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Summary. A common application of multilevel models is to apportion the variance in the
response according to the different levels of the data.Whereas partitioning variances is straight-
forward in models with a continuous response variable with a normal error distribution at each
level, the extension of this partitioning to models with binary responses or to proportions or
counts is less obvious. We describe methodology due to Goldstein and co-workers for appor-
tioning variance that is attributable to higher levels in multilevel binomial logistic models. This
partitioning they referred to as the variance partition coefficient.We consider extending the vari-
ance partition coefficient concept to data sets when the response is a proportion and where the
binomial assumption may not be appropriate owing to overdispersion in the response variable.
Using the literacy data from the 1991 Indian census we estimate simple and complex variance
partition coefficients at multiple levels of geography in models with significant overdispersion
and thereby establish the relative importance of different geographic levels that influence edu-
cational disparities in India.

Keywords: Contextual variation; Illiteracy; India; Multilevel modelling; Multiple spatial levels;
Overdispersion; Variance partition coefficient

1. Introduction

Multilevel regression models (Goldstein, 2003; Bryk and Raudenbush, 1992) are increasingly
being applied in many areas of quantitative research. Multilevel models reflect the fact that many
social and biomedical science data sets contain identifiable units or clusters of observations, e.g.
children from the same school or voters from the same electoral ward. Observations from such
a data set generally are not independent, and it is important to model any dependence that
exists.

By using multilevel modelling, we can account for the interdependence of observations by
partitioning the total variance into different components of variation due to various cluster
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levels in the data. Partitioning the variance is not simply of technical value; rather the appor-
tioned variances are of substantive interest in much of social science and biomedical research.
As we shall demonstrate, ascertaining the relative importance of different levels gives important
insights to the level ‘at which the action lies’. A by-product of such a decomposition of variation
is the intraclass correlation, which is the correlation between two individual observations in the
same higher level unit. In the simplest two-level case, the variation can be partitioned into a
higher level component based on differences between higher level units and a lower level residual
component. These higher level units may be schools, clinics, neighbourhoods or sampling units.
Such a model with only one random variable at each level is known as a variance components
model. In the two-level variance components model, the intraclass correlation is equal to the
percentage of variation that is found at the higher level, which we shall generally call the var-
iance partition coefficient (VPC) although this equivalence is not true for a general multilevel
model.

Whereas partitioning variances is straightforward in models with a continuous dependent
variable with a normal error distribution at each level, the extension to models with binary
responses, or to proportions or counts is less obvious. Goldstein et al. (2002) described how to
extend the definition to binary response models and gave several methods to evaluate the VPC
for such models. In this paper, we describe how to extend the definition to general binomial
response models and illustrate three of the methods that were described in Goldstein et al. (2002).
In particular, we focus on models where the response is a proportion and where the binomial
assumption may not be appropriate as overdispersion is likely. Other accounts of partitioning
variance in binomial response models can be found in Commenges and Jacqmin (1994) and
Snijders and Bosker (1999).

This paper has twin focuses: methodological, in that we wish to present a framework for
estimating VPCs for complex models, and substantive, in that we apply this methodology to
gain insights on the multiple geographies of illiteracy in India.

The paper is divided up as follows. In Section 2, we provide background material about gen-
eral binomial response models and discuss two approaches that can be used to account for extra
binomial variation. In Section 3, we define the VPC for normal models and suggest how to
extend it to binomial models with overdispersion and then describe three methods that we can
use for calculating the VPC. Section 4 considers an example application using literacy data from
the 1991 Indian census, and we conclude with some discussion on the ideas that are introduced
in this paper.

2. Binomial response models

Binary response data occur often in both the social and the biomedical sciences; for example we
may have data on whether people have a disease (1) or not (0) or we may have data on whether
children pass (1) or fail (0) a particular examination. In the example in Section 4 the response
of interest will be whether or not a person is illiterate. Often when such data are collected,
although the responses exist at the individual level, the data are not released at the individual
level for confidentiality. Consequently, we do not have any predictor variables that are readily
available at this level. However, individual data are routinely available merged into a proportion
or count at a higher level based on population grouping. In our example, although the data
were collected for each individual, they have been transformed into proportions for 12 possible
categories of individual within a district in India. As described elsewhere, such data structures
are no different from structures where we have individual data (see Subramanian et al. (2001)).
We shall describe the categories within district units as ‘cells’ and each person in each cell shares
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the same predictor variables, so no additional information is obtained by separating out the
observations.

We shall now assume a binomial model for each cell, so that

yi ∼binomial.ni, pi/

where, in cell i, yi is the count of people who are illiterate, ni is the number of people and pi is the
unknown underlying probability of being illiterate. We shall then fit a relationship between the
unknown probability and our predictor variables, typically through a logistic (or alternatively
probit) regression. Here for the logistic case we have

logit.pi/=XT
i β

where Xi is a vector of known predictor variables and the expression XT
i β is referred to as the

linear predictor (McCullagh and Nelder, 1989). This model assumes independence between the
ni observations and so assuming that we have included the correct variables in the linear pre-
dictor then all the variation in the counts, conditional on the estimates of the probabilities, will
be binomial with variance equal to nipi.1−pi/ for cell i.

The binomial is not the only possible distribution for fitting to proportion data and there
are other distributions that have greater variation (known as overdispersion) or less variation
(known as underdispersion) than the binomial distribution conditional on the values of the
pis.

2.1. Approaches for dealing with overdispersion
There are two main approaches to dealing with the problem of overdispersion. The first method,
as described in section 4.5 of McCullagh and Nelder (1989), is the idea of multiplicative over-
dispersion; this idea dates back to Bartlett (1937). Here, we add a multiplicative scale factor to
the variance of the response and so we have

var.yi/= snipi.1−pi/

where s is a scale factor which will equal 1 if we have binomial variation, will be greater than 1
if there is overdispersion and less than 1 if there is underdispersion. The advantage of the mul-
tiplicative approach is that it allows both overdispersion and underdispersion and we do not
need to fit a particular distributional form for the overdispersion. However, we no longer have
a true binomial distribution and consequently we cannot write down the likelihood, although
moment-based or quasi-likelihood methods exist (see also Williams (1982) for a maximum like-
lihood approach to a single-level binomial model). We shall, in this paper, use the alternative
approach of additive overdispersion, which does allow a full likelihood representation. It should
be noted that the beta–binomial distribution (Crowder, 1978), which involves assuming that the
probabilities for the individual units are themselves from a beta distribution, is an alternative
multiplicative approach that does have a likelihood that can be evaluated although the multi-
plicative factor is in this case not a constant.

In the additive approach we add an additional random term to our model that accounts for
the overdispersion. Here, we shall fit a binomial normal model as this links directly with the mul-
tilevel approach. Basically we fit for each observation an additional normally distributed error
term, which will capture any overdispersion. This model can actually be fitted as a multilevel
logistic regression model in standard multilevel modelling software such as MLwiN (Rasbash
et al., 2000) with the introduction of an additional ‘pseudo’-level. The logistic link model can
then be written
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yij ∼binomial.nij, pij/,

logit.pij/=XT
ijβ +uij,

uij ∼N.0, σ2
u/:

Here we consider the normally distributed random effects uij as being at level 2 in a two-level
hierarchy which has exactly the same set of units at level 1 and level 2, i.e. each level 2 unit has
exactly one level 1 unit. This at first may seem strange, but one could consider the proportion
response as consisting of several dichotomous responses and, hence, in essence we are fitting
these 0–1 responses at level 1 and the set of responses that make up the proportions comprise
the level 2 units, and now we have a standard two-level multilevel model. Of course, we do
not actually have to separate the individual responses as the two models are equivalent. This
is important, as, when we come to working out the VPCs for the models later, we assume a
denominator of 1 at the bottom level. Now that we have established that the additive approach
for overdispersion can be fitted simply in a multilevel framework, we shall extend the definition
of the VPC to such models.

3. Variance partition coefficients

Goldstein et al. (2002) introduced the VPC to describe the percentage of variation in a data set
that is attributed to a particular level or classification in the data set. Let us assume a general
two-level normal response model as follows:

yij =XT
ijβ +ZT

ijuj + eij, i=1, . . . , nj, j =1, . . . , J ,

uj ∼MVN.0, Ωu/,

eij ∼N.0, σ2
e /:

Here we have β as an f ×1 vector of fixed effects and uj as an r ×1 vector of random effects
for unit j: Let us assume for example that the data are from education and we have children
nested within schools; then the VPCij for the schools is the percentage of variation explained
by the school level differences for individual i in school j:

VPCij = ZT
ijΩuZij

ZT
ijΩuZij +σ2

e

:

If we simply have a random intercept at level 2 (i.e. if r = 1 and Zij = 1 ∀i, j) then the VPC
is constant across individuals and is equal to the intraclass correlation but, for more complex
models where other random terms exist, the VPC will be a function of predictor variables. If we
have further levels in the data, then the denominator in the VPC equation will also include the
variances at these additional levels.

3.1. Estimation of variance partition coefficients in binomial models with additive
overdispersion
Earlier we described how additive overdispersion can be fitted by using a standard multilevel
model with an additional pseudo-level, i.e. we assume that the overdispersion terms are at level
2 where level 2 is in fact identical to level 1. To write this out explicitly for a logistic link function,
while allowing for simple higher level random effects, we would have
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yijk ∼binomial.nijk, pijk/,

logit.pijk/=XT
ijkβ +vk +ujk,

vk ∼N.0, σ2
v/,

ujk ∼N.0, σ2
u/,

i=1, . . . , njk, j =1, . . . , nk, k =1, . . . , K:




.3:1/

Here we now have a three-level model owing to the additional overdispersion level. Xijk are
the fixed predictor variables with corresponding coefficients vector β of length f . The ujk are
the additive overdispersion random effects with variance σ2

u. The vk are the higher level random
effects with variance σ2

v . It should be noted that njk =1∀j, k as there is exactly one level 1 unit for
each level 2 unit. We shall use a version of this model in our analysis of the illiteracy data that fol-
lows. In this case we shall have counts of illiterate people for each of a collection of cells (groups
of people) that are nested within districts. In this example i indexes the cells, j is a device to incor-
porate overdispersion and k indexes the districts with nk being the number of cells in district k:

We can expand the model by allowing additional higher level random coefficients or allowing
the overdispersion to vary with predictor variables as we show later. Now the level 1 variance is
binomially distributed and so is a function of the fixed part of the model and Goldstein et al.
(2002) showed that, therefore, the VPC would be a function of the predictor variables. It should
also be noted that in the binomial case with unequal denominators nijk the variance is also a
function of the denominator. Here, however, we shall use the equivalence between the model
with proportions and an expanded model with the individual binary responses at a lower level
to define the VPC in terms of individuals.

Goldstein et al. (2002) considered four approaches that can be used to estimate the VPC in a
simple binary response model and we here extend three methods to the overdispersed binomial
response case. The fourth method involved treating the response as normally distributed and so
is inappropriate here.

3.2. Method A—model linearization
If we consider evaluating pijk at the mean of the distribution of both the higher level residuals
and the overdispersion effects then for the logistic model we have

pijk = exp.XT
ijkβ/

1+ exp.XT
ijkβ/

with first derivative with respect to the fixed part predictor .XT
ijkβ/

p′
ijk = pijk

1+ exp.XT
ijkβ/

:

We can then use a first-order Taylor series expansion of pijk around the above mean to write
our model (3.1) in the form

yijk = .XT
ijkβ +vk +ujk/p′

ijk + eijk
√{pijk.1−pijk/},

var.eijk/=1:

We then have the formula for VPCijk at the higher level as follows:

VPCijk = σ2
vp2

ijk={1+ exp.XT
ijkβ/}2

.σ2
v +σ2

u/p2
ijk={1+ exp.XT

ijkβ/}2 +pijk.1−pijk/

and we estimate this with sample estimates for all the unknown parameters.
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3.3. Method B—simulation
The simulation method consists of the following steps.

(a) Fit the three-level model (3.1) by using a suitable estimation method.
(b) From the fitted model simulate a large number (M) of values for the higher level random

effects, from the distribution N.0, σ2
v/:

(c) For each of the generated higher level random effects, simulate a large number (m) of
values for the overdispersion random effects, from the distribution N.0, σ2

u/:

(d) For a particular choice of the fixed predictors Xijk compute the T =Mm corresponding
values of pijk (p.r/

ijk), r =1, . . . , T , by using the antilogit function. For each of these values
compute the level 1 binomial variance σ2

rijk =p
.r/
ijk.1−p

.r/
ijk/:

(e) For each of the M higher level random-effect draws calculate the mean of the m generated
p

.r/
ijk, p

.R/
ijk .

(f) The coefficient VPCijk is now calculated as

VPCijk =σ2
3=.σ2

2 +σ2
1/

where
σ2

3 =var.p.R/
ijk /,

σ2
2 =var.p.r/

ijk/,

σ2
1 =∑

r
σ2

rijk=T:

3.4. Method C—latent variable approach
Here we assume that the true underlying variable is continuous but we can only observe a binary
response that indicates whether the underlying variable is greater or less than a given threshold.
In the logistic regression model, the underlying continuous variable will come from a logistic
distribution, with a variance of π2=3, and hence we substitute this for the level 1 variance,
resulting in the formula

VPCijk = σ2
v

σ2
v +σ2

u +π2=3
:

The three methods will not give the same estimates of the VPC although we expect reason-
able agreement between methods A and B when the Taylor series approximation is reasonable.
Method C may give estimates that are quite different from those of the other methods as it
assumes that the level 1 variance is fixed and independent of the predictor variables. We shall
see more of the differences between the methods in the example in the next section.

4. An application to the 1991 Indian census data on literacy

Our example consists of data from the 1991 Indian census on levels of literacy in the popu-
lation that were originally analysed by Subramanian et al. (2000, 2001). The data set has two
geographical levels—state and district with 442 districts nested within 29 states. Within each
district, the individuals are categorized into one of 12 ‘cells’. Each of the individuals in each cell
shares the same values of the three categorical predictor variables: gender, social caste (tribe,
caste or general or other) and whether they live in a rural or urban area. The cells are then
treated as a lower level unit nested within each district. Some districts do not have individ-
uals from all 12 types of cell and in total we have 5045 cells, which contain between one and
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4425806 individuals. The response in each cell is then the proportion of illiterate individuals
and we shall fit models with an additive overdispersion term. Our models are then equivalent to
fitting individuals nested within cells (as we have no individual level predictors) nested within
districts nested within states (in later models) with random effects for the variation at the cell,
district and state levels.

All models were estimated by using both the MLwiN (Rasbash et al., 2000) and WinBUGS
(Spiegelhalter et al., 2000, 2003) software packages. The three methods that were used to calcu-
late the VPC can take estimates obtained by any estimation method and so we first considered
the quasi-likelihood methods that are available in MLwiN. It should be noted that estimates from
quasi-likelihood methods such as marginal quasi-likelihood (MQL) and penalized quasi-likeli-
hood (PQL) for fitting binary response models underestimate variance parameters (Rodrı́guez
and Goldman, 1995; Goldstein and Rasbash, 1996). Of the quasi-likelihood methods PQL
estimation is less biased than MQL; however, with our data set we had difficulty in achieving
convergence with the PQL method (see Goldstein (1991) for details) and so for our models we
considered only first-order MQL estimation. It has been shown (Browne, 1998) that Markov
chain Monte Carlo (MCMC) methods with diffuse priors are less biased than quasi-likelihood
methods for binary response models and we also considered MCMC estimation for our models.

It is important to choose an efficient MCMC estimation method for this data set, partic-
ularly because of the large population sizes in some of the individual cells. Initially we tried
the single-site Metropolis algorithm that was used in MLwiN (Rasbash et al., 2000) but this
gave chains which were heavily correlated and did not converge in a finite number of iterations.
MLwiN does not (currently) use the technique of hierarchical centring (Gelfand et al., 1995)
which has an enormous effect on the behaviour of the Markov chains in this example. Hierar-
chical centring involves reparameterizing the model with the aim of using an alternative set of
parameters that are less correlated. This will not change the model but is simply an alternative
MCMC algorithm for the same model. Without using hierarchical centring we have for each of
the cells the underlying probability being estimated by the sum of the fixed effects and several
random effects. These terms are extremely highly negatively correlated for cells with large pop-
ulations and consequently the MCMC methods produce chains that drift rather than converge
quickly.

We therefore switched to WinBUGS in which we can implement hierarchically centred for-
mulations of our models. We initially tried WinBUGS 1.3 (Spiegelhalter et al., 2000) but this
could not fit our models as the biggest denominators (population sizes) were too big for the
adaptive rejection sampler algorithm to work (in the WinBUGS 1.3 implementation, which
consequently gives an error message). This problem, however, appears to have been fixed in
WinBUGS 1.4 (Spiegelhalter et al., 2003). As will be seen in the first model that follows, the
underestimation of the variance parameters in the MQL method results in a large underestima-
tion of the VPC estimates when compared with the MCMC method. This underestimation is
common to all the other models that we consider and therefore we quote only MCMC estimates
for these other models.

4.1. A simple two-level variance components binary response model with overdispersion
One potential use of the VPC in this data set would be to identify at what level of geography
the greatest variability lies. This could be useful if, for example, we wished to initiate a scheme
to improve the rate of literacy of the whole population. If we were then to discover that the
variation between states is greater than the variation between districts then this will suggest
targeting the states with low rates of literacy rather than individual districts.
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An alternative use of the VPC is to gain insights into the aetiological aspects that are seen to
shape illiteracy. For instance, in India the levels of state and district are not simply administrative
units for data collection and dissemination; rather they represent distinct levels at which causal
processes affecting illiteracy occur. Whereas a greater variation at the state level would imply
dominance of the sociopolitical and financial processes that influence illiteracy, the dominance
of the district level would suggest the relative importance of administrative processes. Given that
education in India is primarily the responsibility of the states, we can expect a substantial varia-
tion between them; at the same time the districts within the states are in charge of implementing
educational initiatives and it is not clear how these may differ within the states.

We shall firstly ignore the state level and all predictor variables, however, and fit the model

yijk ∼binomial.nijk, pijk/,

logit.pijk/=β0 +vk +ujk,

vk ∼N.0, σ2
v/,

ujk ∼N.0, σ2
u/,

i=1, . . . , njk, j =1, . . . , nk, k =1, . . . , 442:




.4:1a/

Note that this model is a special case of model (3.1) where we have a scalar β0 instead of a
vector β and the X-vector simply consists of a constant. Again i indexes the cells, j is a device
to incorporate overdispersion and k indexes the districts, with nk being the number of cells
in district k. We ran first-order MQL estimation and obtained the estimates that are shown in
Table 1.

Hierarchical centring then involves reparameterizing the model as follows:

yijk ∼binomial.nijk, pijk/,

logit.pijk/=uÅ
jk where uÅ

jk =β0 +vk +ujk,

uÅ
jk ∼N.vÅ

k , σ2
u/ where vÅ

k =β0 +vk,

vÅ
k ∼N.β0, σ2

v/,

i=1, . . . , njk, j =1, . . . , nk, k =1, . . . , 442:




.4:1b/

The MCMC algorithm will now consider uÅ
jk and vÅ

k instead of ujk and vk as parameters in
the model that need to be estimated. Then, adding a flat prior for the intercept β0 and inverse
gamma priors for the two variance parameters σ2

v and σ2
u, we can create an ‘equivalent’ Bayesian

formulation of the model. This was run in WinBUGS for 10000 iterations following a burn-in of
500 iterations. The (posterior mean) point estimates and 95% credible intervals are also shown
in Table 1. We can clearly see here the underestimation of the MQL method for the variance
parameters.

Table 1. First-order MQL parameter estimates and MCMC posterior means (and
95% credible intervals) for model (4.1)

Parameter 1st-order MQL estimate MCMC estimate
(standard error) (credible interval)

β0—intercept −0.021 (0.025) 0.008 (−0.058, 0.076)
σ2

v—district level variance 0.199 (0.018) 0.383 (0.320, 0.454)
σ2

u—overdispersion variance 0.764 (0.016) 1.349 (1.293, 1.408)
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Table 2. VPC estimates for model (4.1) based on first-order MQL
estimates and MCMC posterior means

Method District VPC estimate District VPC estimate
(1st-order MQL) (%) (MCMC) (%)

A, linearization 4.01 6.68
B, simulation 3.45 (MCSE 0.016) 5.40 (MCSE 0.033)
C, latent variable 4.68 7.62

The figures in parentheses here and in the other tables of estimates are estimated asymptotic
standard errors (see Longford (2000)).

We used the three methods to calculate the VPC based on the point estimates from both MQL
and MCMC methods. We find that both the linearization and the latent variable approaches are
relatively straightforward whereas the simulation approach is slower as it evaluates 25 million
estimates of the underlying probability pijk: As the simulation approach is stochastic we ran
it 10 times with different random-number seeds and the Monte Carlo standard error (MCSE)
for the average of these runs is included with the estimates here and in later models. The VPC
estimates for the three methods are given in Table 2.

We can see that there are differences in the three estimates but all three methods estimate the
VPC to be fairly small (between 3% and 5% for MQL). There are, however, bigger differences
between the VPC estimates that were produced by using MQL and MCMC estimation, with
the VPC estimates from MCMC sampling ranging between 5.4% and 7.7%. For this reason we
shall only give estimates from MCMC estimation for the rest of this paper. In Section 4.5 we
shall show how to construct interval estimates for the VPC that is produced by methods A and
C for this model. It is worth noting that the cell level variation is over three times the variation
at the district level and this suggests that within districts there are large differences in literacy
rates between the 12 types of people. We could therefore next consider fitting cell level predictor
variables to account for these differences.

4.2. Adding cell level predictor variables
We can next consider fitting some fixed predictors into our model. Such a model can be writ-
ten

yijk ∼binomial.nijk, pijk/,

logit.pijk/=β0 +XT
ijkβ +vk +ujk,

vk ∼N.0, σ2
v/,

ujk ∼N.0, σ2
u/,

i=1, . . . , njk, j =1, . . . , nk, k =1, . . . , 442:




.4:2a/

This model is the same model (3.1) that we used in Section 3 to describe the three methods. We
have, however, separated the intercept β0 from the rest of the fixed effects and so in our example
the fixed effects vector β is of length 6. Hierarchical centring can be less effective in models with
additional fixed effects as the reparameterization only involves the intercept; however, in the
case of overdispersion the use of the pseudo-level means that the predictor variables XT

ijk can in
fact be written XT

jk and we can reparameterize our model as follows:
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yijk ∼binomial.nijk, pijk/,

logit.pijk/=uÅ
jk where uÅ

jk =β0 +XT
jkβ +vk +ujk,

uÅ
jk ∼N.XT

jkβ +vÅ
k , σ2

u/,

vÅ
k ∼N.β0, σ2

v/,

i=1, . . . , njk, j =1, . . . , nk, k =1, . . . , 442:




.4:2b/

Again we add flat priors for the fixed effects, β and inverse gamma priors for the two variance
parameters σ2

v and σ2
u to complete the Bayesian formulation. The reparameterization means

that WinBUGS can use conjugate Gibbs sampling for all parameters except uÅ
jk, which again

greatly improves the mixing. The parameter estimates for this model are given in Table 3. Sig-
nificant main effects for gender, social class and urban or rural habitation were found along
with significant interactions between gender and urban or rural habitation, and between caste,
social class and urban or rural habitation.

Here we see that accounting for the different types of people has reduced the cell level variation
as expected. This model gives different estimated probabilities of illiteracy for the 12 possible
cell types and in Table 4 we give estimated probabilities along with estimated VPCs based on
methods A and B for the 12 types.

Table 3. Parameter estimates for model (4.2)

Parameter MCMC estimate (95% credible interval)

β0—intercept −0.713 (−0.789, −0.639)
β1—female 1.437 (1.393, 1.481)
β2—caste 0.696 (0.646, 0.746)
β3—tribe 0.993 (0.954, 1.033)
β4—urban −1:034 (−1.084, −0.983)
β5—caste × urban 0.350 (0.285, 0.414)
β6—female × urban −0.339 (−0.402, −0.276)
σ2

v—district level variance 0.467 (0.407, 0.539)
σ2

u—overdispersion variance 0.314 (0.301, 0.328)

Table 4. District VPC estimates for the 12 types of cell in model (4.2)

Type of cell Probability of VPC VPC method B
illiteracy method A (%) (MCSE) (%)

Male–other–rural 0.329 8.79 8.05 (0.03)
Male–other–urban 0.148 5.37 5.89 (0.03)
Female–other–rural 0.674 8.77 8.03 (0.04)
Female–other–urban 0.343 8.95 8.13 (0.03)
Male–caste–rural 0.496 9.77 8.57 (0.03)
Male–caste–urban 0.332 8.82 8.06 (0.03)
Female–caste–rural 0.805 6.52 6.69 (0.04)
Female–caste–urban 0.598 9.45 8.41 (0.04)
Male–tribe–rural 0.569 9.61 7.99 (0.03)
Male–tribe–urban 0.320 8.69 7.99 (0.03)
Female–tribe–rural 0.848 5.48 5.97 (0.04)
Female–tribe–urban 0.585 9.53 8.45 (0.04)
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Note that the Taylor series approximation method gives larger estimates than does the simula-
tion method for probabilities that are close to 0.5 and smaller estimates for extreme probabilities.
By interpolation the methods give the same estimates for probabilities of illiteracy of approx-
imately 0.23 and 0.77. If we were to plot the probability distribution functions for both the
standard normal and the logistic distributions then we shall see that they cross at two points
and these values, when converted to cumulative probabilities from the logistic distribution, are
very close to these probabilities.

Method C is independent of the predictors and hence in this case gives the VPC estimate
0:467=.0:467+0:314+3:29/=11:47% for all types of cell.

The probabilities show that, if we wished to target particular groups of the population to
improve literacy, then females from rural areas tend to have the lowest rates of literacy. In terms
of variation between districts, the males in rural areas have greater variability in rates of literacy
between districts, and so it might also be useful to consider targeting this group in districts
where their rates of literacy are low.

4.3. Adding the state level
We now consider the additional third level in our data structure: the states in which the districts
are nested. We shall firstly consider fitting just a constant term in the fixed part of the model.
The extensions to all three methods to include an additional level are fairly routine. We now
obtain two VPC estimates, one for each of the state and district level. The simulation-based
method is now computationally extremely time consuming as it involves an additional level of
looping and hence we reduced the size of M from 5000 to 500, to compare all three methods.
We then have the model

yijkl ∼binomial.nijkl, pijkl/,

logit.pijkl/=β0 +v
.s/
l +v

.d/
kl +ujkl,

v
.s/
l ∼N.0, σ2

s /,

v
.d/
kl ∼N.0, σ2

d/,

ujkl ∼N.0, σ2
u/,

i=1, . . . , njkl, j =1, . . . , nkl, k =1, . . . , nl, l=1, . . . , 29:




.4:3/

Here i indexes the cells, j is a device to incorporate overdispersion, k indexes the districts,
with nkl being the number of cells in district k, and l indexes the states, with nl being the number
of districts in state l: We have three sets of random effects, the higher level state and district
random effects are defined by v

.s/
l and v

.d/
kl respectively and the overdispersion random effects are

defined by ujkl: We can again apply hierarchical centring to reparameterize this model and add
diffuse prior distributions in a similar way to model (4.1a). Running this model using MCMC
estimation gives the estimates that are given in Table 5.

From our initial inspection we can see that the variability between the 29 states is far greater
than the variability between the districts within the states. The corresponding VPC estimates
are given in Table 6.

This suggests that the variability between the districts that was seen in model (4.1a) is mainly
variability between the states in which the districts reside. In terms of targeting population
groups this suggests that it would be more useful to consider whole states with poor rates of
literacy rather than individual districts.
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Table 5. Parameter estimates for model (4.3)

Parameter MCMC estimate (95% credible interval)

β0—intercept −0.394 (−0.654, −0.135)
σ2

s —state level variance 0.455 (0.246, 0.811)
σ2

d—district level variance 0.042 (0.022, 0.066)
σ2

u—overdispersion variance 1.346 (1.290, 1.402)

Table 6. VPC estimates for model (4.3)

Method State VPC estimate (%) District VPC estimate (%)

A, linearization 7.59 0.70
B, simulation 6.19 (MCSE 0.08) 0.59 (MCSE 0.001)
C, latent variable 8.87 0.81

4.4. Adding complex variation at the cell level
For our final model we shall consider removing the restriction that the amount of overdispersion
is the same for all types of cell. Thus we shall allow a different overdispersion variance for each
of the 12 types of cell and we shall reintroduce the fixed effects from model (4.2a) to give

yijkl ∼binomial.nijkl, pijkl/,

logit.pijkl/=XT
ijklβ +v

.s/
l +v

.d/
kl +ujkl,

v
.s/
l ∼N.0, σ2

s /,

v
.d/
kl ∼N.0, σ2

d/,

ujk1 ∼N.0, σ2
uj/,

i=1, . . . , njkl, j =1, . . . , nkl, k =1, . . . , nl, l=1, . . . , 29:




.4:4/

Once again we can reparameterize this model in a similar way to model (4.2a) and add diffuse
priors. The MCMC parameter estimates for this model are given in Table 7.

Now that we have estimated the overdispersion separately for each type of cell all three
methods will give different values of the VPC for each type. As method B is computationally
burdensome here we simply quote estimates from methods A and C in Table 8.

Here again we see that the latent variable method always gives higher estimates. The VPC
for states varies between 3.6% and 8.5% with method A and 8.5% and 10.1% with method C
whereas district differences are less important with VPCs between 1.0% and 2.6% and 2.5% and
3.0% respectively.

4.5. Interval estimates for the variance partition coefficient
It was mentioned earlier that MCMC methods will give less biased estimates for the variance
parameters in our data set and hence will give better estimates of the VPC. Another advan-
tage of MCMC methods (and simulation-based estimation methods in general) over the MQL
and PQL methods is that they produce not just a point estimate (and standard error) but also
chains of sample estimates from the (joint) posterior distribution of interest. It is therefore pos-
sible to perform the three VPC methods using the parameter estimates that are obtained at each
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Table 7. Parameter estimates for model (4.4)

Parameter MCMC estimate (95% credible interval)

β0—intercept −1.055 (−1.306, −0.816)
β1—female 1.409 (1.365, 1.453)
β2—caste 0.683 (0.639, 0.728)
β3—tribe 0.999 (0.951, 1.047)
β4—urban −1.025 (−1.070, −0.979)
β5—caste × urban 0.366 (0.311, 0.420)
β6—female × urban −0.319 (−0.375, −0.265)
σ2

s —state level variance 0.393 (0.213, 0.691)
σ2

d—district level variance 0.118 (0.100, 0.138)
σ2

u1—male–other–rural 0.195 (0.167, 0.227)
σ2

u2—male–other–urban 0.165 (0.140, 0.194)
σ2

u3—female–other–rural 0.203 (0.175, 0.236)
σ2

u4—female–other–urban 0.094 (0.078, 0.112)
σ2

u5—male–caste–rural 0.141 (0.120, 0.166)
σ2

u6—male–caste–urban 0.120 (0.101, 0.141)
σ2

u7—female–caste–rural 0.466 (0.402, 0.539)
σ2

u8—female–caste–urban 0.125 (0.105, 0.148)
σ2

u9—male–tribe–rural 0.559 (0.476, 0.651)
σ2

u10—male–tribe–urban 0.839 (0.711, 0.986)
σ2

u11—female–tribe–rural 0.795 (0.681, 0.927)
σ2

u12—female–tribe–urban 0.743 (0.634, 0.869)

Table 8. VPC estimates for the 12 types of cell in model (4.4)

Type of cell Estimates (%) from the following methods:

Method A—linearization Method C—latent variable

VPC state VPC district VPC state VPC district

Male–other–rural 6.63 1.99 9.83 2.94
Male–other–urban 3.64 1.09 9.91 2.97
Female–other–rural 8.12 2.43 9.81 2.94
Female–other–urban 6.93 2.08 10.09 3.02
Male–caste–rural 8.20 2.46 9.97 2.99
Male–caste–urban 6.78 2.03 10.02 3.00
Female–caste–rural 6.39 1.92 9.21 2.76
Female–caste–urban 8.47 2.54 10.01 3.00
Male–tribe–rural 7.74 2.32 9.01 2.70
Male–tribe–urban 5.92 1.77 8.47 2.54
Female–tribe–rural 5.29 1.59 8.55 2.56
Female–tribe–urban 7.48 2.24 8.65 2.59

iteration to construct a chain of VPC estimates from the VPC posterior distribution. This will be
too computationally burdensome for the simulation method but not for the other two methods.
We shall here again consider the simplest model (4.1a) that we considered previously.

It is now possible to perform the three VPC methods using the parameter estimates obtained
at each iteration to construct a chain of VPC estimates from the VPC posterior distribution.
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The second method based on simulation (method B) will be computationally prohibitive as the
method would need to be repeated at every iteration of the MCMC sampler, whereas the other
two methods simply involve plugging in the sampled values of the relevant model parameters
at each iteration into the appropriate equations given in Sections 3.2 and 3.4. If we do this for
model (4.1a) we obtain (95%) credible interval estimates of (5.64%, 7.82%) from method A and
(6.45%, 8.92%) from method C.

5. Discussion

In this paper we have extended the concept of a VPC to the case of proportional data that
exhibit overdispersion. We have shown how fitting an additional normally distributed random
effect for each proportion can be used to account for overdispersion and how we can calculate
the VPC for such a model by using one of three methods. We have seen that the three methods
give slightly different results, with the linearization results giving only an approximation to the
simulation-based method. The third method based on a latent variable idea is limited in that
the VPC that it produces is independent of the fixed predictor variables. This may, however, be
attractive if we wish to report results on the underlying ‘latent’ scale. We have seen how, of the
two methods that take account of the individual probability of illiteracy, the simulation method
is more accurate as it does not rely on approximations but it becomes too time consuming to
calculate for the more complex models with additional levels. We have shown that the choice
of estimation procedure is important and that the known underestimation of variance param-
eters by the MQL procedure will result in an underestimation of the VPC. We have hence used
MCMC methods to fit these models and shown how this approach allows us also to calculate
interval estimates for the VPC.

We have used as our illustrative example a data set containing the rates of literacy taken from
the 1991 Indian census. There are issues with such a large data set about whether

(a) a random-effect model is really necessary owing to the large populations in many cells
producing approximately the same estimates as a fixed effect model and

(b) whether the data set should be subsampled to give a smaller data set that is easier to
manage.

With regard to substantive conclusions in our illiteracy data set, our results suggest that the
bulk of the contextual variation lies between states (as compared with districts). Although this
is well known, there has been a tendency to favour research and policy focus on districts given
its intuitive appeal as a more proximate geographic level. Indeed, although districts do exhibit
variation in illiteracy, their relative variation (after adjusting for the state to which they belong)
is rather small. Further reductions in illiteracy, we believe, must come in the form of establish-
ing a politically and financially conducive environment that, in the case of India, is primarily a
function of state level processes.

Acknowledgement

WJB is grateful to the Economic and Social Research Council for funding.

References

Bartlett, M. S. (1937) Some examples of statistical methods of research in agriculture and applied biology (with
discussion). J. R. Statist. Soc., suppl., 4, 137–183.

Browne, W. J. (1998) Applying MCMC methods to multilevel models. PhD Thesis. Department of Mathematical
Sciences, University of Bath, Bath.



Variance Partitioning in Multilevel Logistic Models 613

Bryk, A. S. and Raudenbush, S. W. (1992) Hierarchical Linear Models. Newbury Park: Sage.
Commenges, D. and Jacqmin, H. (1994) The intraclass correlation coefficient: distribution-free definition and

test. Biometrics, 50, 517–526.
Crowder, M. J. (1978) Beta-binomial anova for proportions. Appl. Statist., 27, 34–37.
Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1995) Efficient parameterizations for normal linear mixed models.

Biometrika, 82, 479–488.
Goldstein, H. (1991) Nonlinear multilevel models with an application to discrete response data. Biometrika, 78,

45–51.
Goldstein, H. (2003) Multilevel Statistical Models, 3rd edn. London: Arnold.
Goldstein, H., Browne, W. J. and Rasbash, J. (2002) Partitioning variation in multilevel models. Understand.

Statist., 1, 223–231.
Goldstein, H. and Rasbash, J. (1996) Improved approximations for multilevel models with binary responses.

J. R. Statist. Soc. A, 159, 505–513.
Longford, N. T. (2000) On estimating standard errors in multilevel analysis. Statistician, 49, 389–398.
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
Rasbash, J., Browne, W. J., Goldstein, H., Yang, M., Plewis, I., Healy, M., Woodhouse, G., Draper, D., Langford,

I. and Lewis, T. (2000) A User’s Guide to MLwin, 2nd edn. London: Institute of Education.
Rodrı́guez, G. and Goldman, N. (1995) An assessment of estimation procedures for multilevel models with binary

responses. J. R. Statist. Soc. A, 158, 73–89.
Snijders, T. and Bosker, R. (1999) Multilevel Analysis. London: Sage.
Spiegelhalter, D. J., Thomas, A. and Best, N. G. (2000) WinBUGS Version 1.3: User Manual. Cambridge: Medical

Research Council Biostatistics Unit.
Spiegelhalter, D. J., Thomas, A., Best, N. G. and Lunn, D. (2003) WinBUGS Version 1.4: User Manual. Cambridge:

Medical Research Council Biostatistics Unit.
Subramanian, S. V., Duncan, C. and Jones, K. (2000) ‘Illiterate people’ or ‘Illiterate places’: the Indian evidence.

Ind. Socl Sci. Rev., 2, 237–274.
Subramanian, S. V., Duncan, C. and Jones, K. (2001) Multilevel perspectives on modelling census data. Environ.

Planng A, 33, 399–417.
Williams, D. A. (1982) Extra-binomial variation in logistic linear models. Appl. Statist., 31, 144–148.


