

Models for potentially biased evidence in meta-analysis using empirically based priors

Nicky Welton

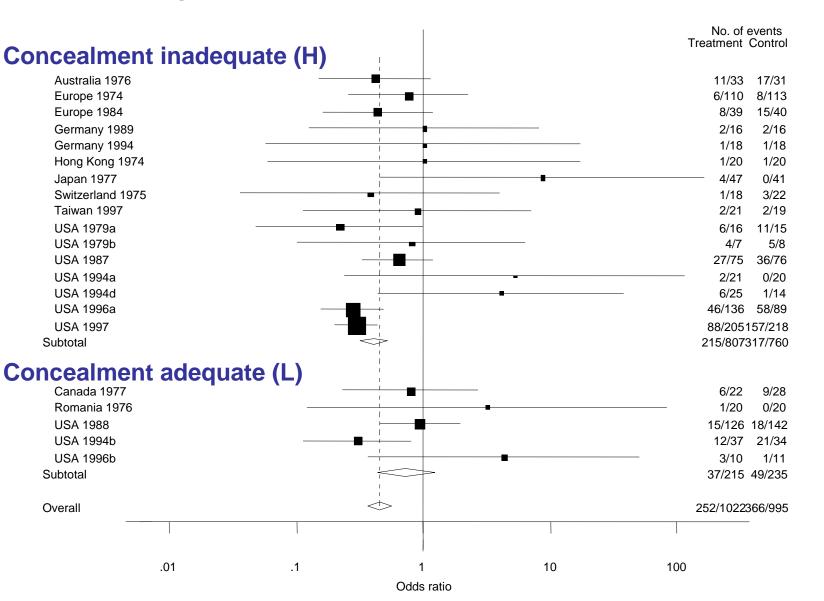
Thanks to: Tony Ades, John Carlin, Doug Altman, Jonathan Sterne, Ross Harris

RSS Avon Local Group Meeting, 25th May 2010

Department of Community Based Medicine

KIntroduction

- Meta-Analysis / Evidence Synthesis
 - Pooling of information from a set of RCT's comparing the same interventions
 - Pooled relative effect measure (e.g. Odds-Ratio)
 - To summarise a body of evidence (Cochrane)
 - Aid decision-making (Health Technology Assessment / NICE guidance)


KRisk of Bias

- Pooled treatment effects and resulting decisions
 - rely on integrity of evidence on which they are based
- Randomised Controlled Trials (RCT's)
 - considered the gold-standard evidence to inform relative treatment efficacy
- Even RCTs vary in quality
 - Is randomisation allocation adequately concealed?
 - Is there appropriate blinding?
 - Quality information routinely collected (Cochrane risk of bias tool)

Clozapine versus neuroleptic medication for schizophrenia

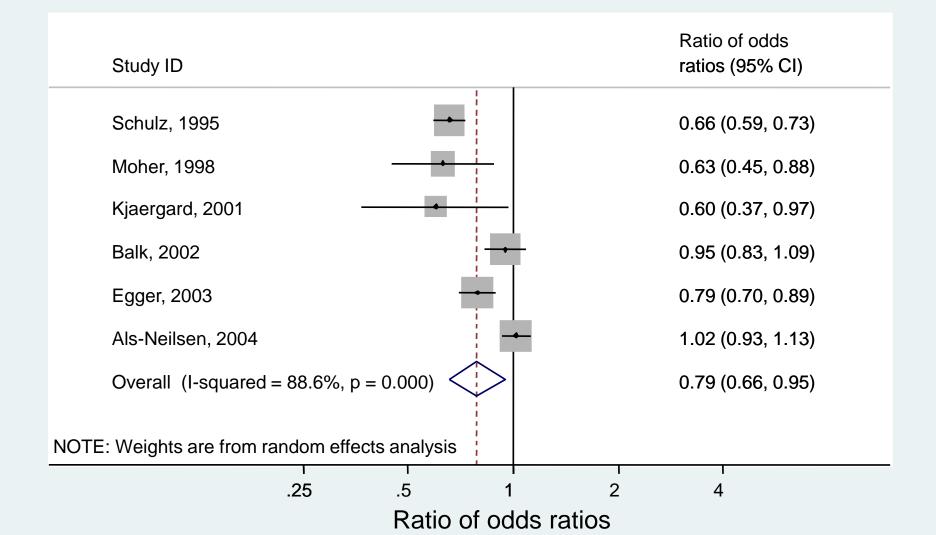
Should we include evidence at high risk of bias?

- Best available evidence approach
 - ignore evidence at high risk of bias
 - ... but evidence at low risk of bias may be relatively sparse
- All available evidence approach
 - Somehow combine high & low risk of bias evidence
 - In spirit of NICE, where focus is on decision analysis that reflects body of evidence available

We How to estimate and adjust for bias?

- Internally within meta-analysis?
 - High risk evidence contributes mainly to bias estimation, and very little to treatment effect estimates
- Use external evidence as priors
 - Elicitation from experts (Turner at al. JRSSA 2009)
 - Evidence-based from previous meta-analyses (Welton et al. JRSSA 2009)

Kela-epidemiology


(Naylor, BMJ 1997; 315: 617-619)

- Identify a large number of meta-analyses
 - "Meta-meta-analysis"
- Record characteristics of individual studies (eg adequate allocation concealment or blinding)
- Compare treatment effects within each metaanalysis (e.g. not double blind vs. double blind)
- Ratio of odds ratios comparing trials at high risk of bias (H) with those at low risk of bias (L)

Allocation concealment: combined evidence

KEstimating bias

- Previous studies have focussed on estimating mean bias
- But ...
 - there may be more between trial (within-metaanalysis) heterogeneity in H studies
 - expect mean bias varies between meta-analyses
- Suggests hierarchical model for bias
 - Estimated from meta-epidemiological data
 - Used to inform evidence based priors

Kelihood and treatment effect model

- Binary outcomes, r_{j,k,m^*}
 - Meta-analysis m*, study j, treatment k
 - Likelihood: $r_{j,k,m^*} \sim Bin(p_{j,k,m^*}, n_{j,k,m^*})$
- Logistic regression (bias indicator C):

$$logit(p_{j,k,m^*}) = \begin{cases} \mu_{j,m^*} & \text{Control Arm, k=0} \\ \mu_{j,m^*} + \delta_{j,m^*} + \beta_{j,m^*} C_{j,m^*} & \text{Treatment Arm, k=1} \\ \text{Baseline LogOR Bias} \end{cases}$$

Random effects for treatment effects, log(OR)'s:

$$\delta_{j,m^*} \sim N(d_{m^*}, \tau_{m^*}^2)$$

Kerne Bias Model

 Study specific bias is exchangeable between studies, within meta-analysis:

$$\beta_{j,m^*} \sim N(b_{m^*}, \kappa^2)$$

 Meta-analysis specific mean bias is assumed exchangeable between meta-analyses:

$$b_{m^*} \sim N(b_0, \varphi^2)$$

• Uncertainty in overall mean bias:

$$b_0 \sim N(B_0, V_0)$$

Use meta-epidemiological studies to provide inputs:

$$\kappa, \varphi, B_0, V_0$$

Kerning Hierarchical Prior from **Meta-Epidemiological Data**

- Schulz et al (1995): 33 meta-analyses; 250 trials; 79 L and 171 H trials
- Same likelihood & treatment effect model:

$$logit(p_{j,k,m}) = \begin{cases} \mu_{j,m} & \text{Control Arm, } k=0 \\ \mu_{j,m} + \delta_{j,m} + \beta_{j,m} C_{j,m} & \text{Treatment Arm, } k=0 \\ \text{Baseline LogOR Bias} & \text{Control Arm, } k=0 \end{cases}$$

1/1

$$\delta_{j,m} \sim N(d_m, \tau_m^2)$$

Din(n

Arm, k=1

Forming Hierarchical Prior from Meta-Epidemiological Data

• Same bias model:

$$\beta_{j,m^*} \sim N(b_{m^*}, \kappa^2)$$
$$b_{m^*} \sim N(b_0, \varphi^2)$$

- Priors are given to $b_{0,\kappa}$ and ϕ
- The resulting joint posterior for $b_{0,\kappa}$ and ϕ then provides the inputs for the new meta-analysis, m*
 - Could sample from the joint posterior to form prior
 - Or simply plug-in posterior summaries

Results from Schulz Analysis

Parameter	Mean	SD	Median	95% Credible Interval	
Schulz Analysis (Fixed treatment effect; k2 fixed)					
b_0	-0.46	0.108	-0.47	(66,25)	
к	0.15	0.106	0.13	(0.01, 0.39)	
φ	0.11	0.085	0.10	(0.00, 0.30)	

$$\hat{\kappa} = 0.13$$
 $\hat{\varphi} = 0.10$

$$\hat{B}_0 = -0.46$$
 $\hat{V}_0 = 0.108^2$

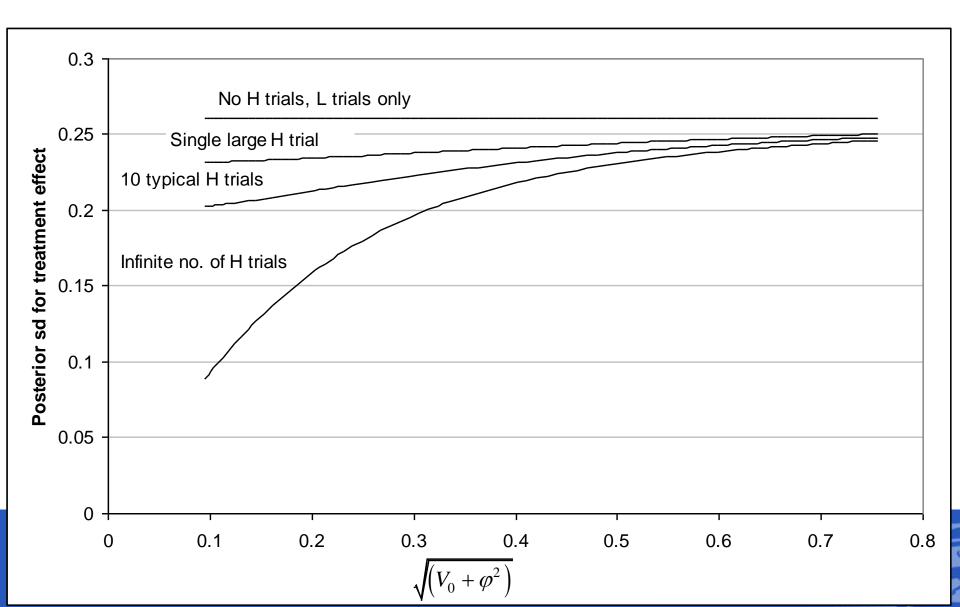
- Ideally use joint posterior distribution for κ and ϕ
- We found results robust to simply plugging in posterior medians for κ and ϕ

Kesults: Clozapine

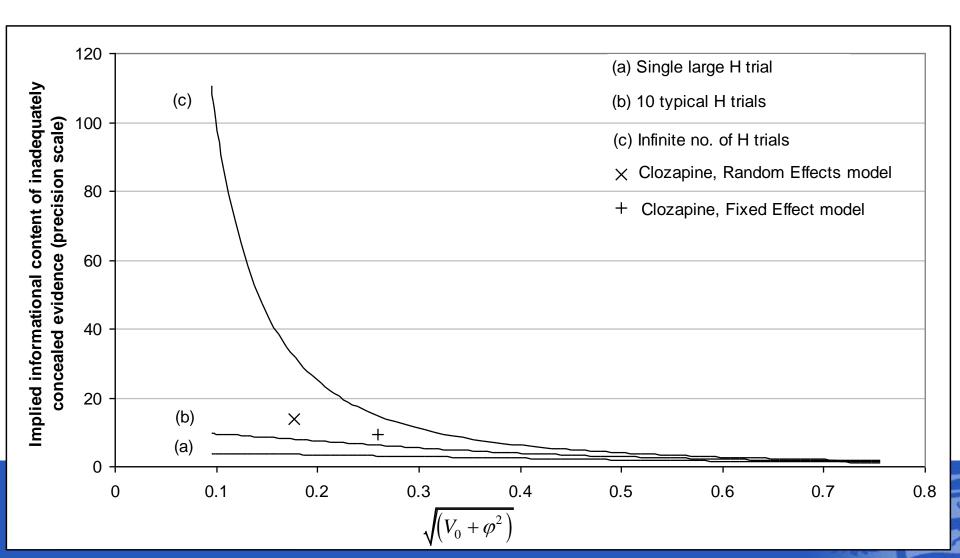
Data/Model	Mean (95% Credible Interval)		
Adequate Concealment, Face Value	-0.065 (-1.68, 2.84)		
Inadequate/Unclear Concealment, Face Value	-0.533 (-1.03, 0.13)		
All studies, Face Value	-0.452 (-0.88, 0.08)		
All studies, Bias Adjusted	-0.149 (-0.61, 0.43)		

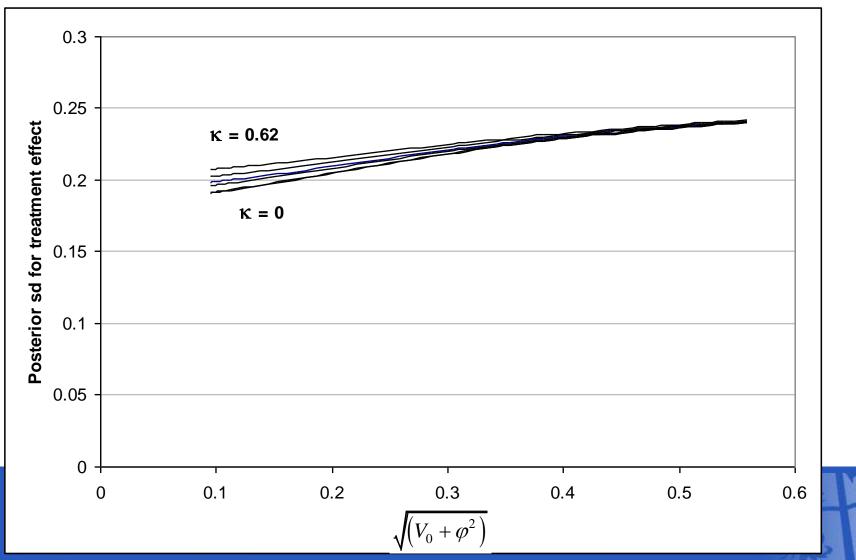
What have we assumed?

- Bias is exchangeable across trials within a meta-analysis (OK?)
- Mean bias is exchangeable across metaanalyses (BIG assumption)
 - More realistic if restrict to meta-analyses in similar clinical areas
 - ... but then this reduces size of evidence base available to inform hierarchical prior


K Comments

- The informational content of high risk trials is limited
 - Even large trials downweighted by V₀+ κ + ϕ
 - Even if infinitely many trials posterior variance depends on V_0+ ϕ
- Increasing no. of meta-analyses to form prior:
 - Potentially can reduce V_0 , but not κ or ϕ
- Reducing variety of meta-analyses may reduce $\boldsymbol{\phi}$
 - But only at the expense of increasing $V_0 \dots$




Posterior sd of treatment effect

Informational content of high risk studies

Posterior sd of treatment effect

Consequences for Decision Modelling

- Decisions made by decision-makers such as NICE need to be accepted by patient groups, pharmaceutical industry ...
- Down-weighting evidence may to lead to appeal
 - if dependent on choice of model
 - if dependent on inclusion criterion for evidence-based prior
- Assessment of model fit & sensitivity analysis to model inputs crucial if decisions based on these models are to have credence in practise

Kerror BRANDO (Bias in Randomised and Observational Studies)

- Previous meta-epidemiological studies produced conflicting results
- Combine data from all existing empirical studies into a single database
 - Seven studies contributed data on both trial characteristics and intervention effects
- Final database contains data on 2572 trials
- Restricted to meta-analyses where it was clear in which direction the bias acts

KSensitivity to priors

- Extreme sensitivity to priors for variance parameters
 - Although mean bias estimates robust
- Simulation exercise
 - Using typical study results from BRANDO
- Most priors performed badly
- Inverse-Gamma priors for variance parameters (e.g. IG(.001,.001)) performed best

KSummary

- Evidence that poor methodological quality introduces bias
- In pairwise meta-analysis
 - can adjust for and down-weight studies using external evidence
- Sensitivity analyses important
- Assumes exchangeability within and between meta-analyses

