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1. Introduction 
 
Goldstein and Noden (2003) propose multilevel binomial logistic regression for the 
special case of statistically modelling the composition and segregation of two groups of 
individuals (e.g., white and black students) over two occasions among organisational 
units (e.g., schools or neighbourhoods). This approach accounts for the randomness in 
the observed proportions that lead standard segregation indices to be biased and noisy 
measures of true segregation, especially when units are small. Their approach also 
allows statistical tests of differences in composition and segregation across areas, or 
over time, and can adjust and explain these differences for characteristics of the 
individuals or organisational units. Leckie et al. (2012) further develop this work by 
presenting a simulation method which can be used to reexpress the model segregation 
parameters in the metric of any desired two-group segregation index. 
 
The above work was concerned with two-group segregation, but researchers are often 
interested in studying segregation between three or more groups of individuals, for 
example measuring residential segregation (Farrell, 2008; Iceland, 2004) and school 
segregation (Reardon et al., 2000) between white, black and Asian individuals. Interest 
lies not only in calculating the overall degree of segregation, but also pairwise 
segregation between each possible pair of groups. Analysing three or more groups 
allows for richer descriptions of segregation and may reveal important differences 
between subgroups. For example, black-white segregation might be found to be 
increasing over time while Asian-white segregation is simultaneously decreasing. 
Similarly, the relative importance of organisational scale or spatial aggregation for how 
segregation operates may also differ by ethnic group. For example, black-white 
segregation might operate largely at the school-district-level while Asian-white 
segregation might operate largely at the school-level. As with two-group segregation, 
many competing multigroup segregation indices have been proposed with considerable 
and on-going debates as to their ideal properties (see Reardon and Firebaugh, 2002, for 
a summary). 
 
The aim of the current paper is to generalise the two-group, two-occasion combined 
modelling and simulation approach described above to the general case of statistically 
modelling segregation among multiple groups over multiple occasions and multiple 
organisational scales. We propose multilevel random-coefficient multinomial logistic 
regression for this purpose. Specifically, we include random time trends to enable 
hypothesis testing for whether particular pairs of groups are becoming significantly 
more segregated over time. We show how including multiple levels of random-effects 
allows us to simultaneously analyse multigroup segregation at different organisational 
scales or spatial aggregations (micro-, meso-, and macro-segregation). We discuss how 
covariates can then be introduced into the model to produce adjusted measures of 
segregation and to test hypotheses about why levels of segregation change over time. 
We show how our simulation method can be extended to present estimated levels and 
trends in multigroup segregation along with their uncertainty in the metric of any 
desired multigroup segregation index. We illustrate these developments with an 
application to modelling changing patterns of three-group white-black-Asian ethnic 
segregation among secondary schools in London across the first decade of the 21st 
century. While we illustrate our models in terms of ethnicity, the models can be applied 
to measuring composition and segregation among social and other groupings. 
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Several other inferential approaches have been proposed whose benefits overlap those 
offered by the multilevel and simulation approach. Ransom (2000) derives exact 
sampling distributions for two indices and develops an asymptotic test for the change in 
segregation across two occasions. Allen et al. (2009) propose a bootstrap procedure for 
comparing pairs of segregation index values, while Rathelot (2012) propose a 
parametric approach. While each of these approaches could, in principle, be extended to 
multigroup segregation indices, such extensions have not yet been pursued. Nor do 
these approaches allow for dependence on covariates. In some cases a segregation 
index is used as a response variable in a linear regression model, with aggregated 
variables as covariates. However, the regression coefficients fail to account for the 
varying reliability of each segregation index value. The bootstrap has been proposed to 
address the latter problem (Willms and Paterson, 1995), but it is not clear how one 
would extend this linear regression approach to multigroup segregation where there 
are often multiple interdependent pairwise segregation index values per area. In 
addition, this approach cannot incorporate covariates measured at the individual or 
organisational unit level. 
 
Our approach also allows the analyst to directly address issues of public policy interest. 
Individuals’ attitudes about race and ethnicity, multiculturalism and citizenship are 
often arguably shaped by individuals’ school experiences and the degree to which 
children of different backgrounds interact. For example, there is a continuing debate as 
to whether social and ethnic segregation has changed as a result of policies designed to 
encourage parents to exercise choice of school. Likewise, the recent promotion of 
academies and free schools may also be expected to affect the extent of ethnic and social 
segregation.  The ability to statistically model changes in composition and segregation is 
an important part of such debates. 
 
The next section describes the data used in the application. Section 3 details the 
multilevel random-coefficient multinomial logistic regression model. Section 4 extends 
our earlier simulation method to reexpress the model segregation parameters in the 
metric of any desired segregation index. Section 5 applies the modelling and simulation 
approach to the data. Section 6 concludes. 
 
 
2. Data and Descriptive Analysis of Changing Patterns of Ethnic Composition and 
Segregation 

 
A number of studies have described the changing patterns of ethnic composition in 
schools in England (for example, Burgess and Wilson, 2005; Burgess et al., 2005; 
Johnston et al., 2004, 2005, 2006, 2008). These studies show non-white students are 
concentrated in cities, particularly London, and that the proportion of non-white 
students is increasing over time. Johnston et al. (2006) report that nearly half (44%) of 
England’s non-white secondary school students lived in London in 2003. Hamnett 
(2011) reports the percentage of non-white London secondary school students 
increased from 40.3% in 1999 to 52.6% in 2009. In terms of changing patterns of ethnic 
segregation, Johnston et al. (2008) use the index of isolation to report a general picture 
of considerable, but stable, ethnic segregation in England over the period 1997-2003. 
However, they highlight some notable exceptions; in particular, they report that black 
Africans in London became slightly more segregated over this period. 
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2.1 Annual school census data 
 
The data are drawn from the annual school census (ASC), a census of all schools in the 
state education system in England 
(http://www.education.gov.uk/researchandstatistics/national-pupil-database). We 
examine the changing ethnic composition of London secondary schools across 10 
consecutive entry cohorts of students, 2001-2010, at the point at which they entered 
their schools (age 11, national curriculum year seven).  
 
We analyse three ethnic groups: ‘white’, ‘black’ and ‘Asian’. The white group consists of 
white British, white Irish and other white students. The black group consists of black 
African and black Caribbean students. The Asian group consists of Indian, Pakistani and 
Bangladeshi students. We focus on three ethnic groups in order to illustrate the 
approach as simply as possible. However, the approach readily extends to the case of 
analysing four or higher numbers of ethnic groups. For example, black African students 
could be distinguished from black Caribbean students. Similarly, mixed-ethnicity and 
other students not covered by our three-group classification (12 to 16% of all students 
in each cohort) could also be included. Researchers will learn more from these data by 
considering a range of ethnic classifications rather than just one. Plewis (2011) provides 
a detailed description of the full ethnic classification available in these data. 
 
Over the period to which our data relate, London schools came under the responsibility 
of 32 local authorities (LAs) (equivalent to school districts in the US). The most central 
12 LAs form inner-London, while the 20 surrounding LAs form outer-London. Across 
the 10 cohorts 395 schools are represented and 81% are present for all 10 years. An 
advantage of the multilevel approach is its ability to handle this imbalance. In total we 
observe 3667 school-cohorts with, on average, 161 students per school-cohort.  
 
 
2.2. Changing macro-level patterns of ethnic composition and segregation 
 
The data show the ethnic composition of London students as a whole changed between 
2001 and 2010. The proportion of white students fell from 0.64 to 0.53 while the 
proportion of black and Asian students increased from 0.20 to 0.24 and from 0.16 to 
0.23, respectively. Fig. 1 shows that this pattern differs across inner- (left panel) and 
outer-London (right panel) suggesting there is ethnic segregation at this most macro of 
spatial aggregations. Here and throughout the rest of this section, we are defining 
‘ethnic segregation’ very simply as variation in the ethnic composition of the units 
under consideration, here inner- and outer-London. Specifically, white students 
disproportionately attended schools in outer-London while black students 
disproportionately attended schools in inner-London. Asian students were similarly 
represented in both inner and outer-London schools. These patterns reflect the 
differential residential concentrations of these ethnic groups across inner- and outer-
London during this period. 
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2.3. Changing meso-level patterns of ethnic composition and segregation 
 
Fig. 2 plots the proportions of white, black and Asian students between 2001 and 2010 
separately for the 32 LAs. The first two rows present the 12 inner-London LAs; rows 
three to six present the 20 outer-London LAs. The figure shows that the London-wide 
decline in the proportion of white students, and increased proportions of black and 
Asian students, applies generally, but to varying degrees, across effectively all LAs. 
However, more immediately apparent is the substantial heterogeneity in the average 
proportions of each ethnic group across LAs and the stability in these differences over 
time. Some LAs tend to have especially high proportions of non-white students in all 
years: black students are the largest ethnic group in Lambeth and Southwark; while in 
Tower Hamlets and Newham Asian students are the largest ethnic group. In contrast, 
Bromley, Havering and Richmond upon Thames have especially low proportions of non-
white students in all years. Only in Lewisham (from white to black) and Redbridge 
(from white to Asian) do we see the dominant ethnic group change between the start 
and the end of the decade. The substantial variation in the ethnic composition of 
students across LAs suggests considerable ethnic segregation at this meso-level of 
analysis, but it is less clear as to the degree to which this might have changed over time. 
 
 
2.4. Changing micro-level patterns of ethnic composition and segregation 
 
The school proportions of white, black and Asian students between 2001 and 2010 also 
vary considerably within their LAs (see supplementary materials). While some of this 
variability will reflect randomness, there appears to be substantial ethnic segregation 
even at this most micro level of analysis. In these data, where there are so few schools 
per LA (between 2 and 21), describing the extent to which school-level ethnic 
segregation might vary from one LA to the next would be of limited value. 
 
 
3. Multilevel Modelling of Longitudinal Multigroup Segregation 
 
Multigroup segregation data in their simplest form have one record per organisational 
unit and consist of counts of the number of individuals in each unit who belong to each 
of several mutually exclusive and exhaustive groups of interest. In our case we have 
counts of the number of white, black and Asian students in each of 3667 school-cohorts. 
Data of this form can be viewed as multinomial grouped data where the number of 
‘trials’ is given by the total number of individuals in each unit, while the ‘number of 
successes’ in each ‘outcome category’ are given by the number of individuals in each 
group. A natural approach to statistically modelling such data, is to fit multilevel 
multinomial logistic regression models (Goldstein, 2011; Raudenbush and Bryk, 2002; 
Snijders and Bosker, 2012). While we shall present our discussion in terms of these 
grouped data, we note that expanding the data to one record per individual results in 
multinomial individual data. An advantage of fitting models to the expanded data is that 
one can then enter individual-level covariates into the model to examine whether there 
is segregation in the characteristic being studied over and above that stemming from 
other characteristics associated with the selection of individuals into units. 
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3.1. The multilevel random-coefficient multinomial logistic regression model 
 

The simplest model which captures the main features of the data described in Section 2 
is a three-level (school-cohorts within schools within LAs) random-coefficient 
multinomial logistic regression model for the observed numbers of white, black and 
Asian students in each school-cohort. The model is written as 
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where     
[ ],     

[ ]  and     
[ ]  denote the observed counts of white, black and Asian students 

in cohort   (             ) in school   (         ) in LA   (        ), 
respectively. The total number of students per school-cohort is denoted     . The three 

corresponding underlying proportions of white, black and Asian students,     
[ ] ,     

[ ]  

and     
[ ] , are then related to the model parameters via black-white and Asian-white 

contrast equations.  
 
Fig. 1 showed the proportion of white (black and Asian) students decreased (increased) 
over the 10 years in both inner- and outer-London, and that white students 
disproportionately attended schools in outer-London while black students 
disproportionately attended schools in inner-London. We capture these features of the 
data through the fixed-part of the black-white and Asian-white contrasts. Each contrast 
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includes a constant, a linear time trend   (coded         for the ten consecutive 
cohorts), a binary indicator for inner-London LAs   , and their cross-level interaction 

    . Thus, in the black-white contrast, the parameters   
[ ] and   

[ ] give the intercept 

and slope for the outer-London time trend while the sums   
[ ]    

[ ] and   
[ ]    

[ ] 
give the intercept and slope for the inner-London time trend. The Asian-white contrast 
is similarly defined. While one could extend the fixed-part of the model to include more 
flexible functions of time (Fitzmaurice, Laird and Ware, 2011; Hedeker and Gibbons, 
2006), we focus here on linear time trends to illustrate our approach as simply as 
possible. 
 
Fig. 2 showed considerable heterogeneity across LAs in both the initial proportions of 
each ethnic group and in the rates of change of these proportions over the 10 years. We 
capture these features of the data through the LA-level random-part of the model. For 
example, in the black-white contrast, we include LA-specific random-intercept and -

slope effects,    
[ ] and    

[ ]. Adding these amounts to the relevant inner- or outer-London 

time trend gives a unique linear time trend for each LA.  
  
Section 2.4 described that even within LAs, there appears to be considerable 
heterogeneity across schools in both the initial proportions of each ethnic group and in 
the rates of change of these proportions over the 10 years. We capture these features of 
the data through the school-level random-part of the model. For example, in the black-

white contrast, we include school-specific random-intercept and -slope effects,     
[ ]  and 

    
[ ]

. Adding these amounts to the relevant LA time trend, gives a unique linear time 

trend for each school.  
 

We include school-cohort-specific random-intercept effects     
[ ]  at the lowest level of 

analysis in order to capture any remaining overdispersion (extramultinomial variation) 
in the data (Skrondal and Rabe-Hesketh, 2007). Note that this approach does not allow 
for underdispersion because variances are nonnegative. However, in most applications, 
underdispersion is less prevalent than overdispersion and it is unlikely here where we 
make only limited adjustments for covariates. 
 
The random-effects are assumed multivariate normally distributed at each level and 
independent across levels. While inference in multilevel models is typically robust to 
moderate departures from normality, severe skewness or outliers can pose problems. 
The plausibility of these assumptions can be readily examined by plotting quantile-
quantile plots (normal score plots) or other residual diagnostic plots of the posterior 
(shrunken) estimates of the random effects. 
 
 
3.2. Variance functions 
 
The variability in the four LA random-effects is summarised by the     LA-level 
covariance matrix. This matrix provides a direct summary of the degree to which 
students are segregated across LAs at each point in time, having adjusted for 
segregation associated with the changing overall proportions of each ethnic group in 
inner- and outer-London. The corresponding school-level covariance matrix provides a 
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direct summary of the degree to which students are segregated across schools at each 
point in time, over and above the influence of LA-level segregation. To facilitate the 
interpretation of these covariance matrices, we derive variance functions which map 
out how the degree of black-white and Asian-white segregation changes over time at 
each level of the model. 
 
The LA-level black-white and Asian-white variance functions are written as 
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[ ] | )     
 [ ]       

[ ]      
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The school-level black-white and Asian-white variance functions are written as 
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These functions can be further manipulated to provide additional insights. For example, 
summing (2) and (3) when     gives a new function measuring how combined LA- 
and school-level black-white segregation changes over time, while dividing (2) by the 
sum of (2) and (3) would quantify the changing relative importance of LA- and school-
level black-white segregation over time. 
 
We can perform global tests for the presence of LA- or school-level segregation by 
comparing the fit of this model to a model with no LA- or no school-level random-
effects, respectively. However, Fig. 2 and the underlying data suggest that there is 
substantial ethnic segregation at each level of analysis and so of more interest is to test 
whether the degree of ethnic segregation at each level has changed significantly over 
time. We can do this by comparing the fit of the current model to a model where we 
retain the random-intercept effects at a given level, but remove the random-slope 
effects. The simpler model then allows for segregation at each level, but constrains the 
degree of segregation at the specified level to be constant over time. More nuanced tests 
of segregation can be carried out by testing the joint significance of different 
combinations of parameters in each of the variance functions. 
 
Equations (2) and (3) are constrained quadratic functions of time. Specifically, they are 
of the form          where     (we do not envisage negative intercept variances) 
and     (we do not envisage negative time trend variances). These quadratic 
functions are therefore convex and always return positive values. The coefficient   gives 
the degree of segregation in the first cohort (   ). The interpretation of  , however, is 
somewhat more subtle due to the constraint on the quadratic term. When    , 
segregation strictly increases with time; when     segregation initially decreases with 
time, but, since    , will at some future point in time reach a minimum and then 
increase from there on. This turning point may lie beyond the end of the observation 
period in which case segregation would be seen to strictly decrease within the range of 
the data. Plotting variance functions typically aids their interpretation. 
 
Given the above discussion, modelling black-white and Asian-white segregation as 
quadratic functions of time may seem unduly restrictive, particularly when there are 
many time points. However, there is nothing to stop us including higher-order 
polynomial LA- and school-specific time trends in the model in order to allow for more 
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flexible variance functions. For example, including LA-specific quadratic time trends 
would result in variance functions which additionally include cubic and quartic 
components. A comparison of the fit of this model to that of the simpler linear time 
trend model then provides evidence as to whether this added complexity is required. 
We can even explore whether different order polynomials are required in each contrast. 
More generally, including time trends of polynomial degree   implies variance functions 
of polynomial degree   . We may also include fractional polynomials. A different 
approach altogether may be required if the degree of segregation is not expected to 
change in a smooth continuous fashion over time. We can, for example, directly specify 
variance functions which are step functions of time to cater for such eventualities, but 
we shall not entertain such possibilities further here. 
 
When describing patterns of ethnic segregation, it is also substantively interesting to 
examine the degree to which LAs (schools) where blacks are overrepresented relative 
to whites are also the LAs (schools) where Asians are overrepresented relative to 
whites. We can examine this by deriving LA- and school-level correlation functions 
which describe how the correlation in the (log of the) black-white and Asian-white 
ratios change over time at each level of analysis. First we must calculate the LA-level 
black-white and Asian-white covariance function, written as 
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The school-level black-white and Asian-white covariance function takes the same 
mathematical form and is written as 
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The corresponding correlation functions are derived by dividing each covariance 
function by the square root of the product of the two corresponding variance functions. 
 
We have discussed black-white and Asian-white segregation; however, Asian-black 
segregation may also be of interest. The LA-level Asian-black variance function is given 
by (2) (where    ) plus (2) (where    ) minus two times (4). The school-level 
Asian-black variance function is similarly defined in terms of (3) and (5). 
 
 
3.3. Adjusting for covariates 
 
Having modelled the multilevel and longitudinal patterns of LA- and school-level 
segregation, we might then be interested in explicitly comparing these patterns across a 
limited number of population subgroups. For example, while we have modelled how the 
overall proportions of white, black and Asian students differ between inner- and outer-
London, it might be interesting to additionally examine whether segregation is higher in 
inner- or outer-London. For example, black-white school-level segregation may be 
decreasing over time in inner-London, but increasing over time in outer-London. The 
simplest approach to capture such patterns is to fit the model separately to each 
subgroup, but this precludes testing for differences in segregation across subgroups. A 
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more appropriate approach is to model the subgroups jointly by interacting the 
parameters in the model with a series of binary subgroup indicator variables.  
 
More generally, covariates can be included in the fixed-part of the model to explain the 
variation in ethnic proportions across schools and across LAs. The resulting variance 
functions then measure the degree of segregation at each point in time having adjusted 
for these variables. Additionally including covariates in the random-part of the model 
allows us to explicitly model how segregation changes as a function of these covariates. 
For example, school admissions policies are known to differ across LAs with some LAs 
selecting children into schools based on their academic ability to a greater extent than 
other LAs. LA-level variation in school admissions policies might then be expected to 
give rise to variation in school-level ethnic segregation if students’ test scores are 
associated with ethnicity. 
 
 
3.4. Estimation 
 
We fit all models using Markov chain Monte Carlo (MCMC) methods as implemented in 
the MLwiN multilevel modelling package (Rasbash et al., 2009). We have chosen to call 
MLwiN from within Stata using the runmlwin command (Leckie and Charlton, 2013). 
Estimates obtained using the quasi-likelihood methods implemented in MLwiN are used 
as initial values for all parameters. All models are run for a burn-in of 50,000 iterations 
followed by a monitoring chain of 500,000 iterations. Minimally informative prior 
distributions are specified for all parameters. We use hierarchical centring 
parameterisations (Browne, 2012; Browne et al., 2009) to produce chains that exhibit 
better mixing. Informal visual assessments of the parameter chains and standard MCMC 
convergence diagnostics suggest that the sampler was run for sufficiently long. The 
MCMC approach allows the fit of models to be compared via the deviance information 
criterion (DIC; Spiegelhalter et al., 2002): models with smaller DIC values are preferred 
to those with larger values, with differences of five or more considered substantial 
(Lunn et al., 2012).  
 
 
4. Simulating multigroup segregation indices based on the fitted multilevel model 
 
In this section, we illustrate how our simulation method can be used to reexpress the 
model segregation parameters into the metric of a multigroup segregation index. 
Specifically, we reexpress the overall level of segregation (combined macro-, meso- and 
micro segregation) in each cohort implied by the model into the metric of the 
multigroup information theory index (Theil, 1972; Theil and Finezza, 1971). This index 
is widely applied in studies of residential multigroup ethnic segregation (Farrell, 2008; 
Fischer, 2003; Fischer et al., 2004; Iceland, 2004) and in studies of multigroup ethnic 
school segregation (Reardon et al., 2000). 
 
 
4.1. Calculating the multigroup information theory index on observed data 
 
The multigroup information theory index is a measure of evenness – the extent to which 
groups are evenly distributed across organisation units (Massey and Denton, 1988). The 
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index can be interpreted as the difference between the ethnic diversity of the school 
system (the degree to which ethnic groups are equally represented) and the weighted 
average diversity of individual schools. A value of zero corresponds to no segregation 
(complete integration) – the ethnic composition of every school is the same – while a 
value of one corresponds to complete segregation (no integration) – the ethnic 
composition of each school consists of only one ethnic group. The index, denoted   , is 
calculated  as 
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where    and    denote the ethnic diversity and total number of students across London 
in cohort  , while      and      denote the corresponding quantities in cohort   in school 

  in LA  . (Note that summing over   implicitly sums over   as we have defined   as a 
unique identifier rather than a nested identifier.) The London-wide diversity score is 
calculated as 
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where   
[ ] is the proportion of London school students in ethnic group   while the 

analogous diversity score for school   in LA   is calculated as 
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When     
[ ]   ,   (    

[ ] ) is set to zero since    
    
[ ]
  
{     

[ ]   (    
[ ] )}   . In each case, 

the diversity score ranges from zero (no diversity; only one ethnic group is 
represented) to   ( ) (maximum diversity; each of the   ethnic groups is equally 
represented). When        , school   is less ethnically diverse than London as a whole 

while when        , school   is more ethnically diverse than London as a whole. 

 
The index provides a one number summary of ethnic segregation between multiple 
groups. A limitation of this index is that it says nothing about how segregated pairs of 
groups are (pairwise segregation). For this purpose a two-group version of this index is 
sometimes employed to compare each ethnic group in turn to every other ethnic group 
in turn (for example, black-white then black-Asian then Asian-white). Alternatively, the 
above formulas are sometimes used to compare each ethnic group in turn to the 
remaining ethnic groups combined (for example, black-non-black, Asian-non-Asian, 
white-non-white).  
 
 
4.2. Simulating model-implied values of the multigroup information theory index 
 
The simulation method consists of repeating the following steps a large number of times 
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1. Simulate a new set  of random-effects for each LA from the estimated LA-level 
covariance matrix. 
 

2. Simulate a new set of random-effects for each school from the estimated school-
level covariance matrix. 

 
3. Simulate a new set of random-effects for each school-cohort from the estimated 

school-cohort-level covariance matrix. 
 

4. Use the model contrast equations to compute a new set of proportions     
[ ]  based 

on the observed covariates and the simulated random effects. 
 

5. Compute the overall proportions of each ethnic group 
 

  
[ ]  ∑

    

  
    
[ ]

 

  

 
6. For each school-cohort, compute the school-cohort-level diversity score 
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7. Compute the overall diversity score 
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8. Compute the overall index score 
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The index point estimate is given by its mean value across the repetitions while its 
simulation uncertainty is summarised by the 95% interval calculated by taking the 2.5th 
and 97.5th percentiles of the rank ordered list of index values as the lower and upper 
bounds of the interval. The above simulation method can be readily extended to 
reexpress differences in model-implied segregation associated with different choices of 
covariate values. For example, we might test whether the degree of segregation changed 
significantly between the start and end of the decade. 
 
The above simulation method, as it is currently stated, does not propagate the 
uncertainty in the estimated model parameters. We fit the models using MCMC methods 
and can therefore use the parameter chains for this purpose, since they are samples 
from the joint posterior distribution of the parameters. Specifically, we can repeat the 
above method a large number of times where on each repetition we use the values of 
the parameters at the corresponding iteration of the parameter chains. This will 
produce a chain for the index score. The LA-level variance-covariance parameters will 
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be estimated relatively imprecisely (there are only 32 LAs) and so propagating the 
parameter uncertainty will prove particularly important at this highest level of analysis. 
 
 
5 Application of the modelling and simulation approach to the data 
 
We start by fitting four three-level (school-cohorts within schools within LAs) 
multinomial logistic regression models to establish whether the overall degree of LA- 
and school-level ethnic segregation among London schools changed significantly over 
the first decade of the 21st century. 
 
Model 1 is a random-intercept version of the model presented in Section 3. This model 
captures the main features of the data shown in Fig. 1 by including a time trend, a binary 
indicator for inner-London LAs, and their cross-level interaction in the fixed-part of the 
model. However, only a random-intercept is entered at each level in the random-part of 
the model and so the model assumes both the degree of LA- and school-level 
segregation to be constant over time. Model 2 extends Model 1 by allowing the slope of 
the linear time trend to vary randomly across LAs, as suggested in Fig. 2. By including 
time in the random-part of the model at the LA-level, but not at the school-level, this 
model allows the degree of LA-level segregation to change over time, but continues to 
assume the degree of within-LA school-level segregation to be constant. In contrast, 
Model 3 only allows the slope of the linear time trend to vary randomly across schools, 
allowing the degree of within-LA school-level segregation to change over time, but 
restricting the degree of LA-level segregation to be constant. Model 4, described in 
detail in Section 3, avoids this conflation by allowing the time trend to vary randomly at 
both levels, allowing both LA-level and school-level segregation to change over time.  
 
Table 1 summarises the fit of these three models. Model 2 is preferred to Model 1 (the 
DIC improves by 294 points) indicating that the degree of LA-level segregation changed 
significantly between 2001 and 2010. Model 3 is preferred to both Model 1 (957 points) 
and Model 2 (663 points) suggesting that there was a change in school-level segregation 
over and above that implied by changing LA-level segregation. Model 4, which explicitly 
allows for different changing patterns of segregation at each level, is preferred to both 
Model 2 (694 points) and Model 3 (31 points). 
 
Table 2 presents the posterior means and standard deviations (analogous to frequentist 
parameter estimates and standard errors) of the fixed- and random-part parameters for 
Model 4. The fixed-part of the model confirms the pattern of results suggested in Fig. 1. 

The similar sized negative black-white (  
[ ]        ) and Asian-white (  

[ ]  
      ) intercepts confirm that, at the beginning of the decade, whites were the largest 
ethnic group in outer-London, followed by similar sized black and Asian ethnic groups. 
Of more interest is how these proportions change over time. In outer-London, the black-

white (  
[ ]                      ) and Asian-white (  

[ ]                 
     ) ratios are shown to increase significantly over time and so the black and Asian 
shares of the population increased relative to the white share. In inner-London, the 
black-white ratio was significantly higher at the beginning of the decade compared to in 

outer-London (  
[ ]
                     ) reflecting the higher proportion of 

black students schooled in inner-London at that time. This initial difference did not 



14 
 

change significantly over time (  
[ ]
                        ). In contrast, the 

Asian-white ratio did not differ significantly at the beginning of the decade between 

inner- and outer-London (  
[ ]                      ). This initial difference also 

did not change significantly over time (  
[ ]              03        ). In sum, 

the fixed-part of the model shows London became significantly more diverse between 
2001 and 2010, but not differentially so between inner- and outer-London. In other 
words, the degree to which students were ethnically segregated across inner- and 
outer-London at the beginning of the decade did not change over the course of the 
decade. 
 
Turning our attention to the random-part of the model, we see the magnitude of the 
school-cohort variances are substantively small relative to the LA- and school-level 
variability; having accounted for the LA and school linear time trends, there is very little 
remaining overdispersion in the data. The individual LA- and school-level random-part 
parameters are harder to interpret directly and so we interpret them below via their 
implied variance functions. However, what we do see straightaway is that that the LA-
level variance-covariance parameters are estimated less precisely than the school-level 
variance-covariance parameters reflecting the lower number of units at this level (32 
LAs schools compared to 395 schools). The LA-level variance function should therefore 
be interpreted with some caution. 
 
Fig. 3 plots the total, LA- and school-level variance functions (derived from Equations 2 
and 3 and the school-cohort variances). We do not plot the school-cohort-level variance 
function as it is modelled as constant with respect to time and so does not contribute to 
any changing patterns of segregation. The total variance functions suggest that black-
white, Asian-white and especially Asian-black segregation all increased strongly 
between 2001 and 2010. This overall pattern appears to be driven by increasing 
segregation at the LA level; school-level segregation remains effectively constant for the 
three ethnic contrasts. However, these patterns disagree with those resulting from 
fitting a series of simpler cohort-specific variance-component models to the data. The 
latter patterns show LA-level segregation to decrease slightly over the period (see Fig. 
A2 in the supplementary materials). Essentially, the LA-level random-part of Model 4 is 
overly complex (10 parameters) given the number of data points at this level (32 LAs) 
leading the resulting estimated variance-covariance matrix to be untrustworthy. We 
therefore simplify this part of the model by removing the random-slopes, returning us 
to the next best fitting model, Model 3, which assumes constant LA-level variance (4 
parameters). A limitation of this simplification is that the slight decrease in LA-level 
segregation suggested by cohort-specific variance-component models will now appear 
at the school-level; changing LA-level segregation will be conflated with changing 
school-level segregation. 
 
The fixed-part parameters for Model 3 (see Table A1 in the supplementary materials) 
are effectively the same as those for Model 4 and so we don’t interpret them again here. 
Fig. 4 plots the total, LA-level and school-level segregation functions based on this 
model. We see straightaway that the total degree of segregation remained broadly 
stable over the decade. At the LA-level, Asian and white students appear more 
segregated than do Asian and black students or white and black students, but these 
differences are not significant. Within their LAs, Asian and white students appear most 
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segregated, followed by Asian and black students, and lastly black and white students. 
Comparing across levels, black-white segregation is approximately equal within and 
between LAs, while Asian-black and especially Asian-white segregation appear higher 
within LAs compared to between LAs. Thus, even within LAs, where schools are located 
only a short distance apart, there is substantial variation in the proportions of white, 
black and Asian students among schools. The finding that Asian-white segregation, 
relative to the other ethnic contrasts, occurs disproportionally within LAs suggests that 
Asian-white segregation may driven relatively more by school-level processes than LA-
level process compared to the other ethnic contrasts. Table 3 presents the estimated 
change in school-level segregation between 2001 and 2010, together with 95% credible 
intervals. Asian-black and especially Asian-white school-level segregation both 
decreased over the decade, but neither significantly; black-white segregation remained 
very constant over this period. 
 
Fig. 5 plots the total, LA- and school-level black-white-Asian-white correlation functions 
(derived in each case by dividing the corresponding covariance function by the square 
root of the product of the two associated variance functions). We again see stable 
patterns over time. The LA-level correlation of 0.58 shows that LAs where blacks were 
overrepresented relative to whites tended to be the same LAs where Asians were 
overrepresented relative to whites. We see a very similar pattern within LAs. The 
strength of the association at this-level drops slightly over time from 0.57 to 0.54, but 
this decline is not significant. 
 
Fig. 6 presents quantile-quantile plots of the LA- (top panel) and school-level (bottom-
panel) studentised residuals (posterior means scaled by their posterior standard 
deviations) (Langford and Lewis, 2002). The figure shows the LA and school data points 
mostly lie on or close to the 45 degree line suggesting that the multivariate normality 
assumptions are broadly acceptable. There is however some suggestion that the school 
residuals have somewhat heavier tails than would be expected from normal 
distributions and that some schools might be outlying. An examination of these 
potential outliers proves substantively revealing (see supplementary materials). For 
example, the school with the highest Asian-white random-intercept effect turns out to 
be of Sikh denomination and so admits effectively no white (or black) students in any 
year. In contrast, the school with the highest Asian-white random slope effect is a Jewish 
school that changed their admissions policies towards the end of the decade to start 
admitting students practising other faiths, especially Asian students. As a third example, 
the school with the lowest black-white white random-slope effect actually saw a 
substantial decrease in the proportion of black students and a substantial increase in 
the proportion of white students between 2001 and 2010. Further examination reveals 
the school was placed in special measures in 1998, but over subsequent years improved 
greatly and is now the most oversubscribed school in its LA. While these schools are in 
some senses unusual, separate analysis shows that the parameter estimates are not 
unduly sensitive as to whether we include or exclude them from the analysis. 
 
Finally, Fig. 7 provides an illustration of the simulation method described in Section 4. 
Specifically, we calculate the model-implied value of the multigroup information theory 
index for the case of measuring total segregation (combined LA- and school-level 
segregation) between the three ethnic groups in each cohort. This contrasts with our 
earlier presentation of variance functions which reported pairwise segregation. As 
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might be expected given the pairwise patterns reported earlier, the figure shows that 
overall segregation reduced between 2001 and 2010, but that this reduction was 
substantively very small and not significant (posterior mean =       , 2.5th percentile: 
      ; 97.5th percentile       ). Note that the model-implied values of the index are 
slightly lower than the values derived from the observed proportions, reflecting the 
randomness and uncertainty contained in the latter. 
 
 
6. Discussion 
 
In this paper we have extended the multilevel modelling approach to measuring 
segregation to the general case of modelling longitudinal multigroup segregation. We 
have described how multigroup segregation data are an example of multinomial 
grouped data and can therefore be modelled using multilevel multinomial logistic 
regression. We have demonstrated how time trends can be included in these models 
with random-coefficients to statistically test whether segregation is increasing or 
decreasing over time and we have shown that by including multiple levels of random-
effects we can measure segregation simultaneously at multiple organisational scales. 
We also extended and illustrated our simulation approach to reformulating model-
implied levels of segregation into the metric of any desired multigroup segregation 
index. Finally, by introducing covariates into our model, we can derive a segregation 
index conditional on particular covariate values. 
 
A limitation of the current approach is that the school-level covariance matrix is 
modelled as constant across LAs. However, we may expect school-level ethnic 
segregation to be more pronounced in some LAs than others. In theory, we can fully 
relax this assumption by specifying a separate covariance matrix for each LA, but this 
would be computationally intensive and the resulting estimates would be very 
unreliable due to the low number of schools per LA. A more appealing approach is to 
treat the covariance matrices as exchangeable by specifying them as being drawn from a 
distribution, with unknown hyper-parameters to be estimated. We are actively 
exploring this new class of model (Leckie et al., 2014) and are implementing this and 
related extensions in the Stat-JR software (Charlton et al., 2013). 
 
With regard to the application, the results suggest that the London state secondary 
school education system has become ethnically more diverse during the first decade of 
the 21st century but that patterns of segregation have remained largely stable. A 
weakness of our approach shown in the application is that a relatively high number of 
parameters are required to model changing segregation at any given level. In our case 
32 LAs were too few to fully model the changing patterns of LA-segregation. An 
important strength of our approach is the ability to identify potential outlying units 
through graphically examining the model residuals at each level of the analysis. 
Applying this approach in our application revealed several schools with unusual 
changing ethnic compositions. It will often be interesting to follow up such schools to 
better understand the particular school policies and local circumstances which combine 
to bring about such anomalies. More broadly, we encourage researchers to use our 
approach to explore hypotheses regarding the drivers of segregation at each level of 
analysis through introducing appropriate covariates into the model. 
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While we have focused on modelling ethnic segregation in the education system, the 
methods we describe can be equally applied to modelling residential ethnic segregation, 
for example across wards and output areas (Simpson, 2007). It would then be desirable 
to extend the models to allow for spatial correlation between the area random-effects. 
Another interesting extension would be to model residential and schooling segregation 
jointly using cross-classified (crossed random-effects) versions of our model. This 
would allow an exploration of whether the schooling system exacerbates or mitigates 
residential segregation and the extent to which this might vary across different local 
authorities.  
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Table 1. DIC statistics for Models 1-4 
 

Model Trend in LA 
segregation 

Trend in school 
segregation 

DIC 

1 No No 845690 
2 Yes No 845396 
3 No Yes 844733 
4 Yes Yes 844702 
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Table 2. Model 4 posterior means and standard deviations 

 

Parameter Black-white equation Asian-white equation 
Fixed-part   
Intercept -1.814 (0.255) -2.097 (0.305) 
Time 0.080 (0.026) 0.085 (0.027) 
Inner 1.309 (0.406) 0.318 (0.467) 
Inner   Time -0.031 (0.050) -0.001 (0.047) 
   
Random-part – LA   
LA intercept variance 1.214 (0.335) 1.526 (0.448) 
LA intercept-slope covariance -0.026 (0.028) -0.012 (0.031) 
LA slope variance 0.017 (0.005) 0.017 (0.005) 
LA intercept-intercept covariance 0.835 (0.318) 
LA intercept-slope covariance -0.022 (0.032) 
LA slope-intercept covariance -0.014 (0.027) 
LA slope-slope covariance 0.001 (0.003) 
   
Random-part – School   
School intercept variance 0.956 (0.078) 1.977 (0.160) 
School intercept-slope covariance -0.025 (0.005) -0.041 (0.008) 
School slope variance 0.006 (0.001) 0.006 (0.001) 
School intercept-intercept covariance 0.773 (0.091) 
School intercept-slope covariance -0.012 (0.007) 
School slope-intercept covariance -0.016 (0.005) 
School slope-slope covariance 0.002 (0.000) 
   
Random-part – School-cohort   
School-cohort variance 0.025 (0.002) 0.024 (0.002) 
School-cohort covariance 0.015 (0.002) 
   
DIC 844702 
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Table 3. Model 3 Estimated change in school-level segregation 
(variances) between 2001 and 2010. Posterior means and 95% credible 
intervals. 
 

Level Segregation Posterior mean 2.5th percentile 97.5th percentile 

School 
black-white 0.011 -0.199 0.220 
Asian-white -0.285 -0.591 0.015 
Asian-black -0.086 -0.345 0.154 
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Fig. 1. Change in observed proportions of white, black and Asian students between 2001 
and 2010 plotted separately for inner- (left panel) and outer-London (right panel) 
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Fig. 2. Change in observed proportions of white, black and Asian students between 2001 
and 2010 plotted separately for each LA. The first two rows present the 12 inner-London 
LAs; rows three to six present the 20 outer-London LAs. 
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Fig. 3. Model 4 total, LA- and school-level black-white, Asian-white and Asian-black 
variance functions. Posterior means with 95% credible intervals. 
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Fig. 4. Model 3 total, LA- and school-level black-white, Asian-white and Asian-black 
variance functions. Posterior means with 95% credible intervals. 
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Fig. 5. Model 3 total, LA- and school-level black-white-Asian-white correlation 
functions. Posterior means with 95% credible intervals. 
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Fig. 6. Model 3 quantile-quantile plots of the LA-level (top panel) and school-level 
(bottom-panel) residuals 
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Fig. 7. Model 3 total overall  -index function plotted against cohort. Posterior mean 
plotted with 95% credible intervals.   based on observed proportions plotted as points. 
 


