such an estimator is based on a logistic SMM and a logistic association model, and so is called ‘double 

logistic’ by Vansteelandt and Goetghebeur (2003).  

 

7.1. The connection between SMM and GMM estimators 

There is a close correspondence between the SMM estimators and the GMM estimators introduced in 

Section 5, which while obvious for linear models deserves elaboration for the non-linear case.   

 

First, consider the link between the moment conditions of the multiplicative SMM and the 

multiplicative GMM moment condition (9) if exponential structural model (8) is true.  Under 

exponential mean model (8), )exp()}{exp()( 00 αβ =+= WEYE  where α is defined in (9).  Now 

consider the moment conditions for the multiplicative SMM, and use the first expression of the CMI 

assumption from (13); substituting gives  

 
)exp(})exp({ αψ ==− zZXYE m , 
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which leads immediately to multiplicative GMM moment condition (9) because 

0}]1)exp({[0}1)exp({ =−−−⇒==−−− mm XYZEzZXYE ψαψα .   

 

Generally, rather than the structural model residual used by GMM, the SMM estimator is based on 

another residual.  For the logistic SMM, the residual is E(Y0 | X, Z = z) – E(Y0) = E(Y0 | X, Z = z) – E(Y0 

| Z = z) = 0, whereas the multiplicative SMM is based on E(Y0 | X, Z = z)/E(Y0 | Z = z) – 1 = 0.  The first 

of these residuals can be regarded as that of a (non-linear) projection of Z onto Y0, whose expectation 

over X given Z is zero.  The second has the same interpretation but works on a multiplicative scale.  

Under the SMM, the residual can be written as a function of model parameters and observed data, and 

a consistent estimator derived if the moment conditions ensure identification.   

 

For Z with a large finite or infinite support set, the system of SMM moment conditions is given by 

)()( 2010 zZYEzZYE ===  for all observed z1 ≠ z2 in the support.  The large number of resulting 

moment conditions is clearly problematic for constructing an estimator.  One way forward is thus to 

take an approach analogous to GMM by defining a structural model for E(Y0), which permits 

construction of the projection residual like that just discussed (i.e., where 0)
~

( =ZUE ), from which it 

follows that an estimator can be based on the moment condition 0)
~

( =UZE  (or some variation 

thereof).  Before this approach can be considered for binary Y, however, more germane problems of 

parameter identification must be overcome.     

 

7.2. Binary structural models, effect modification, and identification 

To be useful, any SMM must be congenial with a sensible structural model.  For example, if the 

exponential mean model (8) holds then we would expect the multiplicative SMM moment conditions 

to produce a consistent estimator.  Indeed, this is the case under model (8): 

 

),1CRR(
)}{exp()exp(

)}{exp()exp(

)}{exp()exp(

)}{exp()exp(
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because clearly the expectations of exp(W) cancel out.  Thus, the NEM assumption holds whatever the 

selection mechanism, and so )exp()exp( mm
z ψψ =  (and the additional benefit that CRR(X = 1) = CRR 

= exp(β1)).  Unfortunately, the situation for binary structural models is much less positive.  Consider 

either simple structural model (4) or unobserved heterogeneity model (6).  In the latter case, the 

multiplicative SMM does not satisfy the NEM assumption because  

 

)}{expit(
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β
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depends on Z unless trivially W ╨ Z | X = 1 (╨ is again the conditional independence symbol).  

Similarly, the logistic SMM does not satisfy the NEM because COR(X = 1, Z = z) depends on z too, 

with the same results holding for structural model (4).  The same problem as with GMM is thus 

apparent: W is not mean separable for logistic (or probit) structural models, and so it follows that 

neither the additive, multiplicative nor the logistic SMMs identify their respective causal effects 

among the exposed due to failure of the NEM.  Neither the additive, multiplicative nor logistic SMMs 

are identified because the NEM assumption fails.  Didelez et al. (2008) demonstrate inconsistency of 

the multiplicative SMM for binary Y in an extensive numerical study. 

 

Robins and Rotnitzky (2004) investigate the identification of SMMs for binary Y, highlighting the key 

role played by the NEM assumption.  At a fundamental level, the NEM assumption is required to 

reduce the number of unknowns: for example, in the simple example above, without the NEM 

assumption there are two unknowns (ψ0, ψ1) but only one moment condition.  Furthermore, although 

only simple structural and reduced-form models have been considered here, we do not believe that 

plausible structural models for binary Y exist satisfying the NEM assumption.  This opinion  is 

supported elsewhere: “[the NEM] assumption is unrealistic because [the exposed] subpopulations 

[defined by Z] are likely to be quite different with regard to modifiers of the effect of active treatment 

on the outcome of interest” (Robins and Rotnitzky, 2004, p. 778). 

 

Robins and Rotnizky (2004) show that identification can be obtained by constraining one or more of 

the ψz parameters.  For example, in the randomised clinical trial context, the treatment restriction “no 

treatment among the controls” corresponds to forcing Pr(X = 0 | Z = 0) = 1, and has been used in a 

number of studies (e.g., Nagelkerke et al., 2000; Ten Have et al., 2003; Vansteelandt and 

Goetghebeur, 2003, 2005).  Under this ‘treatment restriction’ assumption, ψ1 is identified because ψ0 

is fixed (at an extreme value corresponding to a non-existent effect), even if the NEM assumption does 

not hold.  However, while reasonable for many randomised controlled trials, the exposure restriction 

assumption is too strong for observational studies. 

 

7.3. An alternative estimator 

Robins and Rotnitzky (2004) propose an estimator that addresses this identification problem.  It is 

based on an alternative parameterisation of the association model.  Semi-parametric theory is used to 

find the influence functions for a regular asymptotically linear estimator of the SMM parameters and 

of a parametric model for the observed data (Y, X, Z).  As with the covariance estimators for the 

SMMs, a semi-parametric covariance estimator is used to allow for non-normality of these estimators 

in finite samples (e.g., Robins and Ritov, 1997).  The estimator involves two stages: the first stage is 

crucial because it identifies the (non-SMM) nuisance parameters using parametric assumptions in 

much the same way as maximum likelihood, while stage-two allows semi-parametric specification of 
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the SMM.  Semi-parametric consistency and efficiency is obtained only if the modelling assumptions 

are correct. However, unlike maximum likelihood estimators, these estimators are ‘locally robust’ in 

that one can test for ψz = 0 even if the parametric models are misspecified, although the power of this 

test will be compromised by misspecification. 

 

8. Monotonic selection 

 

Given the problems encountered with binary Y thus far, it remains to clarify what actually can be 

estimated without fully specifying parametric structural and reduced-form models.  A possible 

approach is to assume that selection is monotonic in Z.  To define monotonic selection, it is necessary 

to define the potential outcome Xi(z) ≡ Xz (c.f. Section 2.2).  In the case of binary Z and X, the study 

units fall into one of four groups: 

 
1. Compliers: X0 = 0 and X1 = 1. 

2. Always-takers: X0 = 1 and X1 = 1. 

3. Never-takers: X0 = 0 and X1 = 0. 

4. Defiers: X0 = 1 and X1 = 0. 

 
Note that these groups are defined using what the study unit would have selected if its IV had taken 

another value, and so is an unobservable counterfactual.  A monotonic selection mechanism requires 

that Xz is a non-decreasing function of Z (or non-increasing, depending on the labelling).  In this 

example, monotonic selection implies the set of defiers is empty with probability one. 

 

The reduced-form model for binary X is clearly a special case of the general class of monotonic 

selection mechanisms because )0( 10 >++= VzIX z αα  implies that X1 ≥ X0 or X1 ≤ X0, depending on 

the sign of α1.  However, a heterogeneous effect version, corresponding to the data generating process 

}0)1()0({ 1010 >=+=++= VzIVzIzIX z αα , where Vz is drawn differentially depending on Z, is not 

monotonic. 

 

Without including covariates, the additive SMM estimator is consistent for the ‘local’ ATE (LATE), 

defined )(LATE 0101 XXYYE >−= , if selection is monotonic (Imbens and Angrist, 1994; Angrist et 

al., 1996); this parameter is also known as the ‘complier’ average causal effect (CACE).  The 

parameter is local because the conditioning set refers to the complier group consisting of those whose 

selection was modified by the IV.  Previously, the IV estimator has been considered together with the 

linear structural model (1), where it was shown to be consistent for the ATE rather than the LATE.  

Identification of the ATE is achieved in this case by assuming model (1) is linear, and additionally that 

1)0()1( β=− ii YY  for all i (using the notation from Section 2.2).  Imbens and Angrist (1994) showed 

that the IV estimator is consistent for the LATE without either of these assumptions if selection is 
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monotonic.  Hence, the LATE can be identified if Y is binary using these assumptions under 

monotonic selection.   

 

In the same way, Angrist (2001) showed that multiplicative SMM (15) is consistent for the local CRR, 

defined )()(LRR 010011 XXYEXXYE >>= .  In contrast, the logistic SMM estimator is inconsistent 

for the local COR (LOR) unless the additional assumption that E(Y1 | X1 > X0) = E(Y1 | X1 = X0 = 1) is 

made (see Appendix 3).  Such an assumption is no less heroic than NEM and so is of little practical 

use.  However, Abadie (2003, eqs.3-4) shows that a consistent estimator for the LOR is 

 

}]0)1)(1{(}1)1)(1{([}]0)1{(}1)1{([

}]0)1{(}1)1{([)}0()1({

=−−−=−−=−−=−
=−−=−=−=

ZYXEZYXEZYXEZYXE

ZXYEZXYEZYXEZYXE
. 

 

Hence, local averages with causal interpretations can be identified under monotonic selection.   

 

If covariates are included, Abadie (2003) proposes a weighted estimator to identify the parameters of 

the local average response function E(Yx|X = x, C = c), i.e., including covariates, either semi-

parametrically via least-squares or parametrically using maximum likelihood.  Estimates of the 

(covariate-conditional) LATE, LRR or LOR can then be constructed using this approach.   

 

Imbens and Rubin (1997) set out a Bayesian framework for estimation of treatment effects among the 

complier, always-taker and never-taker groups under a monotonic selection mechanism.  Widening the 

focus from effects in the complier group (LATE) to all three non-defier groups is achieved by 

incorporating parametric assumptions.  Hirano et al. (2000) apply these ideas, and extend them to 

allow for covariates, to a randomised controlled trial with binary outcomes. 

 

9. Discussion 

 

In this paper, we have brought together estimators for causal effects involving binary outcomes from 

structural modelling and potential outcomes frameworks by treating the potential outcomes models as 

semi-parametric structural models.  Thus, our focus is on non-ignorable selection mechanisms as they 

are conceptualised in applied disciplines like epidemiology and economics, i.e., driven by unobserved 

confounders or omitted variables correlated with the exposure.  The crucial result regarding non-

identification is due to Chesher (2008), who has shown that the identification problem affects all 

structural models for discrete outcomes, and estimators must incorporate further modelling 

assumptions to identify causal effects.  We have explicated the implications of this result for semi-

parametric estimators within our framework. 
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As is well known, ML estimators achieve identification through additional specification of the 

reduced-form model relating X and Z (and C).  Unlike the 2SLS case for linear models, the reduced-

form model is crucial to ML estimator consistency: the choice of logistic or probit structural model is 

thus now crucial, as well as the specification of the reduced-form model.  The normal distribution has 

attractive properties conducive to a tractable, well-behaved ML estimator that can be fitted using 

software such as Stata (StataCorp, 2007).  More generally, the flexibility of likelihood methods is 

limited only by the modelling tools at ones disposal and the computational issues faced.  Normality is 

also crucial to conditional likelihood methods, and consistency of the control variable two-stage probit 

estimator.  However, consistent conditional likelihood estimators can be inefficient, and cannot be 

derived at all if X is discrete, which unfortunately includes the important binary exposure case. 

 

GMM estimators cannot be consistent because models for binary Y are not mean separable.  Simply 

assuming the model residual is additive or multiplicative with respect to the mean function is 

structurally implausible because it implicitly assumes the support of U depends on X, despite an 

implicit assumption of the analysis being that U is a causal antecedent of X.  Extending the error 

structure to two latent variables U and W fails to overcome this problem because the resultant mean 

functions are not mean separable.  Johnson et al. (2008) argue that the GMM estimator is valid under 

certain conditions, but we show that these conditions are too restrictive in practice to yield a useful 

estimator.  Another approach if the outcome event is rare is to approximate the logistic mean function 

with an exponential mean model.  However, we argue that the multiplicative GMM estimator is 

consistent only for very rare outcomes (and so requires very large sample sizes) and that its accuracy 

deteriorates quickly as the event probability increases. 

 

In Sections 6 and 7, two estimator classes based on the potential outcomes framework were 

considered.  The marginal estimator proposed by Ten Have et al. (2003) is seen to be closely related to 

the GMM estimator.  It is based on a ‘pseudo’-residual from a suitable marginal structural model, but 

we have shown that it is only consistent if X is exogenous.  The SMM estimators are potentially 

consistent for causal parameters defined among the exposed population, but identification hinges on 

the no effect modification (NEM) by Z assumption (Robins and Rotnitzky, 2004).  We highlighted 

how the SMM estimator is a special case of GMM based on a suitably defined residual, but that the 

NEM assumption does not hold even for simple structural models for binary Y.  As with GMM, non-

identification and the failure of the NEM assumption come about due to the binary structural model 

not being mean separable.  Identification through treatment-restrictions like no treatment among 

controls is only plausible for some randomised controlled trials, and almost certainly implausible for 

observational studies. 

 

In the absence of parametric assumptions, a more realistic aim is to focus on local parameters under 

the assumption of a monotonic selection mechanism.  Imbens and Angrist (1994) show how the 
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classical IV estimator can always estimate the local average causal effect, no matter what the structural 

model (including no linearity or causal effect heterogeneity restrictions), provided that selection is 

monotonic.  The monotonicity assumption is unverifiable and has attracted severe criticism (Dawid, 

2000), but it is possibly less controversial if viewed as placing a very general restriction on the 

reduced-form model.  Local estimators including exogenous covariates can be constructed from 

theorem 3.1 of Abadie (2003).  Van der Laan et al. (2007) has proposed another approach by defining 

alternative target parameters, and constructs estimators for these using semi-parametric estimating 

equations. 

 

Finally, it is important to recognise that not all researchers will accept the framework within which 

potential outcomes models are taken to be semi-parametric structural models.  We feel that the 

challenge for applied researchers is to make assumptions about the structural model and selection 

process that are grounded in substantive knowledge of their studies, and that our framework is the 

most obvious and transparent way in which to do this.  Certainly, it is possible that identification can 

be obtained for potential outcomes models based on alternative assumptions, such as equating 

outcome averages for compliers and non-compliers (e.g., Ten Have et al., 2003); but the challenge to 

the researcher is then to posit plausible structural and selection models satisfying these assumptions, 

rather than to make them for mathematical reasons alone.    

 

Appendix 1: Rare event approximation 

Suppose that we wish to use the rare event approximation 

)exp()expit(),( 1010 wxwxwWxXYE ++≈++=== ββββ , 

and construct a GMM estimator based on moment condition (9).  In other words, let  q(x,w) = exp(β0 + 

xβ1 + w), take (β0, β1) to be fixed and set E{exp(W)} = 1 ⇒ α = β0.  Assuming that all q(x,w) ∈ (0, δ), 

rewrite (9) as 
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Now write expit(β0 + xβ1 + w) = q/(1 + q), where q = q(x,w); a second-order Taylor series expansion 

of q/(1 + q) around q = 0 gives 
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for small q.  We can ignore the remainder term and it follows that 
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where δδ =≤= )()( WW eEzZqeE  and so the error is O(δ).  In other words, the moment condition is 

only as accurate as the event probabilities are rare.  Contrast this with the exogenous case, where the 

additive moment condition error is 
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which is an order smaller than the rare event approximation itself. 

 

Appendix 2: Consistency of marginal estimator 

Result 1: Suppose MSM E(Yχ) = gψ(χ) is obtained under some structural model such as (7), where Yχ 

= hψ(χ,w,u), E(Yχ | W = w) = kψ(χ,w) and (U, W) follow some unspecified joint distribution.  Then 

consider the conditions: (i) Y =  YX = ∑x I(X = x)Yx; (ii) W ╨ Z; (iii) E(Yχ | X, W, Z) = E(Yχ |W, Z); (iv) 

X ╨ W | Z; and (v) kψ(χ,w) = gψ(χ).  If either (a) conditions (i-iii,iv) hold, or (b) conditions (i,iii,v) 

hold, then moment condition (12) is true; otherwise it does not. (Note that ╨ is the symbol for 

conditional independence here.)   

 

Proof: We suppose that Yχ ≡ E(Yχ | W = w, U = u) = h(χ, w, u) is structural model (7), such that h(χ, w, 

u) = E(Y | X = χ, W = w, U = u) = Y, E(Yχ | W = w) = E{ h(χ, w, U)| W = w} = kψ(χ, w) and E(Yχ ) = 

E{ kψ(χ, W)} =  gψ(χ) is the MSM.  The expected value of the inner part of the estimating equation 

conditional on Z is 
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To show (a), consider the second term of the right-hand side: 
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and so it follows that E{ Y – gψ(X) | Z = z} = 0, as required provided gψ(χ) is correct. 

 

To show (b) follow Ten Have et al. (2003, appendix A), who give an alternative proof assuming only 

(i) and (iii).  Following their argument 
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which is zero if condition (v) holds, that is, kψ(χ, w) = gψ(χ), or if condition (iv) holds.  By inspecting 

the first equality of (A4) in Ten Have et al. (2003), it can be seen that their proof makes this unstated 

assumption. 

 

Appendix 3: Identification of the LOR by the logistic SMM 

To show this, let ψψ ˆˆ =l  and write the generalised SMM estimator of Vansteelandt and Goetghebeur 

(2003) as 
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where b(a) = logit(a).  Expanding 
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and rewriting as 
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similar arguments to those used for the proportional LATE gives 
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It can clearly be seen that, because b is a non-separable function, generally the left-hand side is 

determined by ‘always takers’ as well as compliers and cannot admit a local interpretation (because 

E(Y1 | X0 = 1) = E(Y1 | X0 = X1 = 1)  and  E(Y1 | X1 = 1) = Pr(X0 = 0 | X1 = 1)E(Y1 | X1 > X0) + Pr(X0 = 1 | 

X1 = 1)E(Y1 | X0 = X1 = 1)). 

 

An exception to this rule is if the further condition that complier and ‘always-taker’ Y1-averages are 

equal, namely, E(Y1 | X1 > X0) = E(Y1 | X0 = X1 = 1), under which 
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because Pr(X1 = 1) – Pr(X0 = 1) = Pr(X1 > X0) = E(X1 – X0) under monotonicity. 
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Figure 1: A directed acyclic graph representing conditional independence relationships implied by a 
structural model for Y given X and U and a non-ignorable selection mechanism, along with the core 
conditions that must be satisfied by instrumental variable Z.  Each node represents a variable (square 
nodes are observed and circular nodes are unobserved variables) with edges between variables 
denoting pairs that are not conditionally independent.  Directed edges with arrows indicate causal 
direction, and undirected edges indicate an association about which no causal direction is assumed. 
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Glossary of important terms 
 
Term Definition 
Random variables Y, X, C, Z • Y (binary) outcome 

• X exposure/treatment of interest 
• C observed confounders/exogenous 

covariates 
• Z instrumental variable (IV) 

Structural model (simple) Parametric model for how Y is determined by X, 
C and U, where U represents unobserved 
confounders/omitted variables associated with X. 

Structural model (unobserved heterogeneity) As above except Y is determined by X, C, U and 
W, where U now represents omitted variables 
associated only with Y, and W represents the 
unobserved heterogeneity term associated with 
both Y and X. 

Partial effect (PE) 
PE(x*) = 

*
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xx

cx
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∂ µ  

The mean function ),(),( cCxXYEcx ===µ  

is derived under a structural model. 
Average partial effect (APE) 

APE(x*) = 

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The mean function 

),,(),,( wWcCxXYEwcx ====µ  from a 

structural model with unobserved heterogeneity. 
Method of moments/Generalised method of 
moments (GMM) 

Estimating equations derived from moment 
conditions E(U) = E(ZU) = 0 (or E(U) = E(U | Z) 
= 0) which produce consistent estimators of 
structural parameters if regularity conditions 
satisfied. 

Mean separable A structural model is mean separable if its 
residual U can be written as a function of the 
structural model parameters and observed data. 

Potential outcomes Y(χ) or Yχ : the value of Y which would have been 
observed if the exposure has been set to χ by 
external intervention.  The joint potential 
outcome Y(z, χ) additionally allows the value of Y 
to vary if the IV is also set by intervention.  Used 
in conjunction with definition of X(z) or Xz to 
define local parameters (section 8). 

Exclusion restriction An essential property of an IV stating that it must 
only be associated with Y through X, or 
alternatively, Y(z, χ) = Y(χ). 

Marginal structural model (MSM) A potential outcome model for E(Yχ | C). 
Structural mean model (SMM) A potential outcome model parameterised in 

terms of causal parameter defined conditionally 
on X, C and Z; e.g., a multiplicative SMM is 
parameterised in terms of the logarithms of causal 
risk ratios among the exposed group for each 
level of Z. 

No effect modification (NEM) Under NEM, the SMM parameters do not depend 
on the IV. 

 




