
Single-level Models for Binary
Responses



Distribution of Binary Data

yi response for individual i (i = 1, . . . , n), coded 0 or 1

Denote by r the number in the sample with y = 1

Mean and variance

E(y) = π = Pr(y = 1) estimated by π̂ = r
n

var(y) = π(1− π) estimated by π̂(1− π̂)

So the mean and variance of y are determined by a single
parameter π

y follows a Bernoulli distribution (special case of binomial
distribution)
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Linear Probability Model

Model for the mean of y

E(yi ) = πi = β0 + β1xi

or expressed as a model for yi

yi = πi + ei

= β0 + β1xi + ei

where ei ∼ N(0, σ2
e )

Estimate using ordinary least squares (as for continuous y).
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Problems with the Linear Probability Model

Residuals ei = yi − (β0 + β1xi ) can only take two possible
values for a given xi , so not normally distributed

var(yi ) = π(1− π) = (β0 + β1xi )[1− (β0 + β1xi )] which
depends on xi so not homoskedastic

Relationship between π and x may be nonlinear, although
linearity assumption often reasonable for π between 0.2 and
0.8

Possible to get predicted probabilities outside [0,1]. Again,
this is unlikely if π lies between 0.2 and 0.8 for all x (or
combinations of values on a set of x variables)
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The Generalised Linear Model

Work with a nonlinear transformation of β0 + β1xi that ensures
predicted probabilities will lie between 0 and 1

General model

πi = F (β0 + β1xi )

where F usually chosen to be the cumulative distribution function
(cdf) of a logistic or normal distribution

usually written as

F−1(πi ) = β0 + β1xi

where F−1 is called the link function
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The Logit/Logistic Model

Write z = β0 + β1x

Logistic transformation of z

π = F (z) =
exp(z)

1 + exp(z)
=

ez

1 + ez

π always lies between 0 and 1

Logit model

log

(
π

1− π

)
= z = β0 + β1x

where π/(1− π) is the odds that y = 1 and log[π/(1− π)] is the
log-odds or logit
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Interpretation of Logit Coefficients

Take exponentials of each side of logit model:

π

1− π
= exp(β0 + β1x) = exp(β0). exp(β1x) (1)

Now increase x by 1 unit:

π

1− π
= exp(β0 + β1(x + 1)) = exp(β0). exp(β1x). exp(β1) (2)

Comparing (1) and (2) we see that a 1-unit increase in x has
multiplied the odds that y = 1 by exp(β1), or increased the odds
by a factor of exp(β1).

Interpret exp(β1) as an odds ratio, comparing the odds for two
individuals with x-values spaced 1 unit apart.
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Example: State Differences in US Voting

y = 1 if intends to vote Bush in 2004 election, 0 otherwise

Variable β̂ se(β̂) exp(β̂)

Constant −0.34 0.05 0.71
State (ref=California)

New York −0.19 0.08 0.83
Texas 0.69 0.08 2.00

Odds of voting Bush in California = 0.71

Odds of voting Bush in New York are 0.83 times odds in
California (17% lower)

Odds of voting Bush in Texas are twice the odds in California
(100% higher)
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Other Link Functions

Probit model

Φ−1(π) = β0 + β1x

where Φ is the cdf of the standard normal distribution

Complementary log-log (clog-log) model

F−1(π) = log[− log(1− π)] = β0 + β1x

Choice of link function

In general, get very similar π̂ whatever link is used

Logit(0.5) = probit(0.5) but move further apart as π gets
close to 0 or 1

Logit and clog-log almost indistinguishable for small π
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Logit, probit and clog-log transformations of π



Latent Variable Representation

A GLM expresses the mean of a binary y , E(y) = π, as a function
of covariates x .

Another way to represent a GLM is in terms of a latent
(unobserved) continuous variable y∗ that underlies y such that

yi =

{
1 if y∗i ≥ 0
0 if y∗i < 0

Threshold model

y∗i = β0 + β1xi + e∗i

e∗i ∼ N(0, 1) → probit model

e∗i ∼ standard logistic (with variance ' 3.29) → logit model
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Relationship between probit and logit

The residual in the threshold model has fixed variance, but the
value it is fixed at depends on the chosen distribution:

Distribution Variance Link

Standard normal 1 probit
Standard logistic 3.29 logit

Increasing the variance (and therefore scale of y∗) increases the
magnitude of the coefficients.

β̂logit '
√

3.29 β̂probit = 1.8 β̂probit
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US Voting: Logit and Probit Coefficients

Compare coefficients from logit and probit models of voting Bush.

Variable β̂probit β̂logit β̂logit/β̂probit
Constant −0.21 −0.34 1.62
State (ref=California)

New York −0.12 −0.19 1.58
Texas 0.43 0.69 1.60

Ratio of logit:probit is approximately 1.6

But, for this simple model, predicted probabilities of voting Bush
will be exactly the same for logit and probit models.
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Predicted Probabilities of Voting Bush

Logit model

π̂ =
exp(−0.34− 0.19 NY + 0.69 TEX )

1 + exp(−0.34− 0.19 NY + 0.69 TEX )

California (NY = TEX = 0) π̂ = 0.71/(1 + 0.71) = 0.42
New York (NY = 1, TEX = 0) π̂ = 0.59/(1 + 0.59) = 0.37
Texas (NY = 0, TEX = 1) π̂ = 1.42/(1 + 1.42) = 0.59

Probit model

π̂ = Φ(−0.21− 0.12 NY + 0.43 TEX )

California (NY = TEX = 0) π̂ = Φ(−0.21) = 0.42
New York (NY = 1, TEX = 0) π̂ = Φ(−0.33) = 0.37
Texas (NY = 0, TEX = 1) π̂ = Φ(0.22) = 0.59

Calculate using NORMDIST in Excel or CDFNORM in SPSS
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Significance Testing

Suppose we wish to test H0 : β1 = 0 versus H0 : β1 6= 0

Z-ratios

Compare Z = β̂/se(β̂) with N(0,1)

Wald test

Compare Wald = Z 2 with χ2
1

Also used to test more general hypotheses, e.g. H0 : β1 = β2 = 0
or H0 : β1 = β2

Likelihood ratio test

Compare difference in deviance (-2 log-likelihood) between two
nested models with χ2

q, where q = difference in number of
parameters. Not available in MLwiN for discrete response models.
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parameters. Not available in MLwiN for discrete response models.



Confidence Intervals for β and Odds Ratios

95% CI for β

(β̂ − 1.96 se(β̂), β̂ + 1.96 se(β̂))

E.g. 95% CI for NY-California difference in log-odds of voting
Bush is −0.19± (1.96× 0.08) = −0.35 to −0.03

95% CI for odds ratio, exp(β)

Take exponent of lower and upper limits of 95% interval for β.

E.g. 95% CI for NY vs California odds ratio is exp(−0.35) to
exp(−0.03) = 0.70 to 0.97
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Adding Further Predictors to Logit Model

Variable β̂ se(β̂) Wald exp(β̂)

Constant −0.42 0.11 - 0.66
State (ref=California)

New York −0.18 0.08 4.4 0.84
Texas 0.71 0.08 76.7 2.03

Female −0.27 0.07 15.9 0.76
Age (years) 0.005 0.002 5.3 1.005

Note: Wald for joint test of state effects is 111.6 on 2 df (χ2
2;0.05 = 5.99).

All other tests on 1 df (χ2
1;0.05 = 3.84).

Odds of voting Bush are 25% lower for women than for men
(controlling for state and age)

Odds of voting Bush increased by 0.5% for each 1-year
increase in age (controlling for state and gender)
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Predicted Probabilities from Logit Model

Variable Value π̂

State California 0.42
New York 0.37
Texas 0.59

Sex Male 0.49
Female 0.42

Age (years) 20 0.42
30 0.43
40 0.45

Values of each variable varied in turn, holding others at
sample mean (proportions for categorical variables)

E.g. π̂ for State calculated for each possible set of values for
the State dummies, with Female=0.54 and Age=46.7 years



Interaction Effects

Suppose we believe the effect of age on voting intentions differs
across states, then fit:

log
(

π
1−π

)
= β0 + β1 NY + β2 TEX + β3 FEMALE + β4 AGE

+ β5 NY · AGE + β6 TEX · AGE

State Age effect Estimated age effect

California β4 0.005
New York β4 + β5 0.005+0.010
Texas β4 + β6 0.005−0.012

Test of H0 : β5 = β6 = 0 gives Wald= 15.3 on 2 df, so strong
evidence of interaction effect
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π̂ by Age and State

Note: Female fixed at 0.54 (sample proportion)
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