

Interleukin-18 and physical function in old age: A replication study and meta-analysis

Ke Talk outline

- Background
- The cohorts
- Measures of physical function
- Replication analysis
- Meta-analysis
- Discussion

KBackground

- Physical function in old age is a meaningful health outcome for the quality of life of the individual
- Older people being able to function independently in the community has public health relevance

Physical function and age

Get up and go test by age group

Flamingo test by age group

KInterleukin-18

- Interleukin-18 (IL-18) is pro-inflammatory cytokine and is an important regulator of innate and acquired immune responses
- Increased IL-18 serum concentrations are associated with higher risk of conditions that play a role in disability
- Inflammation is an important factor in ageing therefore IL-18 could contribute to physical disability in old age

- Higher IL-18 serum concentrations were associated with poorer physical functioning in old age
- Minor, C, allele of the rs5744256 SNP in IL-18 was associated with a 0.25 standard deviation reduction in serum IL-18 per allele
- C allele of rs5744256 was associated with improved walking times

Frayling TM et al (2007) J Gerontol A Biol Sci Med Sci; 62(1):73-8

IL-18 and physical function

KSummary of datasets

			Age (ye		
Study	Test	N	Mean (SD)	Range	- % Male
ELSA	8-ft (2.4-m) walk	2955	68.3 (5.6)	60-79	46%
Caerphilly	Get up and go test	765	72.6 (4.1)	60-83	100%
Boyd Orr	Get up and go test	387	70.7 (4.3)	64-82	45%
InCHIANTI	4-m walk	796	72.4 (5.9)	60-85	44%
lowa-EPESE	8-ft (2.4-m) walk	1238	77.1 (4.0)	71-85	36%

Physical function tests

		Test time (seconds)				
Study	Test	Mean (SD)	Median	Range		
ELSA	8-ft walk	2.8 (1.4)	2.5	1-26		
Caerphilly	Get up and go test	11.0 (3.2)	10.3	6-32		
Boyd Orr	Get up and go test	10.1 (4.3)	9.3	6-61		
InCHIANTI	4-m walk	4.3 (2.1)	3.9	1-44		
Iowa-EPESE	8-ft walk	4.2 (2.6)	3.6	1-45		

We Distribution walk times (ELSA)

Keplication analysis

Association of the IL-18 rs5744256 single nucleotide polymorphism with walking times

Median time (seconds)								
Study -	TT		Genotype TC		CC		Regression coefficient	n
	N (%)	Median	N (%)	Median	N (%)	Median	(95% CI)	۲
ELSA	1636	2.53	1118	2.50	201	2.56	0.021	0.45
	(55.4%)		(37.8%)		(6.8%)		(-0.03 to 0.08)	
Caerphilly	429	10.30	292	10.32	44	10.14	-0.038	0.49
	(56.1%)		(38.2%)		(5.8%)		(-0.15 to 0.07)	
Boyd Orr	219	9.17	132	9.71	36	8.87	0.021	0.78
	(56.6%)		(34.1%)		(9.3%)		(-0.13 to 0.17)	

The linear regression model adjusts for age, age squared and sex; the dependent variable is the inverse transformed, standardised times

Kela-analysis

- Calculates a summary effect estimate which is a weighted average of the estimated effects from individual studies
- Analysis performed using Stata 10 using the metan command
- Forest plots draw attention to the studies with the greatest weight
- The diamond represents the overall summary estimate, with confidence intervals given by its width

Fixed and random effects meta-analysis

- Fixed-effects model using the Mantel–Haenszel method, assumption that the true effect does not differ between studies
- Random-effects model using the DerSimonian and Laird method, assumption the effect varies between studies
- I² value to evaluate the percentage of variation across studies due to heterogeneity

Keta-analysis, all studies

KSensitivity analysis

Linear regression on the inverse transformed times for rescaled age by 5 year age band

Study	Test	Age coeff	95% CI	р
ELSA	2.4m walk	-0.25	-0.28 to -0.22	<0.001
lowa-EPESE	2.4m walk	-0.32	-0.37 to -0.26	<0.001
InCHIANTI	4m walk	-0.32	-0.37 to -0.27	<0.001
InCHIANTI	7m walk	-0.41	-0.46 to -0.36	<0.001
Caerphilly	Get up & go	-0.31	-0.39 to -0.23	<0.001
Boyd Orr	Get up & go	-0.32	-0.43 to -0.21	<0.001

WDiscussion

- Statistical power
- Winner's curse?
- Differences in tests that were used to measure physical function
- Further studies needed

Acknowledgements

- Richard Martin, Yoav Ben-Shlomo (Bristol)
- Sajjad Rafiq, David Melzer and Tim Frayling (Exeter)
- Shah Ebrahim (London)
- Robert Wallace (lowa)
- Luigi Ferrucci (InCHIANTI)
- Meena Kumari (ELSA)

