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The traditional approach to measuring segregation is based upon descriptive,

non-model-based indices. A recently proposed alternative is multilevel model-

ing. The authors further develop the argument for a multilevel modeling

approach by first describing and expanding upon its notable advantages, which

include an ability to model segregation at a number of scales simultaneously.

The authors then propose a major extension to this approach by introducing

a simple simulation method that allows traditional descriptive indices to be

reformulated within a modeling framework. The multilevel approach and the

simulation method are illustrated with an application that models recent social

segregation among schools in London, UK.
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1. Introduction

Studies of segregation have a long history in social science research (e.g.,

Duncan & Duncan, 1955; Wright, 1937). In the United States, there has been

great interest in measuring residential spatial segregation, particularly in relation

to race and ethnicity (Massey & Denton, 1993; Taeuber & Taeuber, 1965).

Research has focused on establishing how levels of segregation vary across areas

and time. Typically, indices of segregation are calculated for individual cities for

a series of years where each index score summarizes the variation, for example,

in the observed proportion of Black individuals among the neighborhoods in each

city. Once calculated, these scores can be compared in order to describe changing

patterns of segregation.

Studies of segregation are also frequently carried out in education research,

again in relation to race and ethnic segregation, but this time among schools

(Clotfelter, 1999; James & Taeuber, 1985; Zoloth, 1976) or universities. How-

ever, segregation studies are not limited to race and ethnicity; many other types

of segregation including educational, occupational, and social segregation have
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also been explored. For example, recent UK education research has focused on

measuring changing patterns of social segregation among schools with respect

to student poverty (see Allen & Vignoles, 2007, for a summary).

A wide range of indices have been proposed for measuring segregation and

there is a long and considerable debate over their ideal properties (Hutchens,

2004; James & Taeuber, 1985; Massey & Denton, 1988; Reardon & Firebaugh,

2002; Taeuber & Taeuber, 1965; White, 1986; and Zoloth, 1976). Indeed, as

Jahn, Schmid, and Schrag (1947) point out, there is virtually no limit to the num-

ber and variety of segregation indices which might be constructed. Without

wishing to deny the usefulness of such debates, we must emphasize that the

indices that have been proposed are all functions of the observed proportions

in the groups of interest. What is lacking is an attempt to model statistically the

underlying process that generates the variation in the observed proportions.

Goldstein and Noden (2003) argued that there are considerable benefits to

using a multilevel modeling (Goldstein, 2010; or hierarchical linear model,

Raudenbush & Bryk, 2002) approach to measuring and studying segregation.

In its simplest form, this involves setting up a multilevel binomial response

model for the proportion of interest, for example, the proportion of Black resi-

dents in a neighborhood or the proportion of poor children in a school. Group

level random effects (where groups are neighborhoods or schools in terms of the

previous examples) are included in this model, to capture group differences in

the underlying proportions, the variability of which is summarized by one or more

parameters. In the simplest case, this requires just a single variance parameter. The

estimate of this variance parameter provides a natural measure of the underlying

degree of segregation; the larger the value of this parameter, the more dissimilar

and therefore the more segregated the neighborhoods or schools are. Statistical

inferences about segregation can then be made in the usual way as standard errors

and confidence intervals can be readily estimated. Furthermore, this model-based

approach extends readily and naturally to the situation where multiple measures of

segregation are required, for example, for multiple years of data, in which case

there are multiple variance parameters and these can be made to depend on time,

allowing inferences to be made as to whether the underlying degree of segregation

has changed over time. Finally and most importantly, this model enables us to not

just describe patterns of segregation but to explain them further by modeling these

variances as functions of variables such as area characteristics.

The aim of the present paper is to further develop the argument for a multi-

level modeling approach to measure segregation. We first describe and expand

upon the notable advantages of this approach outlined by Goldstein and Noden.

We then propose a major extension to this approach by introducing a simple

simulation method that allows traditional descriptive indices to be reformulated

within this modeling framework. We present our arguments in the context of

modeling social segregation among schools in relation to students’ free school

meal (FSM) status, a commonly used proxy for student poverty (FSM is a proxy
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for low income, as students are only eligible for FSM if their parents receive

income benefits from the government). The arguments we make, however, and

the results we show will apply very widely to other types of segregation and other

social systems, such as race and ethnic segregation among universities or segre-

gation in relation to educational qualifications among neighborhoods.

In Section 2, we describe disadvantages common to all segregation indices

based on observed proportions; we shall refer to this as the ‘‘descriptive’’

approach. In Section 3, we introduce the multilevel binomial response model for

segregation and then detail extensions to this model that can be used to address

and expand the research questions often posed in segregation studies. In Section 4,

we describe a simulation method that allows the traditional descriptive indices to

be reformulated more satisfactorily within a modeling framework. Section 5 pre-

sents a step-by-step illustrative example of the multilevel modeling approach

where we model changing patterns of social segregation among schools in

London, UK. We conclude with a discussion of the ideas that are introduced

in this paper.

2. Descriptive Indices and Sampling Variation

A fundamental limitation of segregation studies is that researchers have typi-

cally failed to recognize the stochastic nature of descriptive indices. Descriptive

indices are based on observed proportions that include the effects of sampling

variation. This leads all descriptive indices to be biased upward and therefore

to overstate the underlying or ‘‘true’’ degree of segregation. For example, in

terms of our schooling application, suppose we allocated students to schools in

a purely random fashion and calculated the proportions of FSM students in each

school. We would certainly observe differences (which we would measure as

segregation if using descriptive indices), but these would have arisen purely as

a result of random sampling. Crucially, it is segregation that arises due to sys-

tematic underlying social processes (i.e., the complex intertwined residential and

school choice decisions of parents and schools’ decisions over which students to

admit) and not due to randomness that is of interest in terms of explaining chang-

ing patterns of segregation. Failure to distinguish segregation that arises due to

systematic underlying social processes from the uneven spread of FSM students

across schools which arises due to randomness will mistakenly lead us to con-

clude that there is systematic social segregation among schools when there is

none.

Importantly, the magnitude of the upward bias exhibited by descriptive

indices varies according to the numbers of individuals the proportions are calcu-

lated upon and according to the magnitude of the proportions themselves

(Carrington & Troske, 1997; Ransom, 2000). It follows that observed differences

in segregation across areas or time may simply be due not only to sampling var-

iation but also to differences in these two factors without any real underlying
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difference in the processes that could be generating variation. Such differences

may therefore also lead to misleading statements about changing patterns of

segregation.

2.1. A Simple Index

To illustrate the impact of basing indices on observed proportions, we shall

start by considering the simplest possible case of two observed proportions which

we denote y1 and y2. In terms of our application, these would be the observed

proportions of FSM students in two schools. For simplicity, we assume that there

is the same number of students in each school. A simple segregation index is the

absolute difference in observed proportions between School 1 and School 2,

which we can write as y1 � y2j j.
Now consider the case where each school has the same propensity to attract

FSM students and that this propensity remains constant over time. In other words,

the schools have a common underlying proportion that is stable across time. Even

though there is no underlying difference between schools, the observed propor-

tions at each point in time will in general vary randomly about the common

underlying proportion. Since the simple index is defined as an absolute differ-

ence, it will always be positive and hence have an upward bias, the magnitude

of which will be a function of the number of students in each school and the size

of each school’s underlying proportion. This can be shown by making the stan-

dard assumption of binomial sampling variation for the two observed proportions

yj � Binomial n; �ð Þ

where n is the common school size, � is the common underlying proportion, and

j j ¼ 1; 2ð Þ indexes the two schools. When there is a zero true underlying differ-

ence, the expected value of the index is given by

E y1 � y2j jð Þ ¼ 2ffiffiffiffi
pi
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1� �ð Þ

n

r

where pi is the mathematical constant and the expression within the square root is

the standard binomial sampling variance. This expression is a decreasing func-

tion of the number of students in each school: As the sample upon which the

observed proportions are based increases, the observed proportions y1 and y2 will

both tend toward the underlying value of � and so their absolute difference will

tend to be 0. In addition, the expression is a concave function of the underlying

proportion; the expression increases up to �¼ 0.5 and thereafter decreases. Thus,

for example, if over time the common school size remained stable, but the com-

mon underlying proportion rose from 0.10 to 0.15, then the value of the index

based on observed proportions would rise by almost 20%. The same increase

would occur if the common underlying proportion remained stable, but the size
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of each school reduced by a third. In this case, falling school rolls would be

mistakenly interpreted in a descriptive approach, as increased segregation.

2.2. The Dissimilarity Index

Through simulation, we can illustrate what happens to indices based on

observed proportions, for any index we choose. Here, we focus on the most

widely used index of segregation: the dissimilarity index (Duncan & Duncan,

1955); details for other commonly used indices are given in the Appendix. The

dissimilarity index D is written as

D ¼ 1

2

X
j

nFSM
j

NFSM
�

nnon-FSM
j

Nnon-FSM

�����
�����;

where nFSM
j and nnon-FSM

j are the number of FSM and non-FSM students in school

j and N FSM and N non-FSM are the total number of FSM and non-FSM students

across all schools. The index is bounded by 0 (no segregation, all schools have

the same observed proportion of FSM students) and 1 (complete segregation,

no schools are observed with both FSM and non-FSM children). The value of

D is interpreted as the proportion of FSM children that would have to move

schools in order to achieve an even distribution of FSM students across all

schools. Note that this interpretation relies on not replacing the moved FSM stu-

dents with non-FSM students and so, for example, a school wholly populated by

FSM students would be evacuated. Cortese, Falk, and Cohen (1976) argued that

it is often of more interest to know the value of a modified version of D, which

gives the proportion of FSM children that would have to be exchanged while

keeping the number of students in each school constant. In this paper, we present

our arguments in terms of the original, and more frequently used definition of D,

but we note that similar findings apply to the modified version.

As with the simple index described previously, D will be biased upward as it is

based on observed proportions rather than underlying proportions. Figure 1

shows the expected value of D (vertical axis) when the true value is 0, that is

when each school has the same underlying proportion, for different combinations

of school sizes (horizontal axis) and underlying proportions that reflect those

typically found in London schools. As with the simple index, the expected value

of D is a decreasing function of the number of students in each school, but unlike

the simple index, it is also a decreasing function of the underlying proportion. We

see that the bias is substantial for small schools with a low common underlying

proportion. For example, when the common underlying proportion is 0.1 and

when there are 30 students per school, schools will incorrectly appear systema-

tically segregated to the extent that some 25% of FSM students would have to

move schools to achieve an even distribution of FSM students across all schools.

Furthermore, while reduced, this bias is noticeable even for the largest school
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sizes and the highest underlying proportions. For example, even when the

common underlying proportion is 0.50 and when there are 300 students per

school, schools would appear systematically segregated to the extent that some

5% of FSM students would have to move. The Appendix demonstrates similar

findings for the other commonly used indices.

In many settings, it is clear that there is genuine segregation and so interest

shifts to establishing whether segregation varies systematically across areas or

over time rather than whether it exists at all. Simulation results (not shown) show

that the magnitude of the expected upward bias on the D and other indexes

decrease as the degree of underlying segregation increases. However, observed

differences in index scores will always, in part, be due to sampling variability and

so must be interpreted cautiously.

3. Multilevel Binomial Response Models for Segregation

The multilevel binomial response model offers a statistical modeling

approach to segregation that differs fundamentally from the descriptive approach

in that it explicitly models the underlying process that generates the observed

proportions. The approach disentangles underlying proportions from the bino-

mial sampling variation that is additionally present in the observed proportions.

In doing so, it allows statements and inferences to be made about the true
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FIGURE 1. Expected value of D based on observed proportions plotted against school

size for different underlying proportions when there is no underlying segregation.

Note: For each combination of school size and underlying proportion, 10,000 random

samples were drawn in which each sample had 50 schools.
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underlying degree of segregation rather than simply the observed degree. The

multilevel extension to the standard binomial response model reflects the cluster-

ing inherent in segregation data. For example, in studies of spatial segregation,

individuals are clustered into neighborhoods, while in studies of school segrega-

tion, children are clustered into schools. As we shall demonstrate, multilevel

models can be extended in a range of ways to address interesting research ques-

tions about segregation. In this section, we shall present these models in terms of

social segregation among schools. For further details of multilevel binomial

response models, see Goldstein (2010) and Raudenbush and Bryk (2002).

3.1. The Two-Level Variance Components Binomial Response

Model for Proportions

Model 1, a basic two-level variance components binomial response model for

proportions is written as1

yj � Binomial nj; �j

� �
logit �j

� �
¼ b0 þ uj

uj � N 0;s2
u

� � ð1Þ

where yj is the observed proportion of FSM students in school j, nj is the total

number of students in that school, and �j is the unknown underlying proportion

of FSM students. The underlying proportion is related to the linear predictor

b0 þ uj through a link function and here we have specified the logit link. Assum-

ing that we have correctly specified the linear predictor, the variation in the

observed proportions, conditional on the underlying proportions, will be bino-

mial with variance �j 1� �j

� ��
nj for school j. Thus, the model explicitly recog-

nizes the binomial sampling variation in the observed proportions.

Taking the anti-logit of b0 gives the proportion of FSM students in the median

school. If the mean proportion (often referred to as the population average

proportion) across all schools is desired, it can be obtained via simulation

(Goldstein, 2010), but this is not pursued here.2 The uj are random effects that

vary across schools. Here we consider these random effects to be normally

distributed with mean zero and variance s2
u. If we assume that this model is a

good fit to the data then we can regard the estimate of this variance as a ‘‘natural’’

and parsimonious measure of segregation. The sampling distribution for the esti-

mate of this variance is available and we interpret larger variances as describing

greater degrees of segregation.3 If there is no segregation, the uj are zero and so is

the variance s2
u.

3.2. Adding an Additional Level of Analysis

Segregation may occur at a variety of levels. For example, Massey and Hajnal

(1995) and Massey, Rothwell, and Domina (2009) claim that since 1900, the
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level at which Black–White segregation occurs in the United States has progres-

sively shifted from the macro level (states and counties) to the micro level (muni-

cipalities, neighborhoods, and blocks). In this section, we demonstrate how to

use the multilevel modeling approach to simultaneously model segregation at

multiple levels and then in Section 3.3 we will additionally show how segrega-

tion can be modeled as a function of time.

In terms of social segregation in London schools, we might ask how

much segregation is there between the Local Authorities (LAs; LAs in

England correspond to school districts in the United States) to which schools

belong and then, having explicitly modeled segregation at this level, how

much segregation remains between schools? Segregation between LAs might

reflect LA differences in education policy or LA differences in economic

processes that affect where in London poor families live. The segregation that

remains among schools within each LA might further reflect school selection

processes.

Model 2 is a three-level version of Model 1, which includes a LA random

effect

yjk � Binomial njk ; �jk

� �
logit �jk

� �
¼ b0 þ vk þ ujk

vk � N 0;s2
v

� �
ujk � N 0;s2

u

� �
;

ð2Þ

where yjk is the observed proportion in school j in LA k, njk is the total number

of students in that school, and �jk is the school’s unknown underlying

proportion. The LA random effects vk account for the variation in underlying pro-

portions across LAs and are summarized by the variance s2
v , which measures the

degree of segregation among LAs. The larger this variance, the more dissimilar

and therefore segregated students are across LAs. The random effects ujk now

account for the variation in schools’ underlying proportions around the average

proportion for their LA. Thus, the variance s2
u measures the pooled average

degree of segregation among schools within LAs. Comparing Model 2 to 1

allows a test for significant segregation at the LA level. Similarly, comparing

Model 2 to a model without school level random effects allows a test of whether

there is significant segregation at the school level.

Simultaneously exploring segregation at multiple levels is a very

important element of our approach because of the potential confounding of

variation across levels. If a higher level is ignored in the multilevel analysis,

then as Tranmer and Steel (2001) show, the estimated variance is redistrib-

uted to lower levels that the models do include. Thus, including schools at

level 2 in a model, but excluding LAs at level 3, will result in a misattribu-

tion of any true between LA variation to the school level; the degree of

segregation at the school level will be overstated.
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3.3. Adding an Additional Response Variable

It is also standard in segregation studies to measure segregation for multiple

areas or for multiple points in time. In the context of our example, measuring seg-

regation for multiple points in time requires data for additional cohorts (i.e.,

school years) of children. One way to incorporate additional cohorts into Model 2

is to extend it to a multivariate response model. Data from additional areas could

be added in the same way. This extension allows a separate mean, LA variance,

and school variance for each cohort. The model simultaneously measures

whether segregation at the LA level and at the school level has increased over

time. It is possible to find segregation increasing over time at one level and

decreasing at the other. Such a finding may then reflect the operation of quite dif-

ferent processes at each level. For example, economic processes associated with

the labor market at the LA level could result in greater homogeneity over time

between LAs while school selection processes could simultaneously be leading

to greater segregation among schools within LAs.

Model 3 is a bivariate response model where the two responses correspond to

two different cohorts of children

y
1ð Þ

jk � Binomial n
1ð Þ

jk ; �
1ð Þ

jk

� �
y

2ð Þ
jk � Binomial n

2ð Þ
jk ; �

2ð Þ
jk

� �
logit �

1ð Þ
jk

� �
¼ b 1ð Þ

0 þ v
1ð Þ

k þ u
1ð Þ

jk

logit �
2ð Þ

jk

� �
¼ b 2ð Þ

0 þ v
2ð Þ

k þ u
2ð Þ

jk

v
1ð Þ

k

v
2ð Þ

k

 !
� N 0;�vð Þ; �v ¼

s2
vð1Þ

svð12Þ s2
vð2Þ

 !

u
1ð Þ

jk

u
2ð Þ

jk

0
@

1
A � N 0;�uð Þ; �u ¼

s2
uð1Þ

suð12Þ s2
uð2Þ

 !
;

ð3Þ

where the superscripts (1) and (2) refer to the two cohorts. Thus, y
1ð Þ

jk is the

observed proportion in cohort 1 in school j in LA k, n
1ð Þ

jk is the total number of

students in that school cohort, and �
1ð Þ

jk is the school cohort’s unknown underlying

proportion. The variables y
2ð Þ

jk , n
2ð Þ

jk , and �
2ð Þ

jk give the corresponding values for

cohort 2. Taking the anti-logits of b 1ð Þ
0 and b 2ð Þ

0 gives the proportion of FSM stu-

dents in the median school in each cohort while the LA and school level var-

iances measure the degree of segregation among LAs and schools for each

cohort. The LA and school level covariances svð12Þ and suð12Þ will be large and

positive if LAs and schools, respectively, have stable intake differences in their

proportion of FSM students over time.
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3.4. Modeling Segregation as a Function of Predictor Variables

Having measured the average degree of segregation among schools within

LAs, it is of interest to examine whether average levels of school segregation

vary across LAs as a function of LA characteristics. One set of interesting LA

characteristics are their school admissions policies. In London, some LAs select

children into schools based on their academic ability. Higher levels of selection

on academic ability can be expected to lead to higher levels of social segregation

as children’s test scores are typically positively associated with their socioeco-

nomic status. The multilevel modeling approach allows us to model school seg-

regation as a function of LA characteristics such as their selection policies, and so

is able to move beyond simply measuring changing patterns of segregation. In

doing so, the multilevel modeling approach can extend the research questions

typically posed in segregation studies. As an illustration, suppose we are able

to classify LAs into three broad types based on their selectivity: low, medium,

and high. Model 4 measures how school segregation differs across these three

types

y
1ð Þ

jk � Binomial n
1ð Þ

jk ; �
1ð Þ

jk

� �
y

2ð Þ
jk � Binomial n

2ð Þ
jk ; �

2ð Þ
jk

� �
logit �

1ð Þ
jk

� �
¼ b 1ð Þ

1 x1k þ b 1ð Þ
2 x2k þ b 1ð Þ

3 x3k þ v
1ð Þ

k þ u
1ð Þ

1jkx1k þ u
1ð Þ

2jkx2k þ u
1ð Þ

3jkx3k

logit �
2ð Þ

jk

� �
¼ b 2ð Þ

1 x1k þ b 2ð Þ
2 x2k þ b 2ð Þ

3 x3k þ v
2ð Þ

k þ u
2ð Þ

1jkx1k þ u
2ð Þ

2jkx2k þ u
2ð Þ

3jkx3k

v
1ð Þ

k

v
2ð Þ

k

 !
� N 0;�vð Þ; �v ¼

s2
vð1Þ

svð12Þ s2
vð2Þ

 !

u
1ð Þ

1jk

u
2ð Þ

1jk

u
1ð Þ

2jk

u
2ð Þ

2jk

u
1ð Þ

3jk

u
2ð Þ

3jk

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
� N 0;�uð Þ; �u ¼

s2
u1ð1Þ

su1ð12Þ s2
u1ð2Þ

0 0 s2
u2ð1Þ

0 0 su2ð12Þ s2
u2ð2Þ

0 0 0 0 s2
u3ð1Þ

0 0 0 0 su3ð12Þ s2
u3ð2Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

ð4Þ

where x1k ; x2k , and x3k are binary indicator variables for the three LA types.

Taking the anti-logits of b tð Þ
1 , b tð Þ

2 , and b tð Þ
3 gives, for cohort t, the proportion of

FSM students in the median school within each LA type. The LA variances

s2
vð1Þ and s2

vð2Þ measure the degree of segregation among LAs in each cohort hav-

ing adjusted for the differences in the median proportions between the three LA

types. The school variances s2
u1ðtÞ, s

2
u2ðtÞ, and s2

u3ðtÞ measure, for cohort t, the
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average degree of segregation among schools within LAs separately for each LA

type. Further LA level predictor variables can be entered into the model to con-

trol for confounding LA characteristics and to model how school segregation var-

ies in terms of additional LA characteristics.

3.5. Assumptions of the Multilevel Modeling Approach

Like all statistical models, the multilevel binomial response model makes par-

ticular assumptions about the form of the relationship between the response and

predictor variables—in the present case using a logit link function—and the dis-

tribution of the various random effects—in the present case we assume that they

are normally distributed. The model parameters depend on the link function and

distributional assumptions specified in the models. Different forms of link func-

tion can be expected to yield different behaviors at different points on the prob-

ability scale. This, however, is readily studied, and in our application in Section

5, changing the link function from the logit to the probit or complementary log–

log makes little difference to any substantive conclusions. Similarly, normal

probability plots for these models suggest that the normality assumption for the

higher level residuals (on the logit scale) does provide an adequate fit for the

data. An important advantage of the statistical modeling approach is that differ-

ent choices can be evaluated against the data to find a set that are the most appro-

priate and parsimonious.

4. Simulating Segregation Indices Based on the Fitted Multilevel Model

One of the perceived advantages of some descriptive indices is that they can

be given a relatively simple interpretation. Thus, as described in Section 2, the

widely used dissimilarity index D is bounded by 0 (no segregation) and 1 (com-

plete segregation) and gives the proportion of FSM children that would have to

move schools to give an even distribution of FSM students across all schools.

There are also guidelines on interpreting the magnitude of some descriptive

indices, for example, in terms of racial segregation in the United States, a D of

less than 0.3 is considered low, between 0.3 and 0.6 as moderate, and above

0.6 as high (Massey & Denton, 1993). In comparison with this, a variance on the

logit scale may appear to be more difficult to interpret. However, once we have

determined that a particular model provides an adequate description of the data,

we can report the underlying degree of segregation using any descriptive index

we wish by applying the relevant descriptive index formula to underlying propor-

tions simulated from the fitted model. These calculated indices based on simu-

lated data will not be functions of the number of students in each school as

they are based on underlying proportions which, unlike the observed proportions,

contain no binomial sampling variation. However, as with D based on observed

proportions (see Section 2.2), D simulated from the model parameters is still a

function of the overall proportion and we shall demonstrate this in Section 4.2.
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4.1. Simulating the Dissimilarity Index Based on the Fitted

Multilevel Model

We shall illustrate our simulation method in terms of calculating the

dissimilarity index D for Model 1, although the same principles apply to the other

common segregation indices and the more complex models proposed in

Section 3. First, we fit the model using a suitable estimation method, see below.

The simulation method then consists of repeating the following steps for a

large number M of iterations, where m indexes the iterations:

1. Simulate one value for each of the J school-level random effects

u
mð Þ

j � N 0; ŝ2
u

� �
.

2. Compute the values of �
mð Þ

j using the anti-logit function �
mð Þ

j ¼
anti-logit b̂0 þ u

mð Þ
j

� �
:

3. Compute the count of each type of student: n
mð ÞFSM

j ¼ � mð Þ
j nj;

n
mð Þnon-FSM

j ¼ nj-n
mð ÞFSM

j .

4. Aggregate the counts across the J schools: N mð ÞFSM ¼
P

j

n
mð ÞFSM

j ;

N mð Þnon-FSM ¼
P

j

n
mð Þnon-FSM

j .

5. Compute the dissimilarity index D mð Þ ¼ 1

2

X
j

n
mð ÞFSM

j

N mð ÞFSM
�

n
mð Þnon-FSM

j

N mð Þnon-FSM

�����
�����.

The point estimate for D is given by the mean of D mð Þ over the M iterations while

its sampling variation is summarized by the 95% interval calculated by taking the

2.5th and 97.5th percentiles of the list of M values formed by placing D mð Þ in rank

order.

In more complicated models where we calculate multiple values of D, for

example, for the different cohorts in Model 3, interest lies in studying the point

estimates and 95% intervals for the differences in these values.

The above simulation method underestimates the sampling variation of D

since it ignores the sampling variation of the estimated model parameters b̂0 and

ŝ2
u. The method can be improved by repeating it a large number of times where,

at each iteration, we randomly draw a pair of values from the estimated joint sam-

pling distribution of the model parameters. This is conveniently carried out using

Markov chain Monte Carlo (MCMC) methods where the random draws are pro-

vided by the MCMC parameter chains.

4.2. The Relationship Between the Dissimilarity Index and the Multilevel

Model Parameters

The simulation method can also be used to derive the relationship between

any simulated descriptive index and the variance parameter. This involves

replicating the simulation method a large number of times for each of a range
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of values of the variance parameter while holding the overall proportion and

school sizes constant. Figure 2 shows the expected value of D (vertical axis)

across a range of values of the variance on the logit scale (horizontal axis)

for different fixed values of the overall proportion and for fixed school sizes

of 200 students per school.

The figure shows that the expected value of D varies slightly according to the

overall proportion of FSM students. Thus, even if there has been no underlying

change in segregation, a large change in the overall proportion would lead to an

apparent change in segregation as measured by the simulated descriptive indices.

It can be argued that it is more reasonable to have a segregation measure that does

not depend on the underlying proportion, in which case a common value of the

underlying proportion can be imposed.

The expected value of D, holding the overall proportion constant, is a

monotonically increasing function of the variance and so converting between

the logit and index scale is an order preserving transformation. This means that

when we specify, for example, a model with separate school-level variances

for a series of cohorts, the rank ordering of the point estimates of D simulated

from the estimated variances will be the same as the rank order of the esti-

mated variances themselves. Likewise, differences shown to be significant

on the logit scale will also be significant on the index scale. Thus, to establish

whether segregation has significantly increased over time, or to establish in

which areas segregation is highest, inferences can be made solely in terms
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FIGURE 2. Expected value of D based on underlying proportions plotted against the

variance on the logit scale for different overall proportions.
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of variance parameters. Further, the Appendix demonstrates that the expected

values of all common segregation indices are monotonically increasing func-

tions of one another.

It can also be argued that choice of index is unimportant for comparing

changes in segregation. For example, to establish which of the two areas experi-

enced a greater increase in segregation, we would compare the increase in

segregation for the first area with that for the second. The approximately linear

relationship between the two scales for all but large differences in segregation

means that it does not matter which index is used, since the ratio of the two

increases will be approximately the same. Choice of index will only be important

when the increases in segregation being compared relate to very different parts of

the logit/index scales. However, it does not seem substantively wise to compare

areas that are so fundamentally different.

5. Social Segregation Among London Schools: An Application

In England, pro-market education reforms of the secondary schooling system

(ages 11 to 16), from 1988 onward, set up new incentives and opportunities for

schools and parents. Parents were given greater opportunity to choose a school

for their children and were provided with school level examination results in the

form of published school league tables (Leckie & Goldstein, 2009). This has

created a continuing debate about whether social diversity or segregation among

schools has changed as a result of parents exercising choice and continuing

modifications to the curriculum and status of schools. In this debate, interest has

focused on calculating segregation index scores which summarize the variation

among schools in the proportion of FSM students. These scores are then

compared across cohorts, to describe whether segregation, at the national and area

scales has increased or decreased over time (e.g., Allen & Vignoles, 2007) and

across areas, to describe where in England segregation is highest and lowest.

5.1. The Data

The data are taken from the Annual School Census (ASC), a census of all

schools in the state education system in England. We narrow our attention to

schools in London and focus on the cohort of students who entered secondary

schooling in 2002 and the cohort who entered in 2008. These are the first and last

cohorts for which we have data. Schools in London come under the responsibility

of 32 LAs: 12 in inner London and 20 in outer London. Across the two cohorts,

there are 416 schools and the vast majority of these are present for both cohorts.

There are, on average, 185 students in each school cohort, but in some cases there

are as few as 100 or as many as 300.

For each student, we have a binary response: whether they are eligible (1) or

not (0) for FSM. However, for computational efficiency, we will estimate models

for the equivalent binomial response: the proportion eligible for FSM in each
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school cohort. We will not be including student-level predictor variables in our

models and so no information is lost by merging the student level data into

school-cohort proportions. It is also helpful to illustrate these models in terms

of proportions as many data used in segregation studies are released, for

confidentially reasons, as proportions or counts (Subramanian, Duncan & Jones,

2001). The mean proportion in 2002 was 0.28 and in 2008 it was 0.27.

5.2. Estimation Details

We use MCMC estimation methods as implemented in MLwiN (Browne, 2009;

Rasbash, Charlton, Browne, Healy & Cameron, 2009). We ran MLwiN through the

Stata statistical software package by using the user written runmlwin Stata com-

mand (Leckie and Charlton, 2011). Estimates obtained using the quasi-likelihood

methods in MLwiN were used as initial values. The models were run for a burn-

in of 5,000 iterations followed by a monitoring chain of 50,000 iterations. We used

hierarchical centering (Browne, 2009; Browne, Steele, Golalizadeh, & Green,

2009) to produce chains that exhibit better mixing and the standard default prior

distributions provided by MLwiN. The default prior distribution used for the var-

iance parameters is an inverse gamma ��1 0:001; 0:001ð Þ and for covariance

matrices is an inverse Wishart with parameters equal to the quasi-likelihood esti-

mates. In the case of small samples, the choice of default priors may be important

(Browne, 1998), but for our data the number of schools is sufficiently large that

altering the default prior to be uniform does not appreciably change the values for

the school estimates. The small number of LA units considered in our illustrative

application means that altering the default prior to be uniform does lead to small

increases in the LA estimates, but these changes do not alter our substantive con-

clusions. Informal visual assessments of the parameter chains and standard

MCMC convergence diagnostics suggested that the sampler was run for suffi-

ciently long. The MCMC approach allows the fit of models to be compared via

the deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der

Linde, 2002): models with smaller DIC values are preferred to those with larger

values, with differences of 10 or more considered substantial. Where we simulate

index scores from the model parameters, we simulate these from the MCMC

point estimates rather than the MCMC chains of parameter estimates. Although

the latter approach is preferable (see Section 4.1), in this instance, the large scale

nature of our data meant it would be computationally burdensome.

5.3. The Two-Level Variance Components Binomial Response

Model for Proportions

We first fit the Model 1 (Equation 1), the simple two-level variance compo-

nents binomial response model for proportions, to the 2008 cohort of students.

This model measures the degree of segregation among London schools for our

most recent year of data. Estimates are shown in Table 1.
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In the median school, the proportion of students in poverty is predicted as

anti�logit �1:220ð Þ ¼ 0:228. The degree of segregation among schools is esti-

mated as 1.087. Comparing the DIC to a model without school random effects

(not shown) confirms the existence of segregation across London schools.

If we use the simulation method described in Section 4.1 to calculate the

dissimilarity index based on the parameter estimates of b0 and s2
u, we obtain a

value of 0.366 with a 95% interval of [0.341, 0.391]. This suggests that on

average, 37% of FSM students would have to move to other schools in London

in order to achieve an even distribution of FSM students across all schools in the

city. The dissimilarity index score based on the observed proportions is similar

with a value of 0.355.

5.4. Adding LAs as an Additional Level of Analysis

Next we fit Model 2 (Equation 2), a three-level model that measures

segregation simultaneously at the LA and school levels. Fitting the model gives

the estimates shown in Table 2. Model 2 offers only a very slight improvement in

fit over Model 1, which did not include the LA random effects (the DIC is

reduced by 2 points). The LA variance is almost as large as the school variance

TABLE 2

Parameter Estimates for Model 2

Parameter Estimate (Standard Error)

b0 Intercept �1.157 (0.134)

s2
v LA variance 0.516 (0.157)

s2
u School variance 0.582 (0.050)

Dv Simulated LA dissimilarity index 0.267 (0.199, 0.340)

Du Simulated School dissimilarity index 0.283 (0.262, 0.304)

DIC 3,016.454

Note: A 95% interval, rather than a standard error, is reported for each simulated dissimilarity index.

TABLE 1

Parameter Estimates for Model 1

Parameter Estimate (Standard error)

b0 Intercept �1.220 (0.054)

s2
u School variance 1.087 (0.087)

Du School dissimilarity index 0.366 (0.341, 0.391)

DIC 3,018.161

Note: A 95% interval is reported for Du rather than a standard error.
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and their sum is similar to the estimate for the school variance in Model 1. Thus,

almost half of the segregation previously seen as between schools in Model 1 is

better described as segregation between LAs. One interpretation of the high

degree of LA level segregation is that it reflects substantial differences in family

income across LAs in London. However, not all children in London are schooled

in the LA in which they live and so the degree of LA level segregation in the edu-

cation system reported here might actually differ from the corresponding degree

of LA level residential segregation. It is possible to extend the current model to

explore whether the schooling system exacerbates or mitigates the degree of resi-

dential social segregation and we return to this and other possible extensions in

the Discussion. Table 2 shows that the school level variance is also large suggest-

ing that there is also considerable social segregation between the schools within

each LA. Thus, even within LAs, where schools are located only a short distance

apart, there is substantial variation in the proportion of poor students across

schools. The LA variance is estimated less precisely than the school variance

reflecting the low number of units at the LA level (32 LAs) compared to at the

school level (380 schools).

As before, we use the simulation method to report the estimated variances in

terms of the dissimilarity index. The results show a score of 0.267 for LA level

segregation compared to 0.283 for school level segregation. Thus, just as the LA

point estimate of the variance was smaller than the school variance, the simulated

LA dissimilarity index score point estimate is smaller than that for schools. The

scores suggest that 27% of FSM children in London would have to move to

schools in other LAs in order to eradicate segregation between LAs (but not

within LAs). To instead eradicate segregation within LAs (but to leave segrega-

tion between LAs unchanged), on average 28% of FSM students in each LA

would have to move to other schools within their LA. The 95% interval for the

LA level dissimilarity index is considerably wider than that for the school level

index reflecting the lower precision for the LA variance compared to that for the

school variance.

5.5. Adding a Second Cohort as an Additional Response Variable

Next we fit Model 3 (Equation 3), the two cohort version of Model 2, which

measures changes in LA and school level segregation over time. We fit the model

to the earliest and latest cohorts for which we have data: 2002 and 2008. Recall

that these two cohorts contain entirely different children: The first cohort con-

tains those children that entered secondary schooling in 2002; the second con-

tains those that entered in 2008. The estimates are shown in Table 3.

In 2008, the median school had a slightly higher proportion of FSM students

than in 2002 (24.3% compared to 23.7%); however, the MCMC chain for the dif-

ference in these parameter estimates shows this can be explained by random

variation.
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The 2008 LA variance is smaller than the 2002 variance and so LA level

segregation reduces between the two cohorts. The school level variance also

reduced over this period indicating that segregation within LAs also fell.

Comparisons of the DIC to simpler models that restrict the two LA level var-

iances to be equal and the two school level variances to be equal (not shown)

indicate that the model that does not constrain these pairs of variances to be equal

is to be preferred, so both the LA and the school reductions in segregation shown

in this model are statistically significant. The LA level covariance implies a very

high correlation of .99 ¼ 0:615
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:743� 0:523
p� �

between the 2002 and 2008

LA random effects. Thus, there has been almost no reordering of London LAs in

terms of the proportion of FSM students they teach over the 7-year period.

The school level correlation is smaller but is still extremely high (.91). Thus,

even within LAs, there has been little change in the ordering of schools; there

is a great continuity in terms of poverty for London schools over time.

We again use the simulation method to report the estimated variances in terms

of the dissimilarity index. The results show a score of 0.312 for LA level segrega-

tion in 2002 which reduced to 0.268 in 2008. At the school level, segregation

dropped from 0.321 to 0.292. The drop in the simulated index scores suggest that

the proportion of FSM students that would have to move to schools in other LAs in

TABLE 3

Parameter Estimates for Model 3

Parameter Estimate (Standard Error)

bð1Þ0 2002 Intercept �1.171 (0.159)

bð2Þ0 2008 Intercept �1.136 (0.134)

LA level

s2
vð1Þ 2002 LA variance 0.743 (0.215)

svð12Þ 2002 and 2008 LA covariance 0.615 (0.179)

s2
vð2Þ 2008 LA variance 0.523 (0.153)

School level

s2
uð1Þ 2002 school variance 0.782 (0.067)

suð12Þ 2002 and 2008 school covariance 0.634 (0.054)

s2
uð2Þ 2008 school variance 0.626 (0.052)

Dvð1Þ 2002 Simulated LA dissimilarity index 0.312 (0.232, 0.398)

Dvð2Þ 2008 Simulated LA dissimilarity index 0.268 (0.200, 0.342)

Duð1Þ 2002 Simulated school dissimilarity index 0.321 (0.298, 0.344)

Duð2Þ 2008 Simulated school dissimilarity index 0.292 (0.271, 0.313)

DIC 5,899.353

Note: A 95% interval, rather than a standard error, is reported for each simulated dissimilarity index.
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order to eradicate LA segregation dropped from 31% to 27% between the two

cohorts. The equivalent drop at the school level was less marked: On average,

32% of the 2002 FSM students would have to move to other schools within their

LAs to eradicate segregation within LAs compared to 29% in 2008. To test whether

this drop in school level segregation was significant, we follow the method outlined

in Section 4.1 and calculate the difference between the 2008 and 2002 index scores

at each iteration of the MCMC algorithm. The 95% interval for the difference in

scores (�0.037,�0.021) does not include 0 and so the degree of school segregation

in 2008 is judged significantly less at the 5% level than it was in 2002.4

5.6. Modeling Segregation as a Function of LA Predictor Variables

In Models 2 and 3, we found that within LAs, FSM students were segregated

across schools. One explanation is the way students are admitted to schools.

Seven of the outer London LAs operate a selective admissions system whereby

initially high achieving students are sent to ‘‘grammar schools’’ based on their

performance in entrance exams. These schools select on ability and since chil-

dren’s test scores tend to be positively associated with family income, grammar

schools tend to teach lower proportions of FSM students than neighboring non-

grammar schools. It therefore seems likely that schools in selective LAs might be

more segregated in terms of poverty than those in nonselective LAs. To explore

this, we fit Model 4 (Equation 4) and use the three binary LA level indicator vari-

ables to distinguish between three groups of LAs: (a) the 12 nonselective LAs in

inner London; (b) the 13 nonselective LAs in outer London; and (c) the seven

selective LAs in outer London. The nonselective LAs in outer London are distin-

guished from those in inner London to provide a fairer comparison group for the

group of selective LAs since the latter group are only located in outer London.

Inner London is also considerably more deprived than outer London and so seg-

regation measures are often reported separately for these two areas (see, e.g.,

Johnston, Burgess, Harris, & Wilson, 2008). The results are presented in Table 4.

This model offers a slight improvement in fit over Model 3. We first consider

the results for the 2008 cohort. The estimates show that 38% of students in the

median school located within inner London are eligible for FSM, compared to

23% in nonselective outer London LAs and just 12% in the selective LAs. These

estimates clearly show the higher degree of poverty seen in inner London

schools. Adjusting for these differential rates of poverty leads to a substantial

reduction in the estimates of the LA variances compared to those reported in

Model 3. Thus, while there are large differences in poverty between these three

types of LAs, within each type, the LAs are relatively similar. At the school level,

the estimated variance parameters show that schools in inner London LAs are

typically less segregated than those in outer London LAs. For schools in outer

London LAs, we see that those located within selective LAs are by far the most

segregated in London. Thus, it appears that allowing schools to select on ability
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TABLE 4

Parameter Estimates for Model 4

Parameter Estimate (Standard Error)

bð1Þ1 2002 Intercept for schools in inner London �0.402 (0.169)

bð2Þ1 2008 Intercept for schools in inner London �0.508 (0.140)

bð1Þ2 2002 Intercept for schools in nonselective

LAs in outer London

�1.290 (0.166)

bð2Þ2 2008 Intercept for schools in nonselective

LAs in outer London

�1.199 (0.138)

bð1Þ3 2002 Intercept for schools in selective

LAs in outer London

�2.140 (0.232)

bð2Þ3 2008 Intercept for schools in selective

LAs in outer London

�2.007 (0.198)

LA level

s2
vð1Þ 2002 LA variance 0.284 (0.095)

svð12Þ 2002 and 2008 LA covariance 0.222 (0.077)

s2
vð2Þ 2008 LA variance 0.195 (0.066)

School level for all LAs in inner London

s2
u1ð1Þ 2002 school variance 0.571 (0.086)

su1ð12Þ 2002 and 2008 school covariance 0.416 (0.065)

s2
u1ð2Þ 2008 school variance 0.415 (0.063)

School level for nonselective LAs in outer London

s2
u2ð1Þ 2002 school variance 0.662 (0.088)

su2ð12Þ 2002 and 2008 school covariance 0.514 (0.069)

s2
u2ð2Þ 2008 school variance 0.504 (0.066)

School level for selective LAs in outer London

s2
u3ð1Þ 2002 school variance 1.293 (0.205)

su3ð12Þ 2002 and 2008 school covariance 1.166 (0.182)

s2
u3ð2Þ 2008 school variance 1.171 (0.185)

Simulated school level dissimilarity index scores

Du1ð1Þ 2002 School dissimilarity index

(LAs in inner London)

0.278 (0.243,0.314)

Du1ð2Þ 2008 School dissimilarity index

(LAs in inner London)

0.242 (0.211,0.275)

Du2ð1Þ 2002 School dissimilarity index

(nonselective LAs in outer London)

0.300 (0.265,0.335)

(continued)
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indirectly leads them to select on poverty and therefore imbalances schools in

terms of their social mix.

Comparing the 2008 results to those for 2002 shows that the percentage of

FSM students taught in inner London decreased over the 6 years (the percentage

in the median school dropped from 40% to 38%) while the percentage taught in

outer London increased slightly (from 22% to 23% in the nonselective LAs and

from 11% to 12% in the selective LAs). There is therefore some suggestion that

inner and outer London have become more similar (i.e., less segregated) in terms

of the proportion of FSM students taught in their schools. The LA variance also

decreased over the period suggesting that, within each type, LAs have become

more similar (i.e., less segregated) in terms of the proportion of FSM students

they teach. Further, all three school variances also decreased over the period sug-

gesting that FSM students became less segregated across schools within all three

types of LA. In sum, these results indicate that schooling in London has become

less segregated at a range of levels over the 6-year period.

Finally, we use the simulation method to present the estimated variances in

terms of the dissimilarity index. To conserve space, Table 4 presents the simu-

lated index scores at the school level only. For the 2008 (2002) cohort, the mean

index scores are 0.242 (0.278) for inner London, 0.266 (0.300) for the nonselec-

tive outer London LAs, and 0.383 (0.400) for the selective outer London LAs.

Thus, we again see that segregation among schools is considerably higher for

those located in selective LAs than for those in nonselective LAs and that all

three types of LA became less segregated over the period.

6. Discussion

The multilevel modeling approach to segregation is essentially concerned

with modeling the underlying proportions of interest and treats the observed pro-

portions as just one stochastic realization from an underlying social process. This

approach therefore allows us to make statistical inferences about the underlying

TABLE 4 (continued)

Parameter Estimate (Standard Error)

Du2ð2Þ 2008 School dissimilarity index

(nonselective LAs in outer London)

0.266 (0.237,0.296)

Du3ð1Þ 2002 School dissimilarity index

(selective LAs in outer London)

0.400 (0.347,0.458)

Du3ð2Þ 2008 School dissimilarity index

(selective LAs in outer London)

0.383 (0.332,0.440)

DIC 5,898.704

Note: A 95% interval, rather than a standard error, is reported for each simulated dissimilarity index.
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patterns of segregation and how these change over time: we can make inferences

and construct interval estimates in the usual ways. Furthermore, patterns of

segregation can be modeled simultaneously at multiple levels in the data, for

example, at multiple organizational levels in an education system or at multi-

ple spatial scales. Furthermore, we can model segregation as a function of pre-

dictor variables, such as area characteristics. In doing so, the multilevel

modeling approach is not just able to measure patterns of segregation but

offers a way to explain the existence of such patterns and why they change

over time. These possibilities are not easily available in the descriptive index

approach and it is therefore difficult to see how that approach can further

extend our understanding of segregation.

However, if values of a traditionally used index are still desired, for example,

for the purpose of presenting findings to a general audience, we have shown how

these can be simulated from the estimated parameters of the multilevel model. It

is then possible to make statistical inferences about the underlying social process

in terms of the chosen index and we have illustrated how this can be done. The

advantages of using a model for the analysis and, if desired, simulating index

scores for the purpose of presenting findings strongly suggest that this should

become the standard approach. Our own view, however, is that there may be little

to be gained from simulating such indices when there are straightforward inter-

pretations of the estimated model parameters themselves. Indeed, the simulated

index scores for all common segregation indices are monotonically increasing

functions of the model variance parameters and so simulating index scores from

the variances are order preserving transformations—the rankings of the areas or

years that are being examined are unaltered. Further, the relationship between

simulated index scores and the variance on the logit scale is approximately linear

for all but large differences in segregation and so when, for example, the

increases in segregation experienced by two areas are compared, the increase

experienced in one area relative to the other is approximately the same whether

we choose to work with the estimated variances or simulated index scores; either

way, we arrive at the same conclusions.

The multilevel modeling approach to segregation can be extended in many

ways beyond those covered in this paper. We can fit nonhierarchical, cross-

classified models (Rasbash & Goldstein, 1994; Raudenbush, 1993) to disentangle

residential and school segregation when schools are not nested within neighbor-

hoods or vice versa. We can fit models with multivariate responses to jointly

model social segregation and, for example, academic segregation in relation to

student achievement scores. Unlike the descriptive approach to segregation, non-

binary response types, such as achievement scores measured on a continuous or

ordinal scale, pose no problems for the multilevel modeling approach. Models

with unordered multinomial responses can also be fitted to model multigroup

segregation, where interest lies in modeling segregation among three or more

subgroups of the population (Reardon & Firebaugh, 2002). Finally, models with
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spatially correlated random area effects can be fitted to model spatial segregation

(Reardon & O’Sullivan, 2004).

While our discussion has been in the context of social segregation among

schools, the statistical issues we discuss are equally relevant to race and ethnic

and other kinds of segregation as well as to measuring segregation among differ-

ent types of institution or segregation among neighborhoods. Further work is cur-

rently underway, extending the multilevel approach to modeling multigroup

ethnic segregation among schools and ethnic spatial segregation among

neighborhoods.

Appendix

While the dissimilarity index D is the most widely used segregation index (see

Section 2.2), many other indices exist. The Gini index (Duncan & Duncan, 1955)

and the isolation index (Bell, 1954; Lieberson, 1981) are also commonly used

segregation indices while Theil’s information-based entropy index (Theil,

1972; Theil and Finizza, 1971) was recently recommended as satisfying a range

of desirable index properties (Reardon & Firebaugh, 2002). The Gini index G is

given by

G ¼

P
j

P
j0

njnj0
nFSM

j

nj

�
nFSM

j0

nj0

�����
�����

2N 2
NFSM

N

	 

1� NFSM

N

	 
� � ;

where nFSM
j and nFSM

j0 are the number of FSM students in schools j and j0, respec-

tively, while nj and nj0 are the total number of students in the two schools. NFSM is

the total number of FSM students across all schools and N is the total number of

students of either type across all schools. The index is bounded by 0 (no segrega-

tion, all schools have the same observed proportion of FSM students) and 1 (com-

plete segregation, no schools are observed with both FSM and non-FSM

children).

The isolation index I is given by

I ¼
X

j

nFSM
j

NFSM

 !
nFSM

j

nj

 !" #
:

The index is bounded from below by N FSM
�

N , the overall proportion of FSM

students (no segregation), and 1 (complete segregation). The value of I provides

a useful interpretation, as the probability that a random FSM student attends a

school with another FSM student. The index is also interpreted as the mean expo-

sure of FSM students to other FSM students.

Theil’s information-based entropy index H is given by
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H ¼
X

j

nj E � Ej

� �
NE

;

where E defines the diversity across all schools and is termed the entropy.

E ¼ NNONFSM

N
ln

N

NNONFSM

	 

þ NFSM

N
ln

N

NFSM

	 

;

and Ej defines the diversity within school j

Ej ¼
nNONFSM

j

nj

ln
nj

nNONFSM
j

 !
þ

nNONFSM
j

nj

ln
nj

nFSM
j

 !
:

Like D and G, H is bounded by 0 (no segregation, all schools have the same

observed proportion of FSM students) and 1 (complete segregation, no schools

are observed with both FSM and non-FSM children).

Figure 3 corresponds to Figure 1 (see Section 2.2) and shows the expected

value of D, G, I, and H, based on observed proportions, when there is no under-

lying segregation. The expected values are plotted against school size when the

overall FSM proportion is 0.25. The figure shows that all four indices are biased

upward as the observed proportions include the effects of sampling variability.

We note that Theil’s information-based entropy index suffers from the smallest

bias and this is expected, given that the index has been shown to satisfy a range of

desirable index properties (Reardon and Firebaugh, 2002).
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FIGURE 3. Expected values of D, G, I, and H based on observed proportions plotted

against school size when there is no underlying segregation.
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Figure 4 corresponds to Figure 2 (see Section 4.2) and shows the expected

value of D, G, I, and H, based on underlying proportions for different degrees

of underlying segregation. The expected values are plotted against the variance

on the logit scale for when school sizes are 200 students per school and for

when the overall FSM proportion is 0.25. The figure shows that the expected

value of each index, holding the overall proportion constant, is a monotonically

increasing function of the variance. Thus converting between any pair of

simulated indices is an order preserving transformation and, as discussed in

Section 4.2, makes the choice of index after fitting the multilevel model arbitrary.

Acknowledgments

The authors are grateful for the very helpful and detailed comments that were

provided by the three referees and the Editor. This work was funded under the

UK Economic and Social Research Council’s National Centre for Research

Methods program.

Notes

1. The model is described as two-level since we could consider the

school-level proportion response as the average of many student-level binary

responses. Thus, in essence, we are fitting these binary responses at level 1,
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FIGURE 4. Expected value of D, G, I, and H based on underlying proportions plotted

against the variance on the logit scale.
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nested within schools at level 2. Indeed, were we to do this, we would obtain

identical parameter estimates as the two models are equivalent.

2. On the logit scale, the logit for the median school is equal to the mean logit

across all schools; the mean and median logits coincide. However, when these

logits are transformed to probabilities, the mean and median probabilities do not

typically coincide. This is due to the nonlinear nature of the logit link function.

3. When the model is fitted by maximum likelihood, for example, using

adaptive quadrature, a likelihood ratio test can be used to compare Model 1 to

the same model without the school-level random effect. The test’s null hypoth-

esis of a zero variance is on the boundary of the parameter space (we do not

envisage a negative variance) and so the correct sampling distribution for the test

statistic is a 50:50 mixture of a point mass at zero and a chi-square distribution

with 1 degree of freedom. The correct p value is therefore half the usual value

that would be obtained for a chi-square distribution with 1 degree of freedom

(Goldstein, 2010, Section 2.8).

4. As discussed in Section 4.2, we have to be careful when establishing

whether changes in indices over time are significant as a systematic change in

the overall proportion of FSM students could be mistaken for a systematic

change in segregation. We recommended standardizing the overall proportion

over time. However, here the difference in the cohort-specific intercepts was very

small and not significant so no standardization was required.
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