

School, neighbourhood and family contributions to pupils' progress

Jon Rasbash, George Leckie, Rebecca Pillinger and Jenny Jenkins

1. Partitioning variation in progress

	1		2	3	4		5		6 7		7)	8
Response	Prog	Prog	Prog	Att	Att	Prog	Att	Prog	Att	Att	Prog	Cog
Predictors	Y	Y	Y	N	N	Y	N	Y	N	N	Y	N
LEA			0.2	3								
Neighbhd				2	20	4	14	1	5	4	1	0.20
Secondary	5-20		5	22		fixed	7	1	20	23	4	
Primary		5 - 20								3	7	
Cohort			3									0.21
Pupil	80-95	80-95	93	73	80	96	79	98	75	70	88	
MZ twins												0.78
DZ twins												0.64
Full sibs												0.51

- Typical school effectiveness studies, e.g. Goldstein et al. (2007) (primary schools) and Leckie (2008) (secondary schools)
- (2) Yang & Woodhouse (2001), progress from GCSE to A-level
- (3) Fielding et al. (2006)
- Garner & Raudenbush (1991); predictors include family background, neighbourhood social deprivation and school fixed effects
- (5) Raudenbush (1993); reanalysis of Garner & Raudenbush (1991)
- (6) Leckie (2009)
- (7) Leckie (2009)
- (8) Duncan et al. (2001); US data; response is Peabody Picture Vocabulary Test

			2	3	4		5		6	(7)		8
Response	Prog	Prog	Prog	Att	Att	Prog	Att	Prog	Att	Att	Prog	Cog
Predictors	Y	Y	Y	N	N	Y	N	Y	N	N	Y	N
LEA			0.2	3								
Neighbhd				2	20	4	14	1	5	4	1	0.20
Secondary	5-20		5	22		fixed	7	1	20	23	4	
Primary		5-20								3	7	
Cohort			3									0.21
Pupil	80-95	80-95	93	73	80	96	79	98	75	70	88	
MZ twins												0.78
DZ twins												0.64
Full sibs												0.51

- Typical school effectiveness studies, e.g. Goldstein et al. (2007) (primary schools) and Leckie (2008) (secondary schools)
- (2) Yang & Woodhouse (2001), progress from GCSE to A-level
- (3) Fielding et al. (2006)
- Garner & Raudenbush (1991); predictors include family background, neighbourhood social deprivation and school fixed effects
- (5) Raudenbush (1993); reanalysis of Garner & Raudenbush (1991)
- (6) Leckie (2009)
- (7) Leckie (2009)
- (8) Duncan et al. (2001); US data; response is Peabody Picture Vocabulary Test

			2	3	(4	5		6	(7)	8
Response	Prog	Prog	Prog	Att	Att	Prog	Att	Prog	Att	Att	Prog	Cog
Predictors	Y	Y	Y	N	N	Y	N	Y	N	N	Y	N
LEA			0.2	3								
Neighbhd				2	20	4	14	1	5	4	1	0.20
Secondary	5-20		5	22		fixed	7	1	20	23	4	
Primary		5-20								3	7	
Cohort			3									0.21
Pupil	80-95	80-95	93	73	80	96	79	98	75	70	88	
MZ twins												0.78
DZ twins												0.64
Full sibs												0.51

- Typical school effectiveness studies, e.g. Goldstein et al. (2007) (primary schools) and Leckie (2008) (secondary schools)
- (2) Yang & Woodhouse (2001), progress from GCSE to A-level
- (3) Fielding et al. (2006)
- Garner & Raudenbush (1991); predictors include family background, neighbourhood social deprivation and school fixed effects
- (5) Raudenbush (1993); reanalysis of Garner & Raudenbush (1991)
- (6) Leckie (2009)
- (7) Leckie (2009)
- (8) Duncan et al. (2001); US data; response is Peabody Picture Vocabulary Test

	1		2	3	(4)		5		6	7		8
Response	Prog	Prog	Prog	Att	Att	Prog	Att	Prog	Att	Att	Prog	Cog
Predictors	Y	Y	Y	N	N	Y	N	Y	N	N	Y	N
LEA			0.2	3								
Neighbhd				2	20	4	14	1	5	4	1	0.20
Secondary	5-20		5	22		fixed	7	1	20	23	4	
Primary		5 - 20					[3	7	
Cohort			3									0.21
Pupil	80-95	80-95	93	73	80	96	79	98	75	70	88	
MZ twins												0.78
DZ twins												0.64
Full sibs												0.51

- Typical school effectiveness studies, e.g. Goldstein et al. (2007) (primary schools) and Leckie (2008) (secondary schools)
- (2) Yang & Woodhouse (2001), progress from GCSE to A-level
- (3) Fielding et al. (2006)
- Garner & Raudenbush (1991); predictors include family background, neighbourhood social deprivation and school fixed effects
- (5) Raudenbush (1993); reanalysis of Garner & Raudenbush (1991)
- (6) Leckie (2009)
- (7) Leckie (2009)
- (8) Duncan et al. (2001); US data; response is Peabody Picture Vocabulary Test

	1		2	3	4		5		6 7		7)	8
Response	Prog	Prog	Prog	Att	Att	Prog	Att	Prog	Att	Att	Prog	Cog
Predictors	Y	Y	Y	N	N	Y	N	Y	N	N	Y	N
LEA			0.2	3								
Neighbhd				2	20	4	14	1	5	4	1	0.20
Secondary	5-20		5	22		fixed	7	1	20	23	4	
Primary		5 - 20								3	7	
Cohort			3									0.21
Pupil	80-95	80-95	93	73	80	96	79	98	75	70	88	
MZ twins												0.78
DZ twins												0.64
Full sibs												0.51

- Typical school effectiveness studies, e.g. Goldstein et al. (2007) (primary schools) and Leckie (2008) (secondary schools)
- (2) Yang & Woodhouse (2001), progress from GCSE to A-level
- (3) Fielding et al. (2006)
- Garner & Raudenbush (1991); predictors include family background, neighbourhood social deprivation and school fixed effects
- (5) Raudenbush (1993); reanalysis of Garner & Raudenbush (1991)
- (6) Leckie (2009)
- (7) Leckie (2009)
- (8) Duncan et al. (2001); US data; response is Peabody Picture Vocabulary Test

			2	3	4		5		6	6 7		8
Response	Prog	Prog	Prog	Att	Att	Prog	Att	Prog	Att	Att	Prog	Cog
Predictors	Y	Y	Y	N	N	Y	N	Y	N	N	Y	N
LEA			0.2	3								
Neighbhd				2	20	4	14	1	5	4	1	0.20
Secondary	5-20		5	22		fixed	7	1	20	23	4	
Primary		5 - 20								3	7	
Cohort			3									0.21
Pupil	80-95	80-95	93	73	80	96	79	98	75	70	88	
MZ twins												0.78
DZ twins												0.64
Full sibs												0.51

- Typical school effectiveness studies, e.g. Goldstein et al. (2007) (primary schools) and Leckie (2008) (secondary schools)
- (2) Yang & Woodhouse (2001), progress from GCSE to A-level
- (3) Fielding et al. (2006)
- Garner & Raudenbush (1991); predictors include family background, neighbourhood social deprivation and school fixed effects
- (5) Raudenbush (1993); reanalysis of Garner & Raudenbush (1991)
- (6) Leckie (2009)
- (7) Leckie (2009)
- 8 Duncan et al. (2001); US data; response is Peabody Picture Vocabulary Test

			2	3	(4)		5		6 7		7	8
Response	Prog	Prog	Prog	Att	Att	Prog	Att	Prog	Att	Att	Prog	Cog
Predictors	Y	Y	Y	N	N	Y	N	Y	N	N	Y	N
LEA			0.2	3								
Neighbhd				2	20	4	14	1	5	4	1	0.20
Secondary	5-20		5	22		fixed	7	1	20	23	4	
Primary		5-20								3	7	
Cohort			3									0.21
Pupil	80-95	80-95	93	73	80	96	79	98	75	70	88	
MZ twins												0.78
DZ twins												0.64
Full sibs												0.51

- Typical school effectiveness studies, e.g. Goldstein et al. (2007) (primary schools) and Leckie (2008) (secondary schools)
- (2) Yang & Woodhouse (2001), progress from GCSE to A-level
- (3) Fielding et al. (2006)
- Garner & Raudenbush (1991); predictors include family background, neighbourhood social deprivation and school fixed effects
- (5) Raudenbush (1993); reanalysis of Garner & Raudenbush (1991)
- (6) Leckie (2009)
- (7) Leckie (2009)
- (8) Duncan et al. (2001); US data; response is Peabody Picture Vocabulary Test

		2	3	4	5	6	7	8	9	10	(11)	12
Response	Att	Att										
Predictors	N	N	N	N	N	N	N	N	N	Ν	N	N
LEA												
Neighbhd												
Secondary												
Primary												
Cohort												
Non-shared envt	0	43	10	10	6	11	24	29	14	9	23	24
Genetic	38	21	17	53	28	53	60	36	67	67	68	49
Shared envt	62	36	73	37	66	36	16	35	19	24	9	27

- 1) Cardon et al. (1990); reading recognition
- Brooks et al. (1990); spelling
- Thompson et al. (1991); maths
- (4) Thompson et al. (1993); composite of WRAT-R and MAT
- 5) Petrill & Thompson (1993); MAT
- 6) Petrill & Thompson (1994); MAT
- 7) Van den Oord & Rowe (1997); PIAT
- (8) Cleveland et al. (2000); composite of PPVT and PIATS
- (9) Wainwright et al. (2005); QCST, Australian data
- Friend et al. (2007); spelling production (WRAT)
- 11) Haworth et al. (2007); maths, UK data
- 12) Haworth et al. (2008); science, UK data

School effectiveness

Models usually have pupils within schools (2 levels)

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Developmental Psychology

Models usually have children within families

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

Model

$$y_{ij} = \alpha + \beta x_{ij} + u_j + e_{ij},$$

$$\begin{aligned} u_j &\sim \mathsf{N}\left(0, \sigma_u^2\right), & i = 1, \dots, n_j \\ e_{ij} &\sim \mathsf{N}\left(0, \sigma_e^2\right), & j = 1, \dots, J \end{aligned}$$
 (B)

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

Model

$$\mathsf{GCSE}_{ij} = \alpha + \beta \mathsf{pretest}_{ij} + u_j + e_{ij},$$

$$u_{j} \sim \mathsf{N}\left(0, \sigma_{u}^{2}\right), \qquad i = 1, \dots, n_{j}$$
$$e_{ij} \sim \mathsf{N}\left(0, \sigma_{e}^{2}\right), \qquad j = 1, \dots, J$$
(B)

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

Model

$$\begin{aligned} \mathsf{GCSE}_{ij} &= \alpha + \beta_1 \mathsf{pretest}_{ij} + \beta_2 x_{ij} \\ &+ u_j + e_{ij}, \end{aligned}$$

$$\begin{aligned} u_j &\sim \mathsf{N}\left(0, \sigma_u^2\right), & i = 1, \dots, n_j \\ e_{ij} &\sim \mathsf{N}\left(0, \sigma_e^2\right), & j = 1, \dots, J \end{aligned}$$
 (B)

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?

 $\mathsf{Cov}(g_{i_1j},g_{i_2j})=r_{(i_1j,i_2j)}\sigma_g^2$

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?

Our model

Our model

Our model

Model $y_i = \alpha + \beta x_i + u_{\text{LEA}(i)}^{(6)} + u_{\text{sec}(i)}^{(5)} + u_{\text{nbhd}(i)}^{(4)} + u_{\text{pri}(i)}^{(3)}$ $+ u_{fam(i)}^{(2)} d_{fam(i)} + e_{1i} d_{fam(i)} + e_{2i} (1 - d_{fam(i)})$ $u_{\text{LEA}(i)}^{(6)} \sim N\left(0, \sigma_{u(6)}^2\right)$ $u_{\text{pri}(i)}^{(3)} \sim N(0, \sigma_{u(3)}^2)$ Classification diagram neighbhd $u_{fam}^{(2)} \sim N(0, \sigma_{u(2)}^2)$ LEA $\begin{vmatrix} e_{1i} \\ e_{2i} \end{vmatrix} \sim \mathsf{N}\left(\mathsf{0}, \begin{bmatrix} \sigma_{e1}^2 \\ \mathsf{0} & \sigma_{e2}^2 \end{bmatrix}\right)$ secondary primary (C) pupil, family

Our model

Sample

All pupils in

- England
- state schools
- 2007 GCSE cohort

Sample

All pupils in

- England
- state schools
- 2007 GCSE cohort

Variables

Test scores from the NPD
 GCSE (our response) and
 key stage 2 (KS2)

Sample

All pupils in

- England
- state schools
- 2007 GCSE cohort

Variables

- Test scores from the NPD
 - GCSE (our response) and key stage 2 (KS2)
- Background characteristics from PLASC
 - 🛚 age
 - gender
 - ethnicity
 - FSM eligibility
 - ⊠ SEN
 - ₪ EAL

Sample

All pupils in

- England
- state schools
- 2007 GCSE cohort

Variables

- Test scores from the NPD
 - GCSE (our response) and key stage 2 (KS2)
- Background characteristics from PLASC
 - 🛚 age
 - gender
 - ethnicity
 - FSM eligibility
 - sen Sen
 - EAL
- ONS data on LSOAs

IDACI

Sample

All pupils in

- England
- state schools
- 2007 GCSE cohort

Levels

- The data records which
 - 🛚 LEA
 - secondary school
 - primary school
 - area (LSOA)

each pupil belongs to

Variables

- \blacksquare Test scores from the NPD
 - GCSE (our response) and key stage 2 (KS2)
- Background characteristics from PLASC
 - 🛚 age
 - gender
 - ethnicity
 - FSM eligibility
 - ⊠ SEN
 - EAL
- ONS data on LSOAs
 IDACI

Sample

All pupils in

- England
- state schools
- 2007 GCSE cohort

Levels

- The data records which
 - 🛚 LEA
 - secondary school
 - primary school
 - ☞ area (LSOA)

each pupil belongs to

But not which family

Variables

- \blacksquare Test scores from the NPD
 - GCSE (our response) and key stage 2 (KS2)
- Background characteristics from PLASC
 - 🛚 age
 - gender
 - ethnicity
 - FSM eligibility
 - ⊠ SEN
 - EAL
- ONS data on LSOAs
 IDACI

Identifying twins

We get the family level by identifying twin pairs

Identifying twins

- We get the family level by identifying twin pairs
- by matching on time invariant characteristics
 - date of birth
 - ethnicity
 - ⊾ EAL

Identifying twins

- We get the family level by identifying twin pairs
- by matching on time invariant characteristics
 - date of birth
 - ethnicity
 - EAL

and pattern of time-varying characteristics

- postcode sector
- FSM eligiblity

Identifying twins

- We get the family level by identifying twin pairs
- by matching on time invariant characteristics
 - date of birth
 - ethnicity
 - EAL

and pattern of time-varying characteristics

- postcode sector
- FSM eligiblity

How successful is this?

11.54 twin births per 1000 maternities in 1990 & 1991

Identifying twins

- We get the family level by identifying twin pairs
- by matching on time invariant characteristics
 - date of birth
 - ethnicity
 - EAL

and pattern of time-varying characteristics

- postcode sector
- FSM eligiblity

How successful is this?

- 11.54 twin births per 1000 maternities in 1990 & 1991
- 9.37 twin pairs per 1000 families in our matching

Identifying twins

- We get the family level by identifying twin pairs
- by matching on time invariant characteristics
 - date of birth
 - ethnicity
 - EAL

and pattern of time-varying characteristics

- postcode sector
- FSM eligiblity

How successful is this?

- 11.54 twin births per 1000 maternities in 1990 & 1991
- 9.37 twin pairs per 1000 families in our matching
- We may also have labelled some unrelated pupils as a 'twin pair'

Identifying twins

- We get the family level by identifying twin pairs
- by matching on time invariant characteristics
 - date of birth
 - ethnicity
 - EAL

and pattern of time-varying characteristics

- postcode sector
- FSM eligiblity

How successful is this?

- 11.54 twin births per 1000 maternities in 1990 & 1991
- 9.37 twin pairs per 1000 families in our matching
- We may also have labelled some unrelated pupils as a 'twin pair'
- Calculation suggests around 10% of 'twin pairs' will be coincidental matches

Identifying twins

- We get the family level by identifying twin pairs
- by matching on time invariant characteristics
 - date of birth
 - ethnicity

and pattern of time-varying characteristics

- postcode sector
- FSM eligiblity

How successful is this?

- 11.54 twin births per 1000 maternities in 1990 & 1991
- 9.37 twin pairs per 1000 families in our matching
- We may also have labelled some unrelated pupils as a 'twin pair'
- Calculation suggests around 10% of 'twin pairs' will be coincidental matches

Size of dataset

551,220 pupils 5116 twin pairs 30507 LSOAs 3099 secondaries 14765 primaries

149 | EAs

	Mod	el A	Model B		Model C		Model D	
cons	-0.003	(0.001)	-0.003	(0.001)	0.001	(0.008)	-0.039	(0.007)
twin	0.177	(0.008)	0.179	(0.007)	0.162	(0.007)	0.154	(0.007)
pretest	0.730	(0.001)	0.729	(0.001)	0.701	(0.001)	0.641	(0.001)
pretest.twin	-0.040	(0.007)	0.000	(0.007)	-0.027	(0.006)	-0.020	(0.006)
female							0.184	(0.002)
Asian							0.429	(0.005)
Black							0.225	(0.006)
Chinese							0.556	(0.015)
Mixed							0.045	(0.005)
Other							0.403	(0.010)
FSM							-0.248	(0.003)
age							-0.012	(0.000)
SEN							-0.231	(0.003)
IDACI							-0.103	(0.001)
LEA					0.005	(0.001)	0.005	(0.001)
Secondary			0.065	(0.002)	0.043	(0.001)	0.035	(0.001)
Primary					0.035	(0.001)	0.025	(0.000)
LSOA					0.008	(0.000)	0.002	(0.000)
Family (twin)	0.238	(0.007)			0.168	(0.005)	0.157	(0.005)
Pupil (twin)	0.160	(0.003)			0.157	(0.003)	0.150	(0.003)
Pupil (non-twin)	0.468	(0.001)	0.402	(0.002)	0.383	(0.001)	0.357	(0.001)

	Mod	el A	Mod	Model B		Model C		el D
cons	-0.003	(0.001)	-0.003	(0.001)	0.001	(0.008)	-0.039	(0.007)
twin	0.177	(0.008)	0.179	(0.007)	0.162	(0.007)	0.154	(0.007)
pretest	0.730	(0.001)	0.729	(0.001)	0.701	(0.001)	0.641	(0.001)
pretest.twin	-0.040	(0.007)	0.000	(0.007)	-0.027	(0.006)	-0.020	(0.006)
female							0.184	(0.002)
Asian							0.429	(0.005)
Black							0.225	(0.006)
Chinese							0.556	(0.015)
Mixed							0.045	(0.005)
Other							0.403	(0.010)
FSM							-0.248	(0.003)
age							-0.012	(0.000)
SEN							-0.231	(0.003)
IDACI							-0.103	(0.001)
LEA					-0.005	(0.001)	0.005	(0.001)
Secondary			0.065	(0.002)	0.043	(0.001)	0.035	(0.001)
Primary					-0.035	(0.001)	0.025	(0.000)
LSOA					▶0.008	(0.000)	0.002	(0.000)
Family (twin)	0.238	(0.007)			→0.168	(0.005)	0.157	(0.005)
Pupil (twin)	0.160	(0.003)			0.157	(0.003)	0.150	(0.003)
Pupil (non-twin)	0.468	(0.001)	0.402	(0.002)	0.383	(0.001)	0.357	(0.001)

	Mod	el A	Model B		Model C		Model D	
cons	-0.003	(0.001)	-0.003	(0.001)	0.001	(0.008)	-0.039	(0.007)
twin	0.177	(0.008)	0.179	(0.007)	0.162	(0.007)	0.154	(0.007)
pretest	0.730	(0.001)	0.729	(0.001)	0.701	(0.001)	0.641	(0.001)
pretest.twin	-0.040	(0.007)	0.000	(0.007)	-0.027	(0.006)	-0.020	(0.006)
female							0.184	(0.002)
Asian							0.429	(0.005)
Black							0.225	(0.006)
Chinese							0.556	(0.015)
Mixed							0.045	(0.005)
Other							0.403	(0.010)
FSM							-0.248	(0.003)
age							-0.012	(0.000)
SEN							-0.231	(0.003)
IDACI							-0.103	(0.001)
LEA					0.005	(0.001)	0.005	(0.001)
Secondary			0.065	(0.002)	0.043	(0.001)	0.035	(0.001)
Primary					0.035	(0.001)	0.025	(0.000)
LSOA					0.008	(0.000)	0.002	(0.000)
Family (twin)	0.238	(0.007)			•0.168	(0.005)	0.157	(0.005)
Pupil (twin)	0.160	(0.003)			-0.157	(0.003)	0.150	(0.003)
Pupil (non-twin)	0.468	(0.001)	0.402	(0.002)	0.383	(0.001)	0.357	(0.001)

	Mod	el A	Mode	el B	Model C		Model D	
cons	-0.003	(0.001)	-0.003	(0.001)	0.001	(0.008)	-0.039	(0.007)
twin	0.177	(0.008)	0.179	(0.007)	0.162	(0.007)	0.154	(0.007)
pretest	0.730	(0.001)	0.729	(0.001)	0.701	(0.001)	0.641	(0.001)
pretest.twin	-0.040	(0.007)	0.000	(0.007)	-0.027	(0.006)	-0.020	(0.006)
female							0.184	(0.002)
Asian							0.429	(0.005)
Black							0.225	(0.006)
Chinese							0.556	(0.015)
Mixed							0.045	(0.005)
Other							0.403	(0.010)
FSM							-0.248	(0.003)
age							-0.012	(0.000)
SEN							-0.231	(0.003)
IDACI							-0.103	(0.001)
LEA				_	-0.005	(0.001)	0.005	(0.001)
Secondary			0.065	(0.002)	0.043	(0.001)	0.035	(0.001)
Primary					-0.035	(0.001)	0.025	(0.000)
LSOA					▶0.008	(0.000)	0.002	(0.000)
Family (twin)	0.238	(0.007)			→0.168	(0.005)	0.157	(0.005)
Pupil (twin)	0.160	(0.003)			-0.157	(0.003)	0.150	(0.003)
Pupil (non-twin)	0.468	(0.001)	0.402	(0.002)	0.383	(0.001)	0.357	(0.001)

	A	В		С	D		
			Twins Non-twins		Twins	Non-twins	
LEA			1.2%	1.1%	1.3%	1.2%	
Secondary		13.9%	10.3% 9.1%		9.4%	8.3%	
Primary			8.4%	7.4%	6.7%	5.9%	
LSOA			1.9%	1.7%	0.5%	0.5%	
Family	59.8%		40.4%		42.0%		
Pupil	40.2%	86.1%	37.7%	80.8%	40.1%	84.2%	

Research questions

	A	В		С	D		
			Twins	Non-twins	Twins	Non-twins	
LEA			1.2%	1.1%	1.3%	1.2%	
Secondary		13.9%	10.3%	9.1%	9.4%	8.3%	
Primary			-8.4%	7.4%	6.7%	5.9%	
LSOA			1.9%	1.7%	0.5%	0.5%	
Family	59.8%		▶40.4%		42.0%		
Pupil	40.2%	86.1%	37.7%	80.8%	40.1%	84.2%	

Research questions

1. How much of the shared environmental variation is due to family, school and area?

	A	В		С	D		
			Twins Non-twins		Twins	Non-twins	
LEA			1.2%	1.1%	1.3%	1.2%	
Secondary		13.9%	10.3%	9.1%	9.4%	8.3%	
Primary			8.4%	7.4%	6.7%	5.9%	
LSOA			1.9%	1.7%	0.5%	0.5%	
Family	59.8%		4 0.4%		42.0%		
Pupil	40.2%	86.1%4	▶37.7%	80.8%	40.1%	84.2%	

Research questions

- 1. How much of the shared environmental variation is due to family, school and area?
- 2. How much of the 'pupil' level variation in school effectiveness studies is really family level?

	A	В	C		D	
			Twins	Non-twins	Twins	Non-twins
LEA			1.2%	1.1%	1.3%	1.2%
Secondary		13.9%	10.3%	9.1%	9.4%	8.3%
Primary			8.4%	7.4%	6.7%	5.9%
LSOA			1.9%	1.7%	0.5%	0.5%
Family	59.8%		▶40.4%		42.0%	
Pupil	40.2%	86.1%4	→37.7%	80.8%	40.1%	84.2%

Research questions

- 1. How much of the shared environmental variation is due to family, school and area?
- 2. How much of the 'pupil' level variation in school effectiveness studies is really family level?

	A	В		С	D		
			Twins Non-twins		Twins	Non-twins	
LEA			1.2%	1.1%	1.3%	1.2%	
Secondary		13.9%	10.3% 9.1%		9.4%	8.3%	
Primary			8.4%	7.4%	6.7%	5.9%	
LSOA			1.9%	1.7%	0.5%	0.5%	
Family	59.8%		40.4%		42.0%		
Pupil	40.2%	86.1%	37.7%	80.8%	40.1%	84.2%	

Research questions

- 1. How much of the shared environmental variation is due to family, school and area?
- 2. How much of the 'pupil' level variation in school effectiveness studies is really family level?

What happens when we try to explain some of the variation using pupil, family and LSOA level covariates?

	Mod	el A	Model B		Model C		Model D	
cons	-0.003	(0.001)	-0.003	(0.001)	0.001	(0.008)	-0.039	(0.007)
twin	0.177	(0.008)	0.179	(0.007)	0.162	(0.007)	0.154	(0.007)
pretest	0.730	(0.001)	0.729	(0.001)	0.701	(0.001)	0.641	(0.001)
pretest.twin	-0.040	(0.007)	0.000	(0.007)	-0.027	(0.006)	-0.020	(0.006)
female							0.184	(0.002)
Asian							0.429	(0.005)
Black							0.225	(0.006)
Chinese							0.556	(0.015)
Mixed							0.045	(0.005)
Other							0.403	(0.010)
FSM							-0.248	(0.003)
age							-0.012	(0.000)
SEN							-0.231	(0.003)
IDACI							-0.103	(0.001)
LEA					0.005	(0.001)	0.005	(0.001)
Secondary			0.065	(0.002)	0.043	(0.001)	0.035	(0.001)
Primary					0.035	(0.001)	0.025	(0.000)
LSOA					0.008	(0.000)	0.002	(0.000)
Family (twin)	0.238	(0.007)			0.168	(0.005)	0.157	(0.005)
Pupil (twin)	0.160	(0.003)			0.157	(0.003)	0.150	(0.003)
Pupil (non-twin)	0.468	(0.001)	0.402	(0.002)	0.383	(0.001)	0.357	(0.001)

Summary

Around a third of the family level variation in Model A is really school or area level (mostly school)

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Our family effects are purely derived from twin pairs

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may be different to full sibling pairs

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may be different to full sibling pairs
 - shared environment in the womb

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may be different to full sibling pairs
 - shared environment in the womb
 - they may elicit more similar environments
Interpretation

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may be different to full sibling pairs
 - shared environment in the womb
 - they may elicit more similar environments
 - have same age sibling

Interpretation

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may be different to full sibling pairs
 - shared environment in the womb
 - they may elicit more similar environments
 - have same age sibling
- To what extent can we generalise to other family types?
 - e.g. single child families

2. What happens under stress?

Data

Data is from previous cohort, who took GCSEs in 2006

Data

- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded

Data

- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded
- Continuous variables not standardized

Data

- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded
- Continuous variables not standardized

Stressors

Our main stressor was IDACI, an LSOA level variable

Data

- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded
- Continuous variables not standardized

Stressors

- Our main stressor was IDACI, an LSOA level variable
- It aims to measure income deprivation affecting children

Data

- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded
- Continuous variables not standardized

Model

Stressors

- Our main stressor was IDACI, an LSOA level variable
- It aims to measure income deprivation affecting children
- Other stressors included:
 - FSM eligibility
 - House moves

Data

- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded
- Continuous variables not standardized

Stressors

- Our main stressor was IDACI, an LSOA level variable
- It aims to measure income deprivation affecting children
- Other stressors included:
 FSM eligibility
 - House moves

$$\begin{aligned} \mathsf{GCSE}_{ijk} &= \alpha + \beta_1 \mathsf{pretest}_{ijk} + \beta_2 \mathsf{twin}_{jk} + \beta_5 \mathsf{stressor}_{jk} \\ &+ v_{0k} + u_{2jk} \mathsf{twin}_{jk} + e_{2ijk} \mathsf{twin}_{jk} + e_{3ijk} \mathsf{nontwin}_{jk} \\ &+ u_{4jk} \mathsf{twin} \cdot \mathsf{stressor}_{jk} + e_{4ijk} \mathsf{twin} \cdot \mathsf{stressor}_{jk} \\ &+ e_{6ijk} \mathsf{nontwin} \cdot \mathsf{stressor}_{jk} \end{aligned}$$

Covariance structure

$$\begin{bmatrix} v_{0k} \end{bmatrix} \sim N\left(0, \begin{bmatrix} \sigma_{v0}^2 \end{bmatrix}\right)$$

$$\begin{bmatrix} u_{2jk} \\ u_{4jk} \end{bmatrix} \sim N\left(0, \begin{bmatrix} \sigma_{u2}^2 \\ \sigma_{u24} & \sigma_{u4}^2 \end{bmatrix}\right)$$

$$\begin{bmatrix} e_{2ijk} \\ e_{3ijk} \\ e_{4ijk} \\ e_{6ijk} \end{bmatrix} \sim N\left(0, \begin{bmatrix} \sigma_{e2}^2 \\ 0 & \sigma_{e3}^2 \\ \sigma_{e24} & 0 & \sigma_{e4}^2 \\ 0 & \sigma_{e36} & 0 & \sigma_{e6}^2 \end{bmatrix}\right)$$

$$\begin{aligned} \mathsf{GCSE}_{ijk} &= \alpha + \beta_1 \mathsf{pretest}_{ijk} + \beta_2 \mathsf{twin}_{jk} + \beta_5 \mathsf{stressor}_{jk} \\ &+ v_{0k} + u_{2jk} \mathsf{twin}_{jk} + e_{2ijk} \mathsf{twin}_{jk} + e_{3ijk} \mathsf{nontwin}_{jk} \\ &+ u_{4jk} \mathsf{twin} \cdot \mathsf{stressor}_{jk} + e_{4ijk} \mathsf{twin} \cdot \mathsf{stressor}_{jk} \\ &+ e_{6ijk} \mathsf{nontwin} \cdot \mathsf{stressor}_{jk} \end{aligned}$$

Covariance structure

$$\begin{bmatrix} v_{0k} \end{bmatrix} \sim N\left(0, \begin{bmatrix} \sigma_{v0}^2 \end{bmatrix}\right)$$

$$\begin{bmatrix} u_{2jk} \\ u_{4jk} \end{bmatrix} \sim N\left(0, \begin{bmatrix} \sigma_{u2}^2 \\ \sigma_{u24} & \sigma_{u4}^2 \end{bmatrix}\right)$$

$$\begin{bmatrix} e_{2ijk} \\ e_{3ijk} \\ e_{4ijk} \\ e_{6ijk} \end{bmatrix} \sim N\left(0, \begin{bmatrix} \sigma_{e2}^2 \\ 0 & \sigma_{e3}^2 \\ \sigma_{e24} & 0 & \sigma_{e4}^2 \\ 0 & \sigma_{e36} & 0 & \sigma_{e6}^2 \end{bmatrix}\right)$$

$$\begin{split} \mathsf{GCSE}_{ijk} &= \alpha + \beta_1 \mathsf{pretest}_{ijk} + \beta_2 \mathsf{twin}_{jk} + \beta_5 \mathsf{IDACI}_{jk} \\ &+ v_{0k} + u_{2jk} \mathsf{twin}_{jk} + e_{2ijk} \mathsf{twin}_{jk} + e_{3ijk} \mathsf{nontwin}_{jk} \\ &+ u_{4jk} \mathsf{twin} \cdot \mathsf{IDACI}_{jk} + e_{4ijk} \mathsf{twin} \cdot \mathsf{IDACI}_{jk} \\ &+ e_{6ijk} \mathsf{nontwin} \cdot \mathsf{IDACI}_{jk} \end{split}$$

Results

We have this situation: As IDACI increases, Between family variation increases The mean progress decreases $\beta_5 = -68.1$ UDACI

As IDACI increases,

Between family variation increases

The mean progress decreases

$$\mathbf{z} \ \beta_5 = -68.1$$

We have this situation:

As IDACI increases,

- Between family variation increases
- Within family variation increases
- The mean progress decreases

$$\mathbf{z} \ \beta_5 = -68.1$$

We have this situation:

As IDACI increases,

- Between family variation increases
- Within family variation increases
- The mean progress decreases

$$\beta_5 = -68.1$$

We have this situation:

Results

We have this situation: As IDACI increases, Between family variation increases rogress Within family variation increases The mean progress decreases $\beta_5 = -68.1$ IDACI

- Between family variation increases more dramatically than within family variation
- So at greater levels of deprivation, family becomes relatively more important in determining progress

We fitted the same model with different stressors:

- We fitted the same model with different stressors:
 - ⊠ IMD

- We fitted the same model with different stressors:
 - ⊠ IMD
 - FSM eligibility

- We fitted the same model with different stressors:
 - ⊠ IMD
 - FSM eligibility
 - Ever moved house

- We fitted the same model with different stressors:
 - ⊠ IMD
 - FSM eligibility
 - Ever moved house
 - Number of house moves

- We fitted the same model with different stressors:
 - ⊠ IMD
 - FSM eligibility
 - Ever moved house
 - Number of house moves
 - Time since house move

- We fitted the same model with different stressors:
 - IMD
 - FSM eligibility
 - Ever moved house
 - Number of house moves
 - Time since house move
- In almost all cases we see the same pattern

- We fitted the same model with different stressors:
 - IMD
 - FSM eligibility
 - Ever moved house
 - Number of house moves
 - Time since house move
- In almost all cases we see the same pattern
- We also fitted models with more than one stressor

- We fitted the same model with different stressors:
 - IMD
 - FSM eligibility
 - Ever moved house
 - Number of house moves
 - Time since house move
- In almost all cases we see the same pattern
- We also fitted models with more than one stressor
 - IDACI and FSM eligibility

- We fitted the same model with different stressors:
 - IMD
 - FSM eligibility
 - Ever moved house
 - Number of house moves
 - Time since house move
- In almost all cases we see the same pattern
- We also fitted models with more than one stressor
 - e.g. IDACI and FSM eligibility
- In these models, both stressors show the same pattern

- We fitted the same model with different stressors:
 - IMD
 - FSM eligibility
 - Ever moved house
 - Number of house moves
 - Time since house move
- In almost all cases we see the same pattern
- We also fitted models with more than one stressor
 - e.g. IDACI and FSM eligibility
- In these models, both stressors show the same pattern

What's going on? Possible explanations

Genetic explanation

Some families have genes which help to maintain progress in the presence of stressors, while others do not

Environmental explanation

What's going on? Possible explanations

Genetic explanation

- Some families have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability

Environmental explanation

What's going on? Possible explanations

Genetic explanation

- Some families have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some families have the gene and some don't

Environmental explanation
Genetic explanation

- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don't

Genetic explanation

- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don't

- Some families, across all levels of the stressors, have factors that make it harder to be good parents
 - alcoholism of parent
 - violent spouse

Genetic explanation

- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don't

- Some families, across all levels of the stressors, have factors that make it harder to be good parents
 alcoholism of parent
 - violent spouse
- In the absence of stressors, even families with these factors can provide a good environment for progress

Genetic explanation

- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don't

- Some families, across all levels of the stressors, have factors that make it harder to be good parents
 alcoholism of parent
 - violent spouse
- In the absence of stressors, even families with these factors can provide a good environment for progress
- In the presence of stressors, families with these factors cannot do so → variability since some families have these factors and some don't

Genetic explanation

- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don't

Environmental explanation

Children in families compete for resources

Genetic explanation

- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don't

- Children in families compete for resources
- In the absence of stressors, there are enough resources for the needs of all children

Genetic explanation

- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don't

- Children in families compete for resources
- In the absence of stressors, there are enough resources for the needs of all children
- In the presence of stressors, there are fewer resources and some children will have their needs met while others will not → variability since those getting more resources can make more progress

References

- Brooks, A., Fulker, D. W. and DeFries, J. C. (1990) Reading performance and general cognitive ability: A multivariate analysis of twin data. *Personality and Individual Differences*, 11:2, 141–146
- Cardon, L. R., Fisher DiLalla, L., Plomin, R., DeFries, J. C. and Fulker, D. W. (1990) Genetic correlations between reading performance and IQ in the Colorado Adoption Project. *Intelligence* 14, 245–257
- Cleveland, H. H., Jacobson, K. C., Lipinski, J. J. and Rowe, D. C. (2000) Genetic and shared environmental contributions to the relationship between the home environment and child and adolescent achievement. *Intelligence* 28:1 69–86
- Duncan, G. J., Boisjoly, J. and Mullan Harris, K. (2001) Sibling, peer, neighbourhood and schoolmate correlations as indicators of the importance of context for adolescent development. *Demography* 38(3): 437–447
- Fielding, A., Thomas, H., Steele, F., Browne, W., Leyland, A., Spencer, N. and Davison, I. (2006) Using Cross-Classified Multilevel Models to Improve Estimates of the Determination of Pupil Attainment: A Scoping Study. Research Report for Department for Education and Skills. School of Education, University of Birmingham, IBSN: 9780704426016 (International) 0704426013 (UK)
- Friend, A., DeFries, J. C., Wadsworth, S. J. and Olson, R. K. (2007) Genetic and environmental influences on word recognition and spelling deficits as a function of age. *Behavior Genetics* 37, 477–486
- Garner, C. and Raudenbush, S. W. (1991) Neighbourhood effects on educational attainment. Sociology of Education, 64, 251–262
- Goldstein, H., Burgess, S. and McConnell, B. (2007) Modelling the effect of pupil mobility on school differences in educational achievement. J. R. Statist. Soc. A, 170, 941–954
- Haworth, C. M. A., Kovas, Y., Petrill, S. A. and Plomin, R. (2007) Developmental origins of low mathematics performance and normal variation in twins from 7 to 9 years. *Twin Research and Human Genetics* 10:1, 106–117
- Haworth, C. M. A., Kovas, Y., Dale, P. S. and Plomin, R. (2008) Science in elementary school: Generalist genes and school environments. Intelligence 36, 694–701
- Leckie, G. (2009) The complexity of school and neighbourhood effects and movements of pupils on school differences in models of educational achievement. J. R. Statist. Soc A (forthcoming)

References

- Petrill, S. A. and Thompson, L. A. (1993) The phenotypic and genetic relationships among measures of cognitive ability, temperament, and scholastic achievement. Behavior Genetics 23:6, 511–518
- Petrill, S. A. and Thompson, L. A. (1994) The effect of gender upon heritability and common environmental estimates in measures of scholastic achievement. *Personality and Individual Differences* 16:4 631–640
- Raudenbush, S. W. (1993) A crossed random effects model for unbalanced data with applications in cross-sectional and longitudinal research. J. Educ. Statist., 18, 321–349
- Thompson, L. A., Detterman, D. K. and Plomin, R. (1991) Associations between cognitive abilities and scholastic achievement: Genetic overlap but environmental differences. *Psychological Science* 2:3, 158–165
- Thompson, L. A., Detterman, D. K. and Plomin, R. (1993) Differences in heritability across groups differing in ability, revisited. Behavior Genetics 23:4, 331–336
- Van den Oord, E. J. C. G. and Rowe, D. C. (1997) An examination of genotype-environment interactions for academic achievement in an U.S. national longitudinal survey. *Intelligence* 25:3 205–228
- Wainwright, M. A., Wright, M. J., Geffen, G. M., Luciano, M. and Martin, N. G. (2005) The genetic basis of academic achievement on the Queensland Core Skills Test and its shared genetic variance with IQ. Behavior Genetics 35:2 133–145
- Yang, M. and Woodhouse, G. (2001) Progress from GCSE to A and AS level: institutional and gender differences, and trends over time. British Educational Research Journal, 27, 245–267