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Abstract

The estimation of exposure effects on study outcomes is ailmost always complicated by non-random exposure
selection - even randomised controlled trials can be affected by participant non-compliance. If the selection
mechanism is non-ignorable then inferences based on estimators that fail to adjust for its effects will be
misleading. Potentialy consistent estimators of the exposure effect can be obtained if the data are expanded to
include one or more instrumental variables (1Vs). An IV must satisfy core conditions constraining it to be
associated with the exposure, and indirectly (but not directly) associated with the outcome through this
association. Here we consider 1V estimators for studies in which the outcome is represented by a binary
variable. While work on this problem has been carried out in statistics and econometrics, the estimators and
their associated identifying assumptions have existed in the separate domains of structural models and potential
outcomes with almost no overlap. In this paper, we review and integrate the work in these areasand reassess the
issues of parameter identification and estimator consistency. Identification of maximum likelihood estimators
comes from strong parametric modelling assumptions, with consistency depending on these assumptions being
correct. Our main focus is on three semi-parametric estimators based on the generalised method of moments,
marginal structural models and structural mean models (SMM). By inspecting the identifying assumptions for
each method, we show that these estimators are inconsistent even if the true model generating the datais simple,
and argue that this implies that consistency is obtained only under implausible conditions. Identification for
SMMs can aso be obtained under strong exposure-restricting design constraints that are often appropriate for
randomised controlled trials, but not for observational studies. Finally, while estimation of local causal
parameters is possible if the selection mechanism is monotonic, not all SMMsidentify alocal parameter.
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1. I ntroduction

The estimation of exposure effects on study outsoimealmost always complicated by non-random
exposure selection: it is rare even for randomisadrolled trials to be perfectly conducted, uspall
being affected by, for example, participant non-pbamce. If the selection mechanism is non-
ignorable then inferences based on estimatorsfaiiab adjust for its effects will be misleadindn
epidemiology, the impact of non-ignorable selecimtermed ‘confounding’ bias due to confounding
variables associated with both outco¥hand exposur&. The usual strategy is to adjust for this bias
by including all observed confounding variabl€s but the impact of unobserved confounding
variables is often thought to be problematic. doremics, the problem is commonly framed as that
of a regression model from which variables havenbmmitted. If the exposure is ‘exogenous’ then
none of the omitted variables are associated wiosure X. However, if this assumption is
implausible then the exposure is instead said tdehdogenous’. An endogenous exposXrés
associated with the model error term, possibly eafegr conditioning on other available covariates

In either the unobserved confounding or endogemog®sure set-ups, the effect Xfon Y is not
identified without further information being introded into the analysis. A widely used approach in
economics is to introduce an instrumental varigll® Z that is associated witlX, but is only
associated witly indirectly through its association with Vs are also used in disciplines other than
economics: for example, there has recently beemtgmerest in the use of genetic IVs in
epidemiology to exploit the idea of ‘Mendelian randsation’ (e.g., Lawloet al., 2008); and in the
analysis of randomised experiments with non-compka the IV is randomisation indicatat

indicating the experimental group to which eaclt iswandomised (e.g., Angristal., 1996).

We begin by reviewing IV estimators for linear reggion models. The highest objective of
regression analysis is to estimate the ‘causadcefdf the exposure (i.e., what happens if we caahg
while holding everything else fixed) rather thamply its association witly. Thus, we view the
regression model as ‘structural’ in that its parerehave a causal interpretation (e.g., Goldberger

1972). An example of a simple linear structuraldelas Y = S, + Xf3, +U , whereC is omitted for

notational simplicity andJ represents the error term, or the combined eféécall the omitted
variables. In this modef3, represents the effect ohof a unit increase iX while holdingU fixed.
To connect the structural model from economics wilik potential outcomes approaches used

elsewhere, it is useful to write this model as

y=E(Y|X =x,U =u)

=B, +XB, +, )

following a notation similar to that of Pearl (20@.5). This notation makes clear tBaY | X =x, U

= u) is an expectation in whick andU wholly determine the observed valielf exposure is binary,



taking values 1 and 0 for the exposed and unexpeaegories, respectively, then the regressioreslop

is straightforwardly interpreted as the averagatinent effect (ATE) oK.

Unless X is exogenous, the ordinary least squares (OLSjnasir of £, in linear model (1) is
inconsistent. IfX is endogenous, however, the classical IV estim;ﬁ;‘drz Cov(Y,Z)/Cov(X,Z) is

consistent fo3, under model (1), provided that additional ‘corenditions’ are satisfied by the joint
distribution of U, X, Y, Z). Didelez and Sheehan (2007) write the core ¢mmdi as:

1. Zis associated with,
2. Zis conditionally independent dfgivenX andU,
3. Zisindependent dfl.

Figure 1 contains a directed acyclic graph (e.garl?2000) representing these assumptions.
[FIGURE 1 ABOUT HERE.]

Core conditions 1-3 are required for estimatoretam a fully specified parametric model f; ¥,

U, Z2). However, for semi-parametric estimators theepehdence assumption can be replaced by, for
example, conditional mean independence in whictditiom 2 become&(Y | X, U, Z2) = E(Y | X, U)

and condition 3E(U | 2) = E(U). For simple linear structural models, conditi®rcan be further
relaxed: rather than the weakg(U | Z2) = E(U), the classical IV estimator comes from the stesng

moment conditions
E(ZU)=EU) =0, (2

whereU = Y — B — X8, under model (1). The two-stage least-squares (R®sBmator is a
generalisation of (2) to include multiple exposure®re than one of which may be endogenous,
which is identified provided there is at least dvidor each endogenous covariate. Stage one 052SL
estimation involves fitting the ‘reduced-form’ mdder the regression oK on Z using OLS, and
using these predicted values in fitting linear mMdd¢ at stage two. Provided the structural madsdel
linear, the 2SLS estimator is consistent whethemat the true regression of on Z is linear.
Identification of treatment effect parameters undwre general models has been considered by
Imbens and Angrist (1994), Angrist al. (1996) and Abadie (2003) among others; see a0 T

(2006) for more recent work.

In this paper, we focus initially on IV estimatdi@ non-linear regression models for binafyor
more precisely, logistic and probit regression ned®ore generally, we focus on causal effectX of

onY. The consistency of maximum likelihood estimatorsprobit models is already well established



(e.g., Rivers and Vuong, 1988), but other estinsahave also been proposed, based on the generalised
method of moments (e.g., Angrist, 2001) and on @ik outcome models: specifically, marginal
structural models (e.g., Robisesal., 2000) and structural mean models (Robins, 1B&@ins, 1994).

The attraction of these estimators is that fullpagtric specification of a model fax,(Y, U, Z) is not

required.

Chesher (2008) has recently clarified the ideratfan of structural models for discreYethrough a
series of formal results, in which the assumptiembodied in the structural model fgrand X and
core conditions 1-3 have been shown to be insefiicto identify the structural parameters. In the
light of these results, we revisit all of thesdraators to establish the context in which idendfion is
obtained (or not). For the estimators based oenpiail outcomes, we do this by viewing potential
outcomes models as semi-parametric structural repaeld considering identification under simple
models for the data generating process. From etipah perspective, we argue that, if identificatio
cannot be achieved under simple structural motlesburden of proof shifts to any researcher using
these methods to posit less simple but substaptplalisible data generating processes under which i

is.

The paper is organised as follows: In Sectiortr2ctural and potential outcome models for bindry
are introduced, and the link between the two apres is discussed. In Section 3, we summarise
recent results on parameter identification for wigeY and discuss their implications for IV
estimation, and in Section 4 review likelihood-lmhsstimation in the light of these results. In the
remainder of the paper, we focus on semi-paramesticnators. The generalised method of moments
is considered for binary structural models (Angr2§01; Johnsost al., 2008) in Section 5. The next
two sections concern methods based on potentiebmds: in Section 6, the marginal estimator based
on a marginal structural model (Ten Hatel., 2003); and second, in Section 7, estimatorscdhase
structural mean models (e.g., Vansteelandt andgBebeur, 2003; Hernan and Robins, 2006). In
Section 8 we consider estimation under monotoriecien mechanisms, and in Section 9 we discuss

the findings and draw conclusions.

2. Modelsfor binary outcomes

2.1 Regression models

A generalised linear model for the regression nabjiY onX is
b{u()} =B, + x5, (3)

where (x) is the mean function ara{a) is a link function;C has again been omitted to simplify the
subsequent development. We focus on the two mimlyvused models for binary, namely, the

logistic model wherd(a) = logit(a) = log{a/(1 —a)}, and the probit model wheis(a) = ®(a) is the

5



inverse cumulative distribution function (CDF) dfet standard normal distribution. The logistic
model is widely used in biomedical and social sogedisciplines becaug# is interpretable as a log
odds ratio. In economics, it is the probit modelttis most widely used; the slope parameter itself
does not have an obvious interpretation, but itlmamwsed to calculate the partial effect (PE). FPke

of X atx is defined to be the expectation of the derivatifeéhe mean function & = x and is

analogous to the ATE.

No explicit reference has been madeJtan (3) because to do so is unnecessary i exogenous.
However, ifX is endogenous then it is important to understhecitdden role played Hy. Using the

notation introduced for linear model (1), a simgiictural model for binary is given by

y=E(Y|X =x,U =u)

_ @)
=1(B, +xB, +u>0),

wherel(a) is the indicator function. It is again seen ttia structural model wholly determines the
observed value of the binary outcome. An altemeatihe unobserved heterogeneity model, shall be
discussed further on in Section 5. However, whertstructural model is chosen, an essential feature

is that it must involve a non-smooth function tewme the support of is the set {0, 1}.

If X is exogenous then integrating (4) over the malkgindistribution of U
EU{E(Y|X =x,U)} = E(Y|X =x) = u(x), and so the mean function ¥fgiven X in (3) is correctly
specified. The distribution dff is assumed to be normal for the probit model amistic for the
logistic model where, as well as constraink{yy) = 0, the scale dll is set arbitrarily so that Vad =

1 for normalU and VarU) = 77/3 for logistic U. However, ifX is endogenous thed is not

independent oK and E,,, _{ E(Y|X = x,U)} # (x).

2.2. Potential outcome models

Potential outcome models distinguish between tHectl exposureX and what happens if the
exposure is set tg by some hypothetical intervention or experimelnistead of a structural model, a
set of potential outcomes is defined for each umithe study population. Units are indexediby
(which has been suppressed until now) and the pakesutcome of uniti at exposure levek is

denoted byY, (¥ ) a suitably defined function gf. In practice, only exposure lev€lis observed for

uniti, and the observed outcome is related to the patenitcome byY, =Y, (X, ) this relationship is

called the ‘consistency assumption’. The targahfd#rence in the potential outcomes framework is a
meaningful expectation taken over the entire pdmra For example, for binar} the ATE from
Section 1 isE{Y, () -Y, (0)} the causal risk ratio (CRR) i&{Y,(1)}/E{Y,(0)}, and the causal odds
ratio (COR) is



ELY W}/ EQL-Y @A)}
E{Y,(0)}/ E{1-¥,(0)}

As already stated, it is unnecessary to specifarametric model fol;(x) in this framework. The
endogeneity or unobserved confounding problem simgsults in an association betweéfy) andX.
However, throughout this paper we shall assumeUhat the common cause behind this association,
and thus we restrict attention to the wide rangeasf-ignorable selection models that are encouthtere
in practice in disciplines like epidemiology andoeomics. With this in mind, we note how the

simple binary structural model (4) can be writtertdrms of potential outcomes: supprieasd denote

Y, =Y(x), theny, = E(YX|U =u) =1(B, + xB, +u>0), where expectation overhas been replaced

by expectation over the population distributionlbf As y is fixed, integrating out leads (ifX is
binary) to exp@;) = COR under the logistic model. The potentigicomes models to be discussed in
Sections 6 and 7 can thus be interpreted as semwngdric, in that neither the error structure nsr i

distribution is explicitly specified.

IV estimators can therefore be developed in themi@l outcomes context. Following Angrettal.

(1996), core conditions equivalent to 1-3 are:

0] Pr(X = x|Z = Zz) is a nontrivial function of,
(ii) Conditional mean independence (CMIB(YX|Z =2)=E(Y,),

(i) Exclusion restrictionY, =Y, ,

whereY,, is the joint potential outcome, defined to bedkécome the participant would have obtained
if her IV was set t@ and exposure tg. Note that the definition of th€,, implies thatZ is a causal
antecedent oK, and so the edge betwegZrand X in Figure 1 should be directed; see Hernan and

Robins (2006) for a full discussion of the issueadfisal and non-causal IVs.

Two other assumptions are often stated as coreitaorslwithin this framework (e.g., Angrist al.,
1996). These are that the selection mechanisigd rignorable (Rosenbaum and Rubin, 1983), and
that the stable unit treatment value assumptionT{&A) holds. The SUTVA requires that the
potential outcomes for two or more people are iedédent, which is also implicit in the definition of
the structural model, and is a commonly made warlissumption. In randomised experiments, it is
trivial to assume that is ignorable, but generally it is a strong assuompthat is sometimes plausible
only after conditioning on covariates. In the feamorks defined thus far, selection is ignorabley éinl
Prg=z|C=c,U=uY=y,X=Xx)=Prg=z|C=c)orPrg=z|C=c,Y,=Yy, X=X) =PrZ=2|
C=c).



3. Parameter identification

We saw in Section 1 that the ATE is identified unthee simple linear structural model (1) provided
that IV Z satisfies the three core conditions. In contidshtification for structural model parameters
for discreteY is a more precarious issue. Chesher (2008) ceresidhis problem and his arguments

are now summarised.

Identification requires that constraints impliedtbg model and the 1V core conditions are suffitien
tight to ensure only one value of the model paramistdetermined by the observed data. In general,
the structural model is writteYi = h(X, U"), whereh is some function of the endogeneous covadate
and a normalised latent variabl#. Note that nothing more than this is assumed, thatl the
normalisation olJ to beU" ~ Uniform (0,1) is for mathematical conveniencet imakes no difference

in practice: for example, the logistic model canvéten Y = I{ 3 + XB, + logit(U") > 0} using the
integral probability transform. Within this framevk, it has previously been shown that the IV core
conditions are sufficient for identification H is strictly monotonic (Chernozhukov and Hansen,
2005). However, the restriction dnfor discreteY is that it is weakly monotonic, that is, a step-

function of U” for fixed X. For the logistic model, conditionally ofi= x the step function can be

written asY = {U >expit(-5, — xB, )}, whereU,” is a random variable following the conditional
distribution of U" givenX = x with CDF F,. (7]x) = PrU; <), which is non-uniform and depends

on x, and expit(@) = exp@)/{1+exp@)} is a convenient way to express the mean functioth®

logistic model.

Chesher (2008) shows that the constraints imphjechioe conditions 2-3 can be written

X‘IZEH{Pr(U* <71|X,Z=2)}=T,
X‘IZE:Z{Pr(Y <h(X,n)|X,Z2=2}z=zr,
X‘IZE:Z{Pr(Y <h(X,n)| X,Z=2}<r,

which can be expressed as functions of the modelnmeters and the observed data, namely, the
conditional distributions oK given Z, and ofY given X andZ. In the simple double binary case,
where bothX andZ are dichotomous, the structural model is paransetgrin terms of its two cut-off
points, denoted by = expit(-%) and )4 = expit(-£H —4). It is shown that the observed data (non-
parametrically) identifyFy«x(J6[x = 0) andFy«x(}4| x = 1), that is, the data tell us something aboat on
point of each conditional CDF. However, non-parioadentification requires thefy«x(J6| X = 1)
andFy«x()4] x = 0) are also uniquely determined, but Cheshed&P8hows that the data define only
intervals within which each point must lie. Thenef, identification comes about only by

parametrically specifyinysx.



4. Likelihood-based estimation

From Section 3, we saw that identification of adbynstructural model like (4) requires assumptions
about the conditional distribution &f givenX. A natural way to incorporate such assumptiorts is
use a likelihood function. The cost is thatgiven X is unobserved and maximum likelihood (ML)
estimators can be highly sensitive to incorrect efloty assumptions. We now review ML estimators
for probit models with continuouX (Rivers and Vuong, 1988). Normality has consibkrdenefits

in terms of modelling the key assumptions, and @nuiges consistency and asymptotic efficiency if

these assumptions hold.

The probit estimator is based on the following dimodels

Y =1(5, + X5, +U >0),
X=a,+Za, +V,

()

where the second part of (5) is called the reddaed model, and

Gl %)

It is important to distinguish the role played Ine treduced-form model here to that for the 2SLS
estimator. The linear reduced-form vyields a cdasis2SLS estimator, whether or not the true
reduced-form model is linear, whereas here theasdifiorm model encodes additional assumptions
that implicitly determine the cruci&l givenX distribution and identify the model. The ML essitor
based on the model above is sensitive to this ehard will be inconsistent if it is incorrectly

specified.

Rivers and Vuong (1988) further considered the @riigs of two simple estimators for probit models
analogous to 2SLS. Both are conditional ML estoratbecause they involve replacing nuisance
parameters by consistent estimators thereof @eyerini, 2000). To recap, stage one involvemjtt
the reduced-form model (5) fof on Z, with stage two depending on which two-stage nubtiso
chosen: the ‘plug-in’ method involves replacign structural model (5) with its predicted valwerh
fitting reduced-form model (5); alternatively, theontrol variable’ method involves including an
estimate of residual in (5) as an additional covariate. Whereas thg+o and control variable 2SLS
estimators are equivalent, for probit models thetrcd variable approach has a major advantage: the

plug-in does not identify the structural paramgtnly a scaled parameter is identified), while the



control variable method does identify the strudtyparameters by first identifyingr, (Rivers and
Vuong, 1988). A semi-parametric control variabfgmach has been developed by Blundell and

Powell (2004) using non-parametric estimation témines to relax distributional assumptions.

Consistency of both conditional ML estimators himgeucially on the reduced-form model being
linear inV. For this reason, neither the plug-in nor thetimdrvariable methods produce consistent

estimators for discret®. For example, suppogeis binary and follows a probit reduced-form model

X = 1(ay + Zay+ V > 0) whereV ~N (0,02 ) then the plug-in estimator is inconsistent beeaus
E(Y|Z=2) =E[{B, +|(a, +Za,+V >0)B,+U >0}|Z = 7], and so the stage-two model cannot be a

probit regression; similarly for the control vard@bmethod. However, ML estimators can be
constructed by incorporating this reduced-form nhaliectly into the likelihood, at the cost of logi

the operational simplicity of the two-stage estionat

In theory, the likelihood for any parametric modsin be specified, but practical difficulties in
specifying a suitable model occur if eitheror V is non-normal. Despite this, conditional ML
estimators have been proposed for logistic moddtalmeret al. (2008) use plug-in and control
variable approaches for logistic models under aainreduced-form model for endogenols The
proposed estimators are developed with respedigdunobserved heterogeneity’ structural model
(see Section 5.1), rather than the simple strudtur@l), for the important special case where the
unobserved heterogeneity is normally distributeldwever, the authors demonstrate neither estimator
can be consistent, which is ultimately due to nommality of U violating the conditions required for
the stage-two likelihood to be a true condition&klihood. Likewise, Nagelkerket al. (2000)
construct an IV estimator using arguments analogoulsose for the control variable estimator above
but for discreteX. This control variable approach is based on aditiad error structure for the
reduced-form modet(X | Z =2z V =V) = E(X | Z = 2) +v, which leads to an inconsistent estimatof if

is binary (see the arguments against this erraricttre in Section 5.3). The same estimator was
considered for binary in a simulation study by Ten Haeeal. (2003) and its bias was shown to be

strongly related to the association betw&eandU.
5. The generalised method of moments (GM M)

5.1. GMM and the unobserved heterogeneity model

A family of estimators based on the generalisechowf moments (GMM) has been developed in
the econometrics literature. Johnsaral. (2008) give a concise overview of GMM estimatora
statistical context, while Wooldridge (2002, ch.#jes a more complete account. GMM estimation
is a generalisation of the method of moments tmwafior one or more endogenous covariates, where

multiple IVs may be available for each. Situatiom#olving only one endogenous exposure and one

10



IV are considered here, so strictly speaking ondthrad of moments estimators are considered, but

this is done without loss of generality.

GMM estimators for non-linear structural models lexpthe conditionE(U | Z) = E(U) = 0 (which
implies E(ZU) = 0 as in moment condition (2)). Thus, to depelo GMM estimator it must be
possible to exprestl as the error for a logistic or probit structurabdel and to substitute this
expression into the moment condition. Models 8atig this condition are called ‘mean separable’.
Linear models are clearly mean separable becausg — 5 — X5.. However, it is clear that the

structural models for binary are not mean separable because they involve dieator function.

A strategy to obviate the presence of the indichtoction is to consider an alternative error dince.

For instance, the structural model
y=E(Y|X =xW=wU =u)=1(B, +xB, +w+u>0), (6)

is obtained by replaciny in simple structural model (4) witW + U, whereW represents omitted
variables associated with and Y, and U represents the usual error term associated ortly Wi
Model (6) is called a mixed effects or unobservetefogeneity model. ) is assumed to follow a

logistic distribution then
E(Y|X =xW =w) =expit(3, + X8, +W),  (7)

recalling that expit(@) = exp@)/{1l+exp@)}. Note that (7) does not wholly determine observed

outcomey, it is the conditional probability that = 1 givenX and (unobserved heterogeneitiy)
Unobserved heterogeneity model (7) cannot be repted using the formulation of Chesher (2008)
discussed in Section 3. However, as shall becqparant here and further on, this does not solee th
identification problem for semi-parametric estinratbecause the resulting mean function is not mean

separable.

By changing the error structure, the interpretataing, in (6) has also changed: it is now the
conditional log-odds ratio giveV = w. In econometrics, the target parameter for unolese
heterogeneity models like (6) is the ‘average ph#dffect’ (APE) rather than the PE, defined as the
expected value of the PE over the distributiorMéffor a fixed valuex. We now consider two

approaches exploiting this alternative error strret

5.2. A rare event approximation

An exponential mean model is

E(Y|X =xW =w) =exp(B, + X8, +W), (8)

11



which is used for constructing estimators for tis& ratio for non-negativ¥ (see Angrist (2001) and

Section 8). If the outcome event probability imgenably considered to be ‘small’, then this is
superficially a reasonable approximation for ldagishodel (7). Once more, GMM estimators have
already been applied to endogenous Poisson regmessidels with exponential mean functions; for

example, Mullahy (1997) constructs an estimatoefam the ‘multiplicative’ moment condition
EU|Z=2)=0=E(ZU)=0, (9)

whereU =Yexp(a - XB,) - landa = A + log[E{exp(W)}]. Under regularity conditions, the GMM

estimator is consistent far and relative rislG;, but not3. However, the confounding @f poses no

problem if one targets the APE, which equals e}aXp(5.) — 1} under exponential mean model (8).

It would appear to follow that an estimator based(®) is a sensible way to proceed if the event
probability is rare. However, if we assume thgt(@+ x5, +w) O (0, 9) for all (x, w) for some fixed

(B, ) wheredis close to zero, then
EU|Z =2)=0(9),

under logistic model (7), which indicates that thement condition error is of the same order as the
event probability itself. Contrast this with thieuation if X is exogenous: if exponential mean model

(8) is true then a consistent estimator comes ftioen‘additive’ (i.e. Poisson first-order) moment

condition E{Y —exp(8, + X,Bl)|X =x} =0. Under the logistic model (7),
E{Y —EXp(ﬂo + Xﬂ1)|x = X} = 0(52) )

in other words, the moment condition error is atbeorsmaller than the event probability itself. €Se
Appendix 1 for a more detailed argument.) It feléofrom this that, i is endogenous, the bias of the
estimator will increase quickly as the event becomass rare. Conversely, in cases where the dias i
small then the outcome event must be very rares tequiring large sample sizes to ensure the

estimator is accurate and has an approximately alagampling distribution.

5.3. Additive error structure approximation

Johnsoret al. (2008) propose a GMM estimator based on
E(Y|X =xW =w) =expit(3, + x3) +w.  (10)

The moment conditions follow from substituting tlesidual into moment conditio® W) = E(ZW) =

0. However, the structural model implied by thiedal is implausible because the supporibfs

12



bounded byX (i.e., —expit(h + X5 < w < 1 — expitf® + x51)), and so (10) is structurally implausible
because it contradicts the implicit assumption Wais causally antecedent % andY. Another
criticism is that the effect of the omitted varieblis not ‘symmetric’ in the sense that the eftecy

of omittedW s on a different scale to that Xf(Mullahy, 1997).

Johnsoret al. (2008) do not argue that (10) is plausible, Iat it is a first-order approximation of
unobserved heterogeneity model (7); that is, egpit(x5; + w) = LX) + wu, whereg(x) = expit(G +

xB1), v =u(X){1- u(x)} and x = E(X), which is based on two successive first-order diagkries

expansions: first an expansion of exfitt x5, + w) aroundw = 0, and second gf(x){1 — (X)}
around x =X. However, the first-step approximation here i@mpaonsider the first approximation

but do not drop the second-order term, then the embrrondition becomes

E(Y - 4(X)|Z = 2} = E{expit(B, + XB, +W) - u(X)Z =2
= EMWL(X){L- 4(X)} +W2L(XHL- u(X)H 1- 2u(X)}/2|z = 2]

Clearly, to equal zero this approximation deperesviy on independence betwedrandW, and the
W term indicates that second-order moments includtiegvariance ofV must also be small. The
second-step of the approximation is additionalltrietive, and taken together rules out GMM based

on (10) as a good approximation in general.
6. Themarginal estimator

In this section, we consider estimators based erptitential outcomes approach, namely, marginal
structural models, and go on to consider estimdiasged on structural mean models in Section 7. As
discussed in Section 2.2, we treat both of thegmoaghes as semi-parametric because neither
involves full parametric specification &f in the structural model. We now consider the biha of
these potential outcomes estimators under thetastalanodels already introduced, simple model (4)
and unobserved heterogeneity model (6). If idmatifon and consistency cannot be obtained under
such simple models, we argue that these estimatersot generally identified, at least without ffient

(possibly application-specific) assumptions.

Ten Haveet al. (2003) propose a ‘marginal’ estimator based anaaginal structural model (MSM)

for binary outcomes. Generally, a MSM has the foEfY,) =g,(x) (e.g., Robinset al., 2000;
Hogan and Lancaster, 2004). Ten Hetval. (2003) consider the logistic MSM

E(Y,) =expit@y, + x¢,), (11)
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recalling thaty is used to denote that exposure has been settéynakintervention rather than by the
selection mechanism that generated the study ddd@pendence on covariates comes through
extending (11) to includ€ in the linear predictor, with the proviso beingtlhe effect of exposure in
(11) is now covariate-conditional. Due to (11)dats probit equivalent) being non-collapsible (g.g
Greenlandet al., 1999), this effect does not equal the populagffiect of X, which can only be

estimated by averaging the covariate-conditioni@lot$ over the sample covariate distribution.

The marginal estimator comes from the moment ciordit
E{Z-E@)U]=0, (12)

where U =Y -g,(X) is the MSM ‘residual’. Clearly, this approach asalogous to the GMM
estimator from Section 5.2: I is a residual such th&(l]) = fhen (12) is analogous to solving

E(J|Z =2)=0 and henceE(ZJ): 0 Ten Haveet al. (2003) proposed that (12) holds for an

unobserved heterogeneity model (6) with only twathfer relatively weak conditions on the IV.

Before inspecting this result more closely, we lsimalke some observations.

Strictly, the only distributional assumptions abduandW made by unobserved heterogeneity model
(6) (or whatever error structure is assumed) aat the underlying structural model leads to (11)
following integration. However, Ten Hawt al. (2003) assume tha&t in (6) is logistic to obtain a
logistic unobserved heterogeneity model (7). Galherthis model is non-collapsible, so their
solution was to choose normal because the resulting MSM (11) is approximatetydtic. In fact,
this is an unnecessary restriction because itme do keep the parameters of conditional modea$7)
target parameters. The parameters of MSM (11)samply those of a marginal model, and their
relationship with those of conditional (&) model (7) is analogous to that between ‘cluspeesic’

and ‘population averaged’ models (e.g., Neuleiwa., 1991). Nothing has been lost by this change
of focus: ¢ is directly interpretable as the causal odds r&iocovariate-conditional causal odds

ratio) and thus a more appropriate target parantedes; in (7).

Returning to consistency, close inspection of thiesistency proof by Ten Hawt al. (2003) reveals
that either of two further strong conditions arguieed, namelyX .+ W| Z or E(Y, [W=w) = E(Y,) (1

is the symbol for conditional independence). Wespnt a formal result and a justification of this i
Appendix 2. Both of these conditions correspondXtdeing exogenous, and so consistency is

obtained only in trivial circumstances. In esseng#out either of these conditions holding itiéals
that E(J|Z =2)#0, and soU is not a ‘proper’ residual and the analogy wite tBMM estimator

breaks down. In practice therefore, the margirglnetor is at best an approximation. The
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simulation results presented by Ten Hateal. (2003) demonstrate that the bias depends on the

association betweeX andW and betweeiV andY, and this is not simply finite sample bias.
7. Structural mean models (SMMs)

Structural mean models (SMMs) are a class of samaspetric models for estimating causal
parameters for the exposed population, which weniginally developed for the analysis of

randomised controlled trials affected by non-igitganon-compliance (e.g., Robins, 1989; Robins,
1994; Hernan and Robins, 2006). Vansteelandt anetgBebeur (2003) introduced the family of
generalised SMMs that includes logistic and pr@iMs as special cases along with a class of

estimators for these models; Robaégl. (1999) originally proposed the logistic SMM.

Generally, a SMM has the form
B{E(Y|X =%Z =2} -b{E(Y,|X =x,Z =2} =1,(x,2),

whereb(a) is a link function angd, (x,z )s a parametric function constrained such a0,z =0

for all z. CovariatesC are included by a suitable specification mpfwhich is often parametric to
prevent the ‘curse of dimensionality’ leading toodg performing estimators. SMMs are most easily
explained for the special case whet@andZ are both binary, and s$ andZ are taken to be binary
throughout this section. Three examples of sadr&MMs with one parameter for each combination

of (x, 2) are given below:
Example 7.1a: The additive SMM is
E(Y|X=%2=2-E(Y,|X=x2=2)=xy;.

It follows that ¢ = E(Y,|X =1,Z =2) ~E(Y,|X =1,Z = 2) =ATE(X =1,Z = 2), namely, the ATE

among the exposed population with z.

Example 7.1b: The multiplicative SMM is
log{E(Y|X =X,Z = 2)} = log{E(Y,|X =X, Z = 2)} = x¢}".

It follows that exp@)') =CRR(X =1,Z =z), namely, the CRR among the exposed population
withZ=z

Example 7.1c: The logistic SMM (Vansteelandt and Goetghebeud320s:
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logit{ E(Y|X =x,Z =2)} ~logit{ E(Y,|X =x,Z = 2)} = x, .

It follows that exp/.) =COR(X =1,Z =z), namely, the COR among the exposed population
withZ=z

The SMM estimator comes from exploiting the momemiditions implied by the randomisation, or
conditional mean independence (CMI), assumptione(condition ii). From the CMI assumption, it

follows that

ELE(]X.Z=1)} = ELE(V|X,Z =0)} =E(Y,)

(13)
= E{E(Y[X.Z=1)}- E {E(Y,[X,Z=0)} =0,

whereE(Y, | X =%, Z =2) = bb{E(Y | X = x, Z = 2)} — x¢], with superscripts dropped here to

indicate generic parameters for any of the SMMsgmeed above.

An important assumption regarding SMMs is thatraf effect modification by’ (NEM) or ¢, = ¢.
Without the NEM assumption the SMM estimator is identified (Robins and Rotnitzky, 2004). The
crucial importance of this assumption shall be w®red again further on. Estimators for the three

SMMs considered in Example 7.1 under the NEM assiompre given below:

Example 7.2a: For the additive SMM in Example 7.1a, the SMM mstior can be written

_E(Y]Z=D)-E(Y|z=0)
T E(X|2=1)-E(X|2=0)’

7a

which equals the classical IV estimator from Setfidn the case where baothandZ are binary.

Example 7.2b: For the multiplicative SMM in Example 7.1b, the BMestimator comes from

solving

E{Y expCXy™)|Z =0} = E{YexptXy¢™|Z =1} .  (14)

Hernan and Robins (2006) note that (14) has a d@lésem solution (see also Angrist (2001,
eq.21)), given by
E(XY|Z =1) - E(XY|Z =0)

expy") = E{(1- X)Y|Z =1} - E{(1- X)Y|Z =0}

(15)

Example 7.2c: For the logistic SMM in Example 7.1c, the SMM asitor comes from solving
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(E expitllogi{ E(Y|X,Z=0)} - X¢'] = ,E_expit[logit{ E(Y|X,Z=1)} -X¢'], (16)
which does not have a closed-form solution.

An important distinction between the SMMs for binat(logistic and probit) and other SMMs is that
the moment condition is not a function of the okedrdata ¥, X, Z) alone, and so cannot be estimated
using the usual SMM estimators (Robins, 1999). Mfgr binaryY depend additionally on the
‘association modelE(Y[X = x, Z = 2). In fact, this dependence on the association eindar
identification can be seen as a semi-parametricesgpn of the result in Section 3: for example,

under structural model (4) the association model is

E(Y[X=xZ=2= E_EY|X=xU,Z=2)
U|X=x,Z=2z
= E EY|X=xU)

U|X=x,Z=2z

= j E(Y|X =xU = u)dF, . (u]x 2),

whereFyxz(u | X, 2) = PrU <u | X=X,Z=2). In other words, identification depends on sfiegiion
of U givenX andZ (and hencé&) givenX becauséyx(u | X) = E{Fuxz(u | X, Z) | X =x}).

Vansteelandt and Goetghebeur (2003) developed aimagsr for the logistic SMM that takes
advantage of user-specified parametric assumptdegit the association model. For the simple
saturated models considered here, this identify@sdyiction is not particularly strong, but gengral
and particularly if covariates are introduced, patric assumptions on the association model are
required to avoid the curse of dimensionality arelthus more important. The simplest example of
such an estimator is based on a logistic SMM alogjiatic association model, and so is called ‘deubl

logistic’ by Vansteelandt and Goetghebeur (2003).

7.1 The connection between SMM and GMM estimators
There is a close correspondence between the SMMagets and the GMM estimators introduced in

Section 5, which while obvious for linear models@®es elaboration for the non-linear case.

First, consider the link between the moment cood#i of the multiplicative SMM and the
multiplicative GMM moment condition (9) if exponéait structural model (8) is true. Under

exponential mean model (8E(Y,) = E{exp(8, +W)} =expla@ Where a is defined in (9). Now

consider the moment conditions for the multiplieatSMM, and use the first expression of the CMI

assumption from (13); substituting gives
E{YexptXy™)|Z = 2 =exp@) ,
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which leads immediately to multiplicative GMM montencondition (9) because

E{Yexpta -Xy¢™)-1Z =2 =0= E[Z{Yexpt-a - X¢")-1}] =0.

Generally, rather than the structural model redidsad by GMM, the SMM estimator is based on
another residual. For the logistic SMM, the reaidaE(Yy| X, Z =2) —E(Yo) = E(Yo| X, Z=2) —E(Y)

| Z =2) = 0, whereas the multiplicative SMM is based&t¥, | X, Z =2)/E(Yo |Z=2) — 1 = 0. The first

of these residuals can be regarded as that ofralifmear) projection oZ ontoY,, whose expectation
over X givenZ is zero. The second has the same interpretatibmvbrks on a multiplicative scale.
Under the SMM, the residual can be written as atian of model parameters and observed data, and

a consistent estimator derived if the moment camltensure identification.

For Z with a large finite or infinite support set, thgseem of SMM moment conditions is given by
E(Y0|Z =z)= E(Y0|Z =z,) for all observedzs # z in the support. The large number of resulting
moment conditions is clearly problematic for consting an estimator. One way forward is thus to
take an approach analogous to GMM by defining acstral model forE(Yy), which permits

construction of the projection residual like thadtjdiscussed (i.e., wheE(lﬂZ) =0), from which it

follows that an estimator can be based on the moroendition E(ZU) = 0 (or some variation

thereof). Before this approach can be considevedbiharyyY, however, more germane problems of

parameter identification must be overcome.

7.2. Binary structural models, effect modificatiamd identification
To be useful, any SMM must be congenial with a kémsstructural model. For example, if the
exponential mean model (8) holds then we would eixree multiplicative SMM moment conditions

to produce a consistent estimator. Indeed, thisesase under model (8):

exp(B, +B), E_fexpW)} _exp(B, + ), E {exp(W)}
expy.) = : = =CRR(X =1),
exp(B,), E_fexpW)}  exp(B) E fexpW)}

because clearly the expectations of 8p¢ancel out. Thus, the NEM assumption holds wheatthe
selection mechanism, and sap.") =exp@™ (gnd the additional benefit that CRR€ 1) = CRR

= exp(3)). Unfortunately, the situation for binary strul models is much less positive. Consider
either simple structural model (4) or unobservetetogeneity model (6). In the latter case, the

multiplicative SMM does not satisfy the NEM assuioptbecause

. W|szl,z:z{eXpit(lBo + 3, +W)}
expy;) = e {oxpit(B, +W))

W|X=1Z=z
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depends orZ unless triviallyW 1 Z | X = 1 (v is again the conditional independence symbol).
Similarly, the logistic SMM does not satisfy the MBEbecause COR{( = 1,Z = 2) depends on too,
with the same results holding for structural mo@@l The same problem as with GMM is thus
apparentW is not mean separable for logistic (or probitustural models, and so it follows that
neither the additive, multiplicative nor the logisSMMs identify their respective causal effects
among the exposed due to failure of the NEM. Ngithe additive, multiplicative nor logistic SMMs
are identified because the NEM assumption failsde@zet al. (2008) demonstrate inconsistency of

the multiplicative SMM for binary in an extensive numerical study.

Robins and Rotnitzky (2004) investigate the idération of SMMs for binaryy, highlighting the key
role played by the NEM assumption. At a fundameleeel, the NEM assumption is required to
reduce the number of unknowns: for example, in sheple example above, without the NEM
assumption there are two unknowng, (¢4) but only one moment condition. Furthermore, @liih
only simple structural and reduced-form models hlagen considered here, we do not believe that
plausible structural models for binahy exist satisfying the NEM assumption. This opinios
supported elsewhere: “[the NEM] assumption is uisea because [the exposed] subpopulations
[defined byZ] are likely to be quite different with regard tadifiers of the effect of active treatment
on the outcome of interest” (Robins and RotnitZ2804, p. 778).

Robins and Rotnizky (2004) show that identificatman be obtained by constraining one or more of
the ¢, parameters. For example, in the randomised alini@al context, the treatment restriction “no
treatment among the controls” corresponds to fogréinX = 0 |Z = 0) = 1, and has been used in a
number of studies (e.g., Nagelkerlet al., 2000; Ten Haveet al., 2003; Vansteelandt and
Goetghebeur, 2003, 2005). Under this ‘treatmestriction’ assumptiony is identified becausés

is fixed (at an extreme value corresponding toraexistent effect), even if the NEM assumption does
not hold. However, while reasonable for many randed controlled trials, the exposure restriction

assumption is too strong for observational studies.

7.3. An alternative estimator

Robins and Rotnitzky (2004) propose an estimatat #udresses this identification problem. It is
based on an alternative parameterisation of theced®n model. Semi-parametric theory is used to
find the influence functions for a regular asymjalty linear estimator of the SMM parameters and
of a parametric model for the observed dataX, Z). As with the covariance estimators for the
SMMs, a semi-parametric covariance estimator isl tigellow for non-normality of these estimators
in finite samples (e.g., Robins and Ritov, 199The estimator involves two stages: the first stage
crucial because it identifies the (hon-SMM) nuisammarameters using parametric assumptions in

much the same way as maximum likelihood, while estixgp allows semi-parametric specification of
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the SMM. Semi-parametric consistency and efficjeiscobtained only if the modelling assumptions
are correct. However, unlike maximum likelihoodimsitors, these estimators are ‘locally robust’ in
that one can test fag, = 0 even if the parametric models are misspecitittiough the power of this

test will be compromised by misspecification.

8. M onotonic selection

Given the problems encountered with binaryhus far, it remains to clarify what actually che
estimated without fully specifying parametric sttral and reduced-form models. A possible
approach is to assume that selection is monotaric iTo define monotonic selection, it is necessary
to define the potential outcom&(z) = X, (c.f. Section 2.2). In the case of binahandX, the study

units fall into one of four groups:

Compliers:Xo = 0 andx; = 1.
Always-takersXy, = 1 andX; = 1.
Never-takersX, = 0 andX; = 0.
Defiers: X, = 1 andX; = 0.

P 0N PR

Note that these groups are defined using whattthey ainit would have selected if its IV had taken
another value, and so is an unobservable countealacA monotonic selection mechanism requires
that X, is a non-decreasing function &f(or non-increasing, depending on the labellingp). this

example, monotonic selection implies the set ofetlefis empty with probability one.

The reduced-form model for binady is clearly a special case of the general classafiotonic
selection mechanisms because =1 (a, +za, +V > ifplies thatX; = X, or X; < X,, depending on
the sign ofa;. However, a heterogeneous effect version, cooraipg to the data generating process
X,=Wa,+za, +1(z=0)V, +1(z=1V, >0} , whereV, is drawn differentially depending a is not

monotonic.

Without including covariates, the additive SMM asditor is consistent for the ‘local’ ATE (LATE),
defined LATE = E(Y, —Y0|X1 > X,), if selection is monotonic (Imbens and Angrist949Angristet

al., 1996); this parameter is also known as the ‘dmripaverage causal effect (CACE). The
parameter is local because the conditioning setsdb the complier group consisting of those whose
selection was modified by the IV. Previously, teestimator has been considered together with the
linear structural model (1), where it was showrbé&consistent for the ATE rather than the LATE.
Identification of the ATE is achieved in this cdgeassuming model (1) is linear, and additionaiigtt

Y, (D -Y;(0) =, for alli (using the notation from Section 2.2). Imbens angdrist (1994) showed

that the IV estimator is consistent for the LATEtwaiut either of these assumptions if selection is
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monotonic. Hence, the LATE can be identifiedYifis binary using these assumptions under

monotonic selection.

In the same way, Angrist (2001) showed that mutiglve SMM (15) is consistent for the local CRR,
defined LRR = E(Y1|X1 > XO)/E(Y0|X1 > X,)- In contrast, the logistic SMM estimator is ins@mtent
for the local COR (LOR) unless the additional agstiom thatE(Y; | X; > Xo) = E(Y1 | X1 =Xo=1) is
made (see Appendix 3). Such an assumption iss®Heroic than NEM and so is of little practical

use. However, Abadie (2003, egs.3-4) shows tlcanaistent estimator for the LOR is

{E(YX|Z =1) - E(YX|Z =0)} /[E{(1-Y) X|Z =1} - E{(1-Y) X|Z =0}] .
[E{(1- X)Y|Z =1} - E{(1- X)Y|Z =0}] /[E{(1~ X)(L-Y)|Z =1} - E{(1- X)(1~-Y)|Z =0}]

Hence, local averages with causal interpretati@msbe identified under monotonic selection.

If covariates are included, Abadie (2003) propasegeighted estimator to identify the parameters of
the local average response functiB(Y,X = x, C = c¢), i.e., including covariates, either semi-
parametrically via least-squares or parametricaliing maximum likelihood. Estimates of the

(covariate-conditional) LATE, LRR or LOR can thes tonstructed using this approach.

Imbens and Rubin (1997) set out a Bayesian franlevarrestimation of treatment effects among the
complier, always-taker and never-taker groups uadapnotonic selection mechanism. Widening the
focus from effects in the complier group (LATE) &l three non-defier groups is achieved by
incorporating parametric assumptions. Hiratal. (2000) apply these ideas, and extend them to

allow for covariates, to a randomised controlléal tvith binary outcomes.

9. Discussion

In this paper, we have brought together estimdtmrgausal effects involving binary outcomes from
structural modelling and potential outcomes framdgady treating the potential outcomes models as
semi-parametric structural models. Thus, our fasum non-ignorable selection mechanisms as they
are conceptualised in applied disciplines like epitblogy and economics, i.e., driven by unobserved
confounders or omitted variables correlated with #xposure. The crucial result regarding non-
identification is due to Chesher (2008), who haswsh that the identification problem affects all
structural models for discrete outcomes, and estrmamust incorporate further modelling
assumptions to identify causal effects. We havdieated the implications of this result for semi-

parametric estimators within our framework.
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As is well known, ML estimators achieve identificat through additional specification of the
reduced-form model relating andZ (andC). Unlike the 2SLS case for linear models, theuoed-
form model is crucial to ML estimator consistenttye choice of logistic or probit structural model i
thus now crucial, as well as the specificationh&f teduced-form model. The normal distribution has
attractive properties conducive to a tractable,l-aehaved ML estimator that can be fitted using
software such aStata (StataCorp, 2007). More generally, the flexigildaf likelihood methods is
limited only by the modelling tools at ones disdaaad the computational issues faced. Normality is
also crucial to conditional likelihood methods, amhsistency of the control variable two-stage firob
estimator. However, consistent conditional likebd estimators can be inefficient, and cannot be

derived at all ifX is discrete, which unfortunately includes the im@ot binary exposure case.

GMM estimators cannot be consistent because mddelsinary Y are not mean separable. Simply
assuming the model residual is additive or muktgdive with respect to the mean function is
structurally implausible because it implicitly asss the support off depends orX, despite an
implicit assumption of the analysis being thétis a causal antecedent Xf Extending the error
structure to two latent variablés andW fails to overcome this problem because the resutteean
functions are not mean separable. Johmsah (2008) argue that the GMM estimator is valid unde
certain conditions, but we show that these conuitiare too restrictive in practice to yield a ukefu
estimator. Another approach if the outcome evemaie is to approximate the logistic mean function
with an exponential mean model. However, we arthag the multiplicative GMM estimator is
consistent only for very rare outcomes (and soiregwery large sample sizes) and that its accuracy

deteriorates quickly as the event probability iases.

In Sections 6 and 7, two estimator classes basedhenpotential outcomes framework were
considered. The marginal estimator proposed byHareet al. (2003) is seen to be closely related to
the GMM estimator. It is based on a ‘pseudo’-realdrom a suitable marginal structural model, but
we have shown that it is only consistentXifis exogenous. The SMM estimators are potentially
consistent for causal parameters defined amongxhesed population, but identification hinges on
the no effect maodification (NEM) by assumption (Robins and Rotnitzky, 2004). We higtied
how the SMM estimator is a special case of GMM Hame a suitably defined residual, but that the
NEM assumption does not hold even for simple stmattmodels for binaryy. As with GMM, non-
identification and the failure of the NEM assumpticome about due to the binary structural model
not being mean separable. Identification througdattment-restrictions like no treatment among
controls is only plausible for some randomised mlgd trials, and almost certainly implausible for

observational studies.

In the absence of parametric assumptions, a maiestie aim is to focus on local parameters under

the assumption of a monotonic selection mechanidmbens and Angrist (1994) show how the
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classical IV estimator can always estimate thellagarage causal effect, no matter what the straktu

model (including no linearity or causal effect etgeneity restrictions), provided that selection is
monotonic. The monotonicity assumption is unvalife and has attracted severe criticism (Dawid,
2000), but it is possibly less controversial if wed as placing a very general restriction on the
reduced-form model. Local estimators including gewmous covariates can be constructed from
theorem 3.1 of Abadie (2003). Van der Lahal. (2007) has proposed another approach by defining
alternative target parameters, and constructs a&in for these using semi-parametric estimating

equations.

Finally, it is important to recognise that not edsearchers will accept the framework within which
potential outcomes models are taken to be semitra structural models. We feel that the
challenge for applied researchers is to make assmmspabout the structural model and selection
process that are grounded in substantive knowleddheir studies, and that our framework is the
most obvious and transparent way in which to de. tt€ertainly, it is possible that identificatioanc

be obtained for potential outcomes models basedalternative assumptions, such as equating
outcome averages for compliers and non-compliegs, (Een Haveet al., 2003); but the challenge to
the researcher is then to posit plausible strucamed selection models satisfying these assumptions

rather than to make them for mathematical reaslome a

Appendix 1: Rare event approximation

Suppose that we wish to use the rare event appatixim

E(Y|X = x,W =w) = expit(3, + xB, +W) = exp(5, + XB, +W) ,
and construct a GMM estimator based on moment Gond). In other words, leg(x,w) = exp(, +
X0, +w), take (%, B1) to be fixed and sd{exp(W)} = 1 = a = . Assuming that al(x,w) O (0, J),

rewrite (9) as

elYoewB v Xp) ;| o |ECIXW.Z =2)-exp(f, + XA)
exp(ﬂo + Xﬁl) exp(ﬂo + Xﬂl) .

Now write expit(x + x5, + w) = d/(1 +q), whereq = gq(x,w); a second-order Taylor series expansion

X W|Z=z

of g/(1 +q) aroundq = 0 gives
E(Y|X =xW =w,Z = 2) = expit(8, + X3 +W) =q-q° +O(q’),
for smallg. We can ignore the remainder term and it foll e

£ JE(XW,Z=2)-exp(5, + XB)
X W|Z=z

X W|Z=z

exp(5, + XB,)

where E(qu|Z =2)<&E(e") =0 and so the error i©(J). In other words, the moment condition is

} ) X’WEIZ=Z(ew _1) - x,WIT:zzz(qu) =- E (ewq),

only as accurate as the event probabilities am r@ontrast this with the exogenous case, where th

additive moment condition error is
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E{Y - exp(ﬂo + Xﬂ1)|x = X} :W||x£:x{( e" _1) EXp(ﬂo + Xﬁl) -e” exp(2,6’o + 2X/81)} = 0(52)

which is an order smaller than the rare event appration itself.

Appendix 2: Consistency of marginal estimator
Result 1: Suppose MSM E(Y,) = g/X) is obtained under some structural model such as (7), where Y,
= hyOrw,u), ECY, | W= w) = ky(x,w) and (U, W) follow some unspecified joint distribution. Then
consider the conditions: (i) Y= Yx= 2} I(X = X)Yy; (ii) Ww Z; (iii) E(Y, | X, W, Z) = E(Y, |W, 2); (iv)
X1 W] Z and (V) Kyx,w) = gix). If either (a) conditions (i-iii,iv) hold, or (b) conditions (i,iii,v)
hold, then moment condition (12) is true; otherwise it does not. (Note that v is the symbol for

conditional independence here.)

Proof: We suppose that = E(Y, | W=w, U =u) =h(x, w, u) is structural model (7), such tHa(y, w,
u=EY|X=xW=w,U=u) =Y, E>Y, |W=w) = E{h(x, w, U)| W=w} = ky(x, w) andE(Yx) =
E{kysx: W} = gux) is the MSM. The expected value of the inner parthe estimating equation
conditional orZ is
E{(Y-g,(X)Z=23=E(YZ=2)-E{g,(X)Z2=2.
To show (a), consider the second term of the rigimd side:
E{g,(X)|Z2=2=E{> 1(X=X)g,(¥Z =2

=" Pr(X =Xz =2)g, ()

=" Pr(X =XZ = 2)E{k, (x, W)}

=3 [ Pr(x =Xz = 2)Prtw = w) E{h, (x U, w}dw

= ZXJ.W Pr(X = XZ = 2) PriV = w) E{ E(Y|X =xW =w,U)}dw, from(i)

= ZXIW Pr(X =Xz = 2) Priv = w) E{ E(Y|X =x,W =w,U, Z = 2}dw, redundancy

= ZXIW Pr(X =x,W =wZ = 2)E(Y|X =x,W = w,Z = z)dw, from (i, iv)

=E(Y|Z = 2),

and so it follows thaE{ Y —g/X) | Z =z} = 0, as required providegl,( ) is correct.

To show (b) follow Ten Havet al. (2003, appendix A), who give an alternative prassuming only
() and (iii). Following their argument

E{Y-9,(X)Z} = E E E{Y-g,(X)X,W,Z}

W|Z X|ZW

= E E {E(Y|X,W,2)-g,(X)}

WIZ X|Z W

= E E {E(Y,|X,W,Z)~-g,(X)} from(i)

W|Z X|ZW

= E E {E(Y,W,Z)-g,(X)} from(iii)

WIZ X|Z W

= E" PriX = xW = w,2){k, (xW) - g, ()},

w|z
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which is zero if condition (v) holds, that Is,(x, w) = g,(x), or if condition (iv) holds. By inspecting
the first equality of (A4) in Ten Hawt al. (2003), it can be seen that their proof makesuhgated

assumption.

Appendix 3: Identification of the LOR by thelogistic SMM
To show this, let/’ =¢ and write the generalised SMM estimator of Varatedt and Goetghebeur
(2003) as

E (b [{E(Y|X,Z =1)} - X¢1)=_E (b [o{E(Y|X,Z =0)} - X0]),

XiZ=1 XIz=0

whereb(a) = logit(@). Expanding
Pr(X =0Z =0)E(Y|X =Z =0) + Pr(X =1Z = 0)b™[b{ E(Y|X =1,Z =0)} -¢/]
=Pr(X =0Z =DE(Y|X =0,Z =1) + Pr(X =1|Z =1)b™[b{ E(Y|X =Z =1)} -¢/],

and rewriting as

Pr(X, = 0)E(Y,|X, = 0) + Pr(X, = )b [b{ E(Y,|X, =1)} -]

=Pr(X, = 0)E(Y,|X, =0) + Pr(X, = Db [b{ E(Y,|X, =1)} -],

similar arguments to those used for the proportibAT E gives

Pr(X, =Db'[b{ E(Y,|X, =1)} =] - Pr(X, = Db [b{ E(Y,|X, =1)} -]
E(X1 - Xo)

= E(Yo|x1 > X))

It can clearly be seen that, becalsés a non-separable function, generally the leftehaide is
determined by ‘always takers’ as well as complamd cannot admit a local interpretation (because
E(Y1[Xo=1) =E(Y1 [ Xo=X1=1) andE(Y; [X; =1) = Pri&o = 0 [X; = 1)E(Y1 | Xy > Xo) + Pro =1 |

X1 = 1E(Y1 [ Xo =X = 1)).

An exception to this rule is if the further conditithat complier and ‘always-takeY;-averages are
equal, namelyE(Y;y | X1 > Xg) = E(Y1 | Xo =X = 1), under which

w=b{E<Y1|x1>xo)}-b{E<X1-X0>E<Yolxl>xl>}

Pr(X, =1) - Pr(X, =1)
=b{E(Y,|X, > X,)} ~b{E(Y,|X, > X,)} =log(LOR),

because PK; = 1) — Pr&y = 1) = Prik; > Xg) = E(X1 — Xg) under monotonicity.
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Figure 1: A directed acyclic graph representingdittonal independence relationships implied by a
structural model foly given X andU and a non-ignorable selection mechanism, alonh tki¢ core
conditions that must be satisfied by instrumentalableZ. Each node represents a variable (square
nodes are observed and circular nodes are unoblsemables) with edges between variables
denoting pairs that are not conditionally independeDirected edges with arrows indicate causal
direction, and undirected edges indicate an assmeiabout which no causal direction is assumed.
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Glossary of important terms

Term

Definition

Random variable¥, X, C, Z

Structural model (simple)

Structural model (unobserved heterogeneity)

Partial effect (PE)

Average partial effect (APE)

Method of moments/Generalised method of
moments (GMM)

Mean separable

Potential outcomes

Exclusion restriction

Marginal structural model (MSM)
Structural mean model (SMM)

No effect modification (NEM)

* Y (binary) outcome

» Xexposure/treatment of interest

» Cobserved confounders/exogenous

covariates
e Zinstrumental variable (IV)
Parametric model for hois determined by,

C andU, whereU represents unobserved
confounders/omitted variables associated With

As almxcepty is determined b¥, C, U and
W, whereU now represents omitted variables
associated only withf, andW represents the
unobserved heterogeneity term associated with
bothY andX.

PEK) = %u(x, c)

The mean functionu(x,c) = E(Y|X =x,C =c)
is derived under a structural model.

APEKX) = EW(%/J(X, c,W) j

The mean function
H(x,c,w) = E(Y|X =x,C=cW=w) froma

structural model with unobserved heterogeneity.
Estimating equations derived from moment
conditionsE(U) = E(ZU) = 0 (orE(U) =E(U | 2)

= 0) which produce consistent estimators of
structural parameters if regularity conditions
satisfied.

A structural model is mean sepaifatde
residualU can be written as a function of the
structural model parameters and observed data.
Y(xy) orY, : the value ol which would have been
observed if the exposure has been sgthig
external intervention. The joint potential
outcomeY(z, x) additionally allows the value &f
to vary if the IV is also set by intervention. dse
in conjunction with definition oK(2) or X, to
define local parameters (section 8).

An essential property of ¥rstating that it must
only be associated witfithroughX, or
alternatively,Y(z, x) = Y(x).

A potential outcome model f&(Y, | C).

A potential outcome elqhrameterised in
terms of causal parameter defined conditionally
onX, C andz; e.g., a multiplicative SMM is
parameterised in terms of the logarithms of causal
risk ratios among the exposed group for each
level of Z.

Under NEM, the SMM paneters do not depend
on the IV.
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