

Centre for Market and Public Organisation

School Markets & Correlated Random Effects

Paul Clarke

(with Fiona Steele, Harvey Goldstein and Rich Harris)

Outline

- School markets: competition & sorting
- Impact on multilevel modelling
- Methodology: correlated random effects
- ALSPAC data analysis
- Further work

School Markets

- Britain after 1944
 - Local Education Authority (LEA) control
 - 'Catchment area'-based pupil allocation
- Education Reform Act (1988)
 - Reduced influence of LEA/catchment area
 - 'Quasi-market' = 'parental choice'
 - Performance tables (GCSE, Key-stage, etc.)

2-level Random Intercepts Model

Standard notation

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + u_j + e_{ij}$$

• Drop *j* to emphasize selection mechanism

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + \mathbf{Z}_{i}'\mathbf{u} + e_{i}$$
$$\mathbf{u} = \begin{pmatrix} u_{1} \\ \vdots \\ u_{q} \end{pmatrix} \qquad \mathbf{z}_{i} = \begin{pmatrix} z_{i1} \\ \vdots \\ z_{iq} \end{pmatrix} \qquad z_{ij} = \begin{cases} 1 & \text{if pupil } i \text{ in school } j \\ 0 & \text{otherwise} \end{cases}$$

Interpretation

Ideally interpret u_j as 'school effects'
 – e.g. teachers, ethos, size, special needs provision

$$s_j \lambda = u_j$$

Standard Assumptions

- School effects distribution $\mathbf{u} \sim N(\mathbf{0}, I\sigma_u^2)$
- No competition

- Schools set s_i independently (e.g. nationally)

School competition

- e.g. For successive cohorts 1999 and 2000:

$$u_{j}^{2000} = w_{j}u_{j}^{1999} + \sum_{k \neq j} w_{k}u_{k}^{1999} + \varepsilon_{j}^{2000}$$

Selection/Sorting

- Parents' choice of school non-random
- Determined by selection mechanism

$$\pi_{ij}(\mathbf{u}) \equiv \Pr(z_{ij} = 1 | x_i, \mathbf{u}) \quad \text{i.e. multinomial}$$
$$\Rightarrow \pi_i(\mathbf{u}) \equiv \Pr(\mathbf{z}_i | x_i, \mathbf{u}) = \prod_j \pi_{ij}(\mathbf{u})^{z_{ij}} \quad \checkmark$$

'Random Effects' Assumption

- Ideally school residual = school effect
- But only under this condition

 $\operatorname{Cov}(\mathbf{z}_i'\mathbf{u}, x_i) = 0$

• What if selection depends on school effects?

Impact of Selection

• Under weak assumptions¹

$$p(\mathbf{u}|\text{observed}) \propto p(\mathbf{u}) \prod_{i} \pi_{i}(\mathbf{u})$$

• If selection independent of **u** then $p(\mathbf{u}|\text{observed}) = p(\mathbf{u})$

- i.e. r. effects assumption & uncorrelated

Impact of Selection (cont.)

- If selecting school *j* depends on u_j then $p(\mathbf{u}|\text{obs}) \propto \prod_i \left[p(u_j) \prod_i \pi_{ij} (u_j)^{z_{ij}} \right]$
 - i.e. r. effects assumption fails
 - Heteroskedastic but uncorrelated residuals
- Otherwise: ... plus correlated residuals

Plausibility

• Yes: e.g. if spatial selection element

MCMC Methodology

- From Browne & Goldstein (2010)¹
 Adaptive Gibbs/Metropolis-Hastings hybrid
- Level-two covariance matrices of form:

$$\operatorname{Cov}(\mathbf{u}|\operatorname{obs}) = \begin{pmatrix} \sigma_u^2 & \{\sigma_u^2 \rho_{jk}\} \\ & \ddots & \\ \{\sigma_u^2 \rho_{jk}\} & \sigma_u^2 \end{pmatrix}$$

¹ "MCMC sampling for a random intercepts model with non-independent residuals within & between cluster units", *J. Educational & Behavioral Statistics* (in press)

ALSPAC Application

- Avon Longitudinal Study of Parents & Children
 - Followed up all births in Avon 1991-1992
 - 14000 children followed up
- Analyse primary schools (key-stage 2)
 - Children tested 10-11y
 - Mathematics and English test scores

Correlation Model

• Link function is tanh⁻¹

$$\rho_{jk} = \frac{\exp(g_{jk}) - 1}{\exp(g_{jk}) + 1} \qquad g_{jk} = \alpha(d_{jk})$$

- Core catchment areas (CCAs)
 - 'Distance' d_{ik} is proportional CCA overlap¹
 - School's CCA is area containing 50% of its pupils
 - Zero overlap \Rightarrow zero correlation

¹ Harris & Johnston (2008), "Primary schools, markets and choice: studying polarization and the Core Catchment Areas of Schools", *Appl. Spatial Analysis* **1**, 59-84.

Results

2-level Model for KS2 Mathematics Scores

Parameters	Uncorrelated	Linear	Quadratic	Piecewise ¹
$\hat{oldsymbol{eta}}_0$	62.8	63.0	63.0	63.0
$\hat{\sigma}_{e}$	20.0	20.0	20.0	20.0
$\hat{\sigma}_{u}$	6.4	7.5	7.5	7.5
\hat{lpha}_1	0	-0.07	1.64	-0.11
		(-1.4, 1.3)	(-3.6,2.9)	(-0.7,0.5)
\hat{lpha}_2	0		3.14	0.15
			(-5.6,6.9)	(-0.7,1.0)
\hat{lpha}_3	0			0.11
				(-0.7,1.0)
\hat{lpha}_4	0			0.11
				(-0.7,1.0)
Correlation				
10% overlap	0	-0.03	0.23	-0.05
50% overlap	0	-0.02	0.83	0.00
90% overlap	0	0.00	0.97	0.00

¹ Piecewise for percentiles: 10% α_1 ; 10-50% $\alpha_1 + \alpha_2$; 50-90% $\alpha_1 + \alpha_2$; 90-100% $\alpha_1 + \alpha_3$

Further Work

- ALSPAC example:
 - No evidence of correlation in primary schools
 - Robustness to CCA definition
 - Analyse secondary schools
- Possible that
 - Two sources cancel out?
 - Possible that markets entrench difference