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A nonparametric procedure for the joint smoothing of a series of percentile curves is presented. It 
allows separate curves to be fitted over contiguous age ranges. constraining them to join smoothly. 
Covariates can be incorporated. thus allowing efficient estimation simultaneously for subgroups. 

1. Introduction 

The construction of norms for growth measurements is an important activity with several 
uses-for example, in screening for growth disorders. The data used for the construction 
of norms usually comprise a random sample of measurements taken cross-sectionally on 
individuals and covering the age range of interest. Until recently the actual process of 
constructing the norms typically has been carried out using ad hoc smoothing procedures 
applied to raw percentile estimates. The latter would be obtained by ordering measurements 
within narrow age categories. 

Apart from a few measurements such as stature, the distribution at any age is difficult to 
characterise with a simple function, and usually is far from Gaussian. One approach to 
providing efficient estimation procedures for percentile norms has therefore centered 
around finding transformations of the measurements to produce a standard distributional 
form. Cole (1988) uses a smoothed power transformation to make the distributions at each 
age conform as closely as possible to a Gaussian distribution. Assuming this distributional 
form, he then estimates the percentiles in a straightfo~ward fashion. 

A different approach has been taken by Healy, Rasbash, and Yang (1988), who present 
a nonparametric procedure for estimating a set of smooth percentile norms for continuous 
measurements over time. The procedure fits high-order polynomials to preliminary esti- 
mates of the chosen percentiles within contiguous age bands. The constant, linear, etc. 
coefficients of these polynomials are constrained to be smoothly varying, in turn. by 
regressing them on the equivalent standard normal deviates of the percentiles. A very 
flexible class of curves is obtained whose shape can be manipulated by altering the order 
of polynomials fitted to the percentiles and the form of the regressioil on the normal 
deviates. The use of the normal distribution in this context is largely for convenience, and 
other, possibly skew, distributions could be used. The procedure is as follows. 

First a set of percentiles of interest is decided upon. Typically for growth data these will 
be the 3rd, loth, 25th. 50th, 75th, 90th, and 97th percentiles. It is assumed that the data 
consist of measurements covering an age range, preferably uniformly distributed. 

Kej, ivorcls: Constrained estimation; Growth; Nonparametric methods; Percentile estimation: 
Piecewise polynomial; Smoothing. 
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The second stage is to carry out an initial smoothing of the data to produce "raw" 
percentile estimates at each age point. The total number of such estimates is ,Irand in 
general we can allow unequal numbers of estimates for each percentile. To these estimates 
we can envisage fitting polynomials, one for each percentile. Suppose that polynomials of 
degree y are fitted, and let J index the percentiles and i index the coefficients. We would 
thus obtain a set of polynomial coefficients, say 

where the set of elements for each percentile is stacked into the co lun~n vector ,6. If we 
denote the set of raw percentile estimates by the vector Y and the polynomial "design" 
matrix for the polynomial coefficients containing powers of age, by X*, the predicted values 
of Y are 

Y* = x*p. (1) 

where Y* is of order (,\' x 1) and /3 is of order ( t ( q+ 1) x 1). 
We now envisage carrying out polynomial regressions of order 11, of these coefficients, 

for each i separately, on ;,, the normal equivalent deviate (NED) corresponding to the jth 
percentile. This would give a new set of predicted coefficients. say 

j= ZA. 

Substituting ,6 for ,6 in (1) gives new predicted values which can be written as 

i' = X*ZA = XA, ( 3 )  

where A is of order (((1+ l ) ( y  + 1) x 1) and consists of the set of p parameter values for 
each coefficient. The matrix Z is block-diagonal of order (r(q + 1) x (y + 1)(p + 1)) and 
has one block for each coefficient. The matrix S is known and of order ( A  x i ( q  + 1)). In 
the next section we allow different-order polynomial regressions and the detailed structures 
of these matrices are given. The linear model estimates ,iare used to construct the final 
percentile curves. Healy et al. (1988) use ordinary least squares (OLS) estimation and the 
present paper considers generalised least squares estimators. 

In practice, three difficulties arise with this procedure. The first problem occurs when 
estimates are required over a wide age range, such as typically is found in studies of child 
growth. where a single polynomial is inadequate. In such a case an obvious extension is to 
construct two or more polynomials joined in a smooth fashion. This is incorporated into 
the procedure proposed below. 

The second problem occurs when separate estimates are required for population 
subgroups. To carrj out completely separate estimation procedures in general will make 
inefficient use of the data, since we would expect smooth relationships between the 
percentiles for the subgroups. For example, in the simple case all the percentiles may differ 
by a constant from one subgroup to another. By incorporating the possibility of such 
relationships into a joint estimation, the data can be analysed more efficiently. 

The third problem lies in the original choice of percentiles to estimate. The procedure 
recommended by Healy et al. when smoothing the polynomial coefficients is to carry out 
an ordinary least squares regression of the polynomial coefficients on the normal equivalent 
deviates (z).A particular choice of percentiles, however, determines the set of normal 
deviate values used in this regression and hence an implicit weighting that will determine 
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the relative accuracy of different percentiles. Thus. for example, if a relatively large 
proportion of the percentiles that are fitted to the raw data are chosen to lie near the 50th 
percentile, then the OLS coefficients will be relatively heavily weighted by the position of 
these percentiles. In the extreme case when, say, all the chosen percentiles are between the 
25th and 75th, predictions for percentiles outside this range will be based on an extrapolation 
of polynomials fitted to data points only within the range. Nevertheless. since most of the 
original data points occur around the median. it would seem appropriate to sample more 
percentiles from that region in order to utilise the observed data more efficiently. To  deal 
with this problem, a more flexible procedure is to allow the data analyst to be able to 
specify a weight to be attached to each chosen percentile so that the effect of varying these 
weights can be explored. 

The present paper presents a comprehensive model that extends the Healy et al. (1988) 
procedure to take account of these difficulties. 

2. Estimation in Contiguous Age Ranges 

Suppose that the total age range is divided into rn contiguous subranges. with nh values for 
the j th  raw percentile in the Ith subrange, with A; = Clni,.  We can fit separate polynomials 
in each range, and for range I and percentile j we obtain a set of observed coefficients pj:). 
The subranges need not be the same width, nor do the polynomials fitted within each range 
need to be of the same order. Equation (2) now becomes, for the ith coefficient of the j th  
percentile in the Ith subrange, 

Note that in (2) we imposed a degree of smoothness by assuming that the coefficients cut) 
were the same for all percentiles. Equation (4) can be rewritten as /3 = ZA, where 

PT = (D:, . . . , D:), P: ~ j ' ) ~= (PIO'~.. . . , ~ f ~ l ) ~ ) ,= (bji), . . . , PI:)), 

AT = (a:, . . . , a;Sl), a: = . . . , a$(//)T),ayT= (at) ,. . . , aj;l!,l), 

where @ is the direct sum operator. We refer to this model as a piecewise polynomial model 
and note that the OLS estimates of (3) are simply those that would be obtained from 
separate regressions in each subrange. 

2.1 Smoothing the Join Point5 

Because growth is a continuous process. we require all the curves to join "smoothly." The 
degree of smoothness can be expressed in terms of setting derivatives of the curves equal at 
the join points. Thus, iff;,(,xk) is the value predicted for the curve in the Ith subrange for 
percentile j at the kth join point ( k  = 1, . . . , rn - l), we require at least 
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In addition, we might also require 

Condition (7) states that growth velocity changes smoothly at a join point. In practice, the 
inherent smoothness of growth data allows us to dispense with (8). The estimation problem 
now becomes the restricted least squares problem of fitting (3) subject to the constraints 
(6), (7), and possibly (8). 

In the Appendix, we show how the smoothness constraints can be incorporated into the 
model. We also show how a weighted analysis can be carried out where the raw percentile 
data may be differentially weighted. The response vector contains the "raw" percentile 
values, and is of length N, where, for the lth percentile, N = 2, N,. It is ordered by age or 
time within percentile. In the most general case we can consider a set of weights, w,,for 
the jth data point for the ~ t h  percentile, where there is no restriction on the structure of 
I.t' = ( M ' , ~ ) .  In many applications, however, it is sufficient to write w,, in the form w,\t;, 
where the w,specify common weights for the zth percentile and the w,specify common 
weights for the ~ t h  age. Thus the matrix V-' in the Appendix is diagonal with elements w,. 

3. Estimation for Subgroups 

Suppose that the population is divided into r subgroups, indexed by g. These might, for 
example, be defined in terms of social class, gender, or say, parental height. Given sufficient 
data, a separate estimation could be carried out for each group. Typically this is done for 
the growth of boys and girls. In general, however, we would expect that the subgroup 
differences are similar for each percentile or at least var] across percentiles in a simple 
fashion. If this variation can be modelled then it will be possible to carry out the estimation 
for all subgroups simultaneously, with allowance being made for the variation. The 
procedure described in the preceding sections can be modified in straightforward fashion 
to do this, as follows. 

Write &:'(g) for the polynomial coefficient for the jth percentile for the lth subrange for 
the ith coefficient for the gth subgroup. Equation (2) now becomes 

In the simplest case the \t>$"are r dummy variables defining the groups. In general, we 
might expect the groups to differ in their regressions on z in terms of the lower-order 
polynomial coefficients only. Thus, for large values of I ,  only one of the M$', say for g = 1, 
will be nonzero. If the grouping is based on a continuous variable, then we might wish to 
give w the value of the midpoint of the appropriate interval. 

Clearly equation (9) has the same general form as (2) and we can apply the same 
estimation procedure. 

4. Extensions to the Basic Model 

The model described above will be adequate for many applications. In some circumstances, 
however, it may be desirable to include further constraints or to alter the functional form. 

For example, in a particular age subrange, some but not all percentiles may effectively 
be changing linearly, so that we would wish to constrain their higher-order coefficients to 
be zero. Such further constraints can be added as additional rows of the matrix C,  defined 
in the Appendix. 
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The procedure described for polynomial models can be adapted straightforwardly for 
any curves linear in their parameters, simply by using (6) and (7). Different functional 
forms can be mixed either within age groups or across age groups. 

We can also relax the condition that the join points are the same for each percentile. 
This again involves straightforward modifications to (6) and (7). This may be important at 
the extremes of the age distribution (see Section 7). 

5 .  Examples 

The data for these examples come from the area of Shanghai and five provinces in 
Southeastern China. They comprise weight measurements on 4,690 male and 4,305 female 
children between birth and 6 years of age. They were measured by trained staff at the 
World Health Organisation (WHO) Collaborating Centre for Growth and Development in 
Shanghai. 

In the first example, all the percentile points are equally weighted. The GROSTAT I1 
program developed for the WHO (Rasbash and Pan, 1990) was used in the computations. 
The first example fits a set of three percentiles to the whole age range using a single fourth- 
degree polynomial. The intercept terms are assumed to have a cubic regression on the 
NEDs of the percentiles; the first- to third-order polynomial coefficients are assumed to 
have a quadratic regression; the fourth-order coefficients are assumed to have a linear 
relationship. We refer to this as a (4, 3, 2, 2, 2, 1) model. For illustrative purposes just the 
3rd, SOth, and 97th percentiles for females are used. In practice, it is desirable generally to 
fit more than three, typically seven or more, percentiles. Figure 1 shows the fitted smoothed 
percentiles together with the raw percentiles calculated by ordering measurements within 
successive age bands. We show just the first 19 months of age. 

I I I I I I I II I 

1 3 5 7 9 11 13 15 17 19 
Age (months) 

Figure 1.  3rd, 50th, 97th centiles of model (4, 3. 2, 2, 2. 1 )  for females. superimposed on raw 
percentile estimates. 
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While the raw percentiles are reasonably well fitted in the central part of the age range, 
the fit is relatively poor at the extremes. In particular, the higher percentiles appear to have 
asymptotes, which is clearly incorrect as will be seen below. Using higher-order polynomials 
will not in general solve this problem; often local fluctuations will be more pronounced. 

In the next example two sets of curves, following an exploratory analysis, are joined at 
the age of 17 months using the model (3, 2, 2, 2, 1) and (2, 2, 2, 2) for the first and second 
sets. As Figure 2 shows, this produces smoothly joining curves that fit the data well. As was 

2 I I II I I I I I 1 I I 

1 3 5 7 9 I I 13 15 17 19 
Age (months) 

Figure 2. 3rd. 50th. 97th centiles of model (3. 2. 2, 2. 1). (2. 2. 2. 2) for females. superimposed on 
raw percentile estimates. 

23 

18 
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1 18 35 5 2 69 

Age (months) 

Figure 3. 3rd, jOth, 97th centiles of model (3, 2. 2 ,  2, 2)- (3, 2, 2, 0. 0) for females, superimposed 
on rahv percentile estimates. 
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the case in this example, considerable experimentation is often required to find an 
appropriate combination of parameters and a suitable choice of join points. The model 
(3, 2, 2, 2. 2). (3, 2. 2, 2, 2) as shown in Figure 3 is overparameterised so that the 3rd per- 
centile curve in particular follows local data patterns too closely. Figure 4 uses the model 
(3, 2, 1, 1, 0), (2, 1. 1. 0) and illustrates what happens when dependencies occur among 
constraints. Because the coefficients of age, age-squared, and age-cubed have at most a 
linear regression on the NEDs ( z ) ,the constraints on the slopes of the two sets of curves at 

2 3 

18 
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m 
5 
t,

r13 

! 
B 
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8 

3 

Age (months) 

Figure 4. 3rd, jOth, 97th centiles of model (3. 2. 1.  1 .  0). (2. 1.  1. 0) for females, superin~posed on 
raw percentile estimates. 

1 18 35 52 69 
Age (months) 

Figure 5. 3rd, 50th, 97th centiles of model (3. 2, 2, 1 ,  1). (4, 2, 2. 1.  1. 0) for females. superimposed 
on rahv percentile estimates. 



1064 Biometries, December 1992 

the join point are linear functions of the z. This implies that there are at most two 
independent constraints, whereas we require three-one for each percentile. In general we 
can ensure that sufficient independent constraints are present by requiring the regression 
on z to be of order one less than the number of percentiles, for both the intercept and at 
least one of the polynolnial coefficients other than the intercept. This will be required for 
at least one and preferably both of the curves at each join point. 

Figure 5 shows the results of fitting three sets of curves, joining at ages 10 and 36 months 

I I I I I I 1 

-

-

-

-

1 18 35 5 2 69 
Age ( m o n t h s )  

Figure 6. 3rd, jOth, 97th centiles of model (3. 2. 2. 1 ,  O), (2, 1 ,  1, 0) for males and females. 

Age (mon ths )  

Figure 7 .  Percentage of individuals below estimated 3rd, 50th, 97th centiles of model 
(4, 3. 2, 2. 2. 1) for females. 
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Age (months) 

Figure 8. Percentage of individuals belon estimated 3rd. 50th. 97th centiles of model (3. 2, 2, 2, 1). 
(2, 2. 2, 2) for females 

using the model (3. 2 ,  2 ,  1, 1). ( 4 ,  2 ,  2 ,  1, 1. 0), ( 2 ,  2. 2 ,  0). The fit to the rawr percentiles is 
now somewhat improved over that in Figure 2. 

Finally, we illustrate the use of covariates by fitting jointly to males and females. The 
model uses two sets of curves (3, 2 ,  2 ,  1, 0), ( 2 ,  1, 1 ,  O), again joined at 17 months. It is 
assumed that the groups differ in terms of the intercept and "slope" coefficients of the 
polynomials for both sets of curves. Figure 6 shows the jointly fitted smoothed polynomials. 

5.1 Checking for Fit 

We can study the fit of the estimated percentiles to the data graphically as follo~vs. Starting 
~vi th the youngest ages, an interval is chosen to include a fixed number of measurements- 
typically about 100. The numbers falling belo~s, each estimated percentile are counted and 
plotted at the midpoint of the interval. This is repeated, moving the starting age of the 
interval so as to omit and include the same number of measurements at the ends of the 
interval. To  obtain a smooth plot this number should be small. The resulting plot then can 
be examined for trends or other irregularities. This procedure is implemented in the 
program GROSTAT 11. 

Figures 7 and 8 show plots of the actual percentages of individuals below the 3rd, 50th, 
and 97th percentiles by age corresponding to the models displayed in Figures 1 and 2. The 
improvement in fit is clear, with no obvious trends apparent in Figure 8. 

6. Asymptotic Curves 

There is a particular difficulty associated with the age range where percentiles reach 
asymptotic values. With height, for example, this occurs at the end of the adolescent growth 
period and each percentile reaches the asymptotic adult value at a different age. Another 
case is that of bone maturity scores, where all the percentiles eventually reach the same 
final mature value. This will therefore imply an equality constraint for the asymptotic 
values. 



To see ho\v such cases may be modelled. consider first the smoothing of a single percentile. 
If the age at \s,hich the adult value is achieved were known, we could choose this as an age 
boundary and fit a horizontal straight line for the asymptotic value. If the boundary point 
were unkno\i111. then a set of different, successive. boundary points \s,ould be chosen and 
models fitted for each one. A suitable age range for these boundary points could be chosen 
by inspection. The model that produced the n~iniinuin residual sum of squares could then 
be chosen. The optimum boundary points will in general vary across percentiles so that the 
search for an overall minimum would involve a great deal of computing. 

An alternative procedure is to use curves with a horizontal asymptote for the final age 
ranges. One possibility is the general inverse polynomial, which has the form 

This function is linear in its coefficients and so can be incorporated \s,~thin the general 
fraine\s,ork of our models. It is also asymptotic and so satisfies our requirement. In practice, 
a judicial choice of age origin \s,ill result in only a small value of 11being necessary, but this 
is not crucial. It is also \s,orth noting that (10) can be used for curves that are asymptotic 
\s,ith a negative slope (that is, concave functions). and also for curves with a lower asymptote. 
In the latter case, a suitable origin \s,ould be chosen that \\?as greater than the range of ages 
defining the asymptote. 

7 .  Discussion 

A major advantage of a nonparametric approach to percentile estimation is that distribu- 
tional assumptions are unnecessary. This is important for variables such as skinfold 
measurements and many biochemical measurements. where there may be no simple 
procedure for transforming, for example, to normality. The po\irer transformation advo- 
cated by Cole ( 1988) may be adequate for some measurements such as weight. Nevertheless, 
it needs to be demonstrated in the case of each new measurement \vhether it in fact 
produces a close enough approximation to normality. 

We have followed Healy et al. ( 1  988) in using polynon~ials as smoothing functions since 
they are relatively easy to handle and interpret. For describing the regression of the 
coefficients on the NEDs, however, caution is needed if \ire wish to make any extrapolations 
to percentiles beyond those estimated from the raw data. There is no guarantee that the 
extrapolated values would even be smoothly increasing or decreasing. In general, \ire would 
not recommend such extrapolations. Some care also needs to be taken in specifying the 
order of the regression of the polynomial coefficients on the NEDs in relation to the 
constraints. Thus, for example, if this regression is of insufficiently high order, the con- 
straints may not be linearly independent. This results in too few? constraints to ensure that 
the curves join smoothly. This difficulty can usually be avoided by ensuring that, at each 
join point, sufficient of the P'')  have at least a quadratic regression on r. In practice. 
different combinations of model components \s,ill need to be tried. as illustrated ~ I Ithe 
examples. In general, considerable empirical exploration iuay be necessary to establish the 
appropriate degree of polynomials to be used, the number of subranges, and the join points. 
The GROSTAT I1 program allows such interaction with the data. Further research into 
this issue clearly would be useful. 

A more general cubic spline with knots at the A\ observation points-that is, the raw 
percentile ages-could be considered instead of the piece\vise model, but has important 
drawbacks. First, there is no straightforward way to incorporate other explanatory covariates 
or grouping factors into the model (see below). Second, \s,hile individual percentiles can be 



smoothed. the joint smoothing of the percentiles would be very complicated. For these 
reasons we have not considered this possibility further. 

Whereas this paper has been concerned with the joint estimation of populatioil percen- 
tiles, the same procedure can be used to fit growth curves to individual series of longitudinal 
ineasurements. Thus, growth in height from birth could readily be fitted with a series of 
smoothly joining piecew~ise polynomials, with a final inverse polynomial for the approach 
to adulthood. Such a procedure would have several advantages over the more common 
nonlinear models. First, they can be used for the whole growth period or parts of it as 
required. Second, they can graduate "local" events accurately, given the availability of data 
points. Third. they are easy to compute, and fourth, they do not suffer the drawback of 
imposing rigid internal relationships between growth events [see, for example. Goldstein 
(1986)l. 

Thanks are due to Michael Healy and Jon Rasbash for their helpful comments. This work 
was partly supported by a WHO fellowship to the second author. 

Une procedure non parametrique de lissage conjoint de skries de courbes de percentiles est prisentee. 
Elle permet le lissage de courbes distinctes sur des ktendues d'iige contigiies en forgant un lissage 
conjoint. Des covariables peuvent itre introduites permettant ainsi des estimations simultanees 
efficaces par sous-groupes. 
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The complete set of equations for the general model discussed in Section 2 can be written 

@ = ZA. 

For the curves to join smoothly we shall require constraints (6) and (7) which lead to 

where ,Y/is the age at the ( I  - l)th join point. These constraints can be written in the general form 
DB = 0. 
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The Z are known and this gives the constraint system 

D Z A  = F ~ A= 0. 

The OLS solution to ( 3 )subject to these constraints is given by 
A A 

A = A* - (x~x)-~F(F~(x~x)-~F)-~F~A*, 
where 

A* = (x'x)-'x'Y 

is the unconstrained solution. 
W e  can also introduce a matrix V o f  weights and obtain the corresponding generalised least squares 

(GLS)solution given by 

A = A* - (xTv-~x)-~F(FT(xTv-~x)-~F)-~FTA*, 
with 

A* = (XTV-lX)-I~TV-lY 

W e  note that X, F have a block-diagonal structure so that the matrices to be inverted and stored are 
o f  order no larger than 

The generalised least squares solution subject to linear constraints is derived as follows. W e  wish 
to estimate A in 

where E i s  a vector o f  residuals. E(EET)= V .  
W e  minimise 

(Y - XA)TV-l(Y- XA) 

subject to 

ATC = kT. 

Thus we minimise 

(Y - XA)TV-'(Y- XA) + (ATC- kT)A. 

where A is a vector o f  Lagrange multipliers. Differentiating with respect to A, we obtain 

2XTV-'(Y- XA) + CA = 0. 

Ignoring the factor 2. and multiplying from the left by L = (XTV-'X)-'gives an estimate. say 

A(.' = A - LCA. 

Utilising the constraint CTA= k. this gives 

k = cTA (C'LC)A, A = (cT~c)-l(cTAk) .  

which leads directly to 

= - -L C ( C ~ L C ) - ' ( C ~ . &k) .  

I f  (XTV-'X)is singular, then L is replaced by a generalised inverse and likewise i f  (CTLC)is singular 
a generalised inverse i s  used. 


