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This paper shows that the notion of minimizing the disagreement between parallel
assessments of the same quantity unifies a number of current methods of scaling and leads
to straightforward extensions to cover new problems. Applications are found in the assess-
ment of physical maturity, the measurement of children's behaviour, and in longitudinal
studies with sets of items at several occasions.
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1. INTRODUCTION : THE ASSESSMENT OF MATURITY

The notion of 'maturity' plays a rather special role in physical anthropometry. Most
measurements on growing children, though possibly difficult to make in a standardized
and reproducible manner, do not present problems of definition. Maturity, on the other
hand, though its general meaning is fairly clear, does not possess an obvious definition and in
particular it is not obvious how it should be measured. What are available in practice are a
large number of attributes of the growing child which pass through several well-defined
stages or categories as the child's maturity increases (Tanner, 1962, Chapter 4); these
include secondary sex characteristics, the teeth and the bones of various joints including the
wrist and the knee. For any one of these attributes, it is possible to make unequivocal com-
parisons between two children: child A is more mature than child B for a specific attribute
if he, or she, exhibits a later occurring stage of that attribute. In practice, of course, if child A
is more mature than child B for one attribute, he is usually so for many others and it is just
this fact that leads us to the notion of a single underlying maturity value for each child, a
value which is reflected in the stages of all the different attributes. As an extension of this,
we may postulate regional maturities which influence specific sets of attributes and give rise
to systematic differences between them. The problem thus arises of assessing a child's
maturity value from the stages which he exhibits with respect to a number of attributes, in
fact of setting up a maturity scale.

This is a scaling problem of the kind which is of interest in a variety of disciplines; see, for
example, Edwards (1957) and Torgerson (1958). Sociologists, for example, have attempted
to assess a measure of racial prejudice by administering to each of a number of subjects
several sets of questions, each set containing graded categories indicative of increasing
degrees of prejudice. Similar methods are used in psychology to assess measures such as
intelligence or extroversion.
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It seems an obvious first step to attach a numerical soore to each stage of each attribute.
Every subject will then possess a vector of scores and the problem becomes twofold; that of
determining an optimal system of scores and that of deciding how to combine the attribute
scores from a particular subject into a single overall score. For the second the only practical
proposition seems to be to take the average of the attribute scores, possibly weighted. This
approach has been extensively studied by Guttman (1941) under the name of scalogram
analysis, and our work may be regarded as a generalization of his, as will appear below. We
are left with the problem of determining, indeed of defining, an optimal system of scores.
A possible system is that given by allotting a score of one to the first stage of each attribute,
two to the second stage, etc. For an application to skeletal maturity see Acheson (1957);
in sociology, this system of scoring gives rise to the Likert index (Torgerson, 1958). However,
the tacit assumption that all the stages of every attribute are equally spaced may well be
inappropriate.

Our proposed definition of an optimal scoring system is motivated by the assumption
that all the different attributes are estimating the single underlying variable. We would
therefore like the different attribute scores for a particular subject to agree as closely as
possible, and we define an optimal system as one which minimizes the total amount of
disagreement over a standardizing group of subjects. The consequences of such a definition
are developed in the next section.

2. MATHEMATICAL FORMULATION

2-1. General considerations

Consider a scoring system with h attributes in which the tth attribute has pt stages and
the score allotted to the jiix stage of the tth attribute is x{i (i = 1, ...,h; j = 1, ...,pt);
let n = 'SuPi be the total number of stages for all the attributes. Consider a standardizing
group of N subjects and let zim be the score of the mth subject on the tth attribute; if this
subject exhibits the jth. stage of this attribute, then zim = xty If we agree to use a weighted
mean of the attribute scores as the overall score, then the overall score for the mth subject
will be, with S( w{ = 1,

The attribute scores for the mth subject, zlm, ...,zhm, will in general not all be equal,
and we propose to measure their disagreement by their weighted sum of squares about their
mean, dm = S^fo^-zJ8.

The total disagreement for the standardizing group is D = Smdm. We adopt a scoring
system that makes D a minimum.

Obviously it is essential to minimize D subject to some standardizing constraints on the
xi} to avoid a trivial zero situation. We illustrate two possibilities.

2-2. Quadratic constraint

In the case of a maturity scale the standardizing group will presumably cover the whole
range of maturity and it is elementary that we wish their scores to differ so as to reflect
their maturity differences. Likewise, in other applications where the standardizing group is
representative of a population of individuals, we wish subject scores to differ along the
underlying dimension. We may therefore constrain the variance of the N subject overall
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scores to be different from zero by imposing, say,

2m(2m-Z)J=l, Z = XmzJN. (2-1)

It is clear that we can add a constant to all the xti without affecting the dm, and without loss
of generality we impose the further constraint z = 0, so that (2-1) becomes simply 2^ ^, => 1.
The algebra of the minimization is straightforward.

We are to minimize D = x^Ax subject to xTZx = 1 and xTSl = 0. Here the vector x is
n x 1 with elements xtj. The matrix A is n x n and symmetric. Its diagonal elements are
Nit wt(l — Wi), where Ntj is the number of subjects in stage j of attribute ». Its off
diagonal elements are — iV^wu\u>t) where Niia is the number of subjects exhibiting both
stagey of attribute t and stage I of attribute k. Since Nijia = 0 if i = k andj 4= I, A has diagonal
blocks on its main diagonal. The matrix Z is n x n and symmetric with diagonal elements
NitWi and off-diagonal elements N^^w^^ The matrix 8 = A + Z \a nxn diagonal with
elements N{jwt. Finally the vector 1 is n x 1 with all elements equal to one.

By using Lagrange multipliers, this leads to

2Ax-2XZx-/i8l = 0. (2-2)

Multiplying on the left by 1T and noting that 1TA = 0, lTSx = 0, we find that /ilTSl = 0,
so that/i = 0. Thus (2-2) becomes

(A-\Z)x = 0. (2-3)

Premultiplication by xT gives D = xTAx = /\xTZx = A, so that we appear to need the
smallest latent root of (2-3); but there is in fact a zero root, with latent vector 1, which
corresponds to the trivial zero solution. The optimal scores by our criterion will thus be
given by the elements of the latent vector corresponding to the smallest nonzero root of

\A-?CZ\ = 0. (2-4)

If we take all the wi to be equal, this is essentially Gnttman's solution (Torgerson, 1958,
pp. 338-45).

The next smallest root of (2-4) gives a system of scores which minimizes D subject to the
extra constraint of being uncorrelated with the first system over the standardizing group.
This gives the possibility of defining differential regional maturity measures as discussed
in§l.

2-3 Linear constraint
Since the stages for each attribute are ordered, we can envisage subjects whose overall

maturity is the lowest possible, namely all attributes at their earliest stages, and the highest
possible, namely all attributes at their latest stages. It is a distinguishing feature of physical
maturity that all normal individuals pass from one of these situations, postconception, to
the other, adulthood. Under these circumstances we are led to think of a subject's overall
maturity as a proportion of the maximum possible, and so of a maturity scale that extends
from 0 to 1. With the notation of the previous section, the extreme scores will be 'Ziwixil

and 24 w{ xiP{, respectively, and we can avoid the trivial solution by constraining these to be
different, say equal to 0 and 1. In matrix form these constraints are

xrq = 0, xTr = 1, (2-5)

where q and r are n x 1 with all elements equal to 0 except for those corresponding to stages
j , respectively, which are equal to 1.



222 M. J . R. H E A L Y AND H. GOLDSTEIN

The minimization of D now leads to 2 Ax — Aq—fir = 0, and these n linear equations
together with (2-5) can be solved for the n + 2 unknowns x, A and /i. We find that
2D = fi= - A .

As before we can obtain further auxiliary scoring systems. We may, for instance, obtain
scores y which minimize D subject to (2-5) and subject also to being uncorrelated with the
first system over the standardizing group. Then

y*Zx = 0, (2-6)

and we get the n+ 3 equations given by (2-5), (2-6) and 2Ay — Aq—fir — vZx = 0.
Neither of the techniques we have described forces the scores allotted to the stages of a

single attribute to increase monotonically. Methods with this property could be developed
from linear programming concepts (Bradley, Kalli & Coons, 1962), but in our view these
would be inappropriate. We would rather regard any serious failure of monotonicity as
indicating a defect in the definitions of the stages of the corresponding attribute.

3. EXAMPLE

Physical maturity data are usually rather extensive (Tanner et al. 1975), and in the
interests of compactness we give a behavioural example using data taken from the National
Child Development Study (Davie, Butler & Goldstein, 1972). The subjects were 12232
mothers of 11-year old children and the attributes were questions designed to measure
' antisocial behaviour'.

(i) Does the child destroy its own or others' belongings?
(ii) Does the child fight with other children ?

(iii) Is the child disobedient at home?
Each attribute had three ordered categories, the replies 'never', 'sometimes' and

'frequently'. We use equal weights for each attribute, wi = \ (» = 1,2,3). The lower

Table 1. The lower triangle of the matrix 92 for example of 11-year scores

1st column: 11440, 0, 0, 5923, 5134, 383, 5957, 5254, 229
2nd column: 667, 0, 143, 440, 84, 135, 468, 64
3rd column: 125, 22, 62, 41, 18, 70, 37
4th column: 6088, 0, 0, 3896, 2111, 81
5th column: 5636, 0, 2084, 3387, 165
6th column: 508, 130, 294, 84
7th column: 6110, 0, 0
8th column: 5792, 0
9th column: 330

Thus 11440 mothers answered 'never' to question one and of these 383 answered 'frequently' to
question two.

triangle of the matrix Z is shown in Table 1. The scores corresponding to quadratic and linear
constraints are shown in. Table 2, rescaled so that each 'never' response scores 0 while a
response of' frequently' to all three questions scores 100. I t will be seen that the two systems
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are rather different; in particular, the linear constraint causes the 'frequently' response
to the first question to be given a relatively high score, while it effectively equates the
'never' and 'sometimes' responses on all three questions.

Table 2. Scaled 11-year scores for antisocial behaviour attributes

Constraints

Attribute
1

2

3

Category

Never
Sometimes
Frequently

Never
Sometimes
Frequently

Never
Sometimes
Frequently

Quadratic

0
19-7
39-4

0
9-2

27-6

0
9-7

330

Linear

0
2-7

56-7

0
1-7

17-8

0
1-8

25-5

4. RELATING TWO SETS OF ATTRIBUTES

4-1. General considerations

We have established a scoring system for a single variable by minimizing the disagreement
within a single set of scores. The underlying principle can be used in a number of other
contexts. Suppose, for example, that we have two sets of attributes, perhaps one relating
to a number of behavioural attributes and the other to a number of social attributes. We
may wish to set up a scoring system with the property that the two overall scores for each
subject agree as closely as possible.

Suppose that there are h^ and A8 attributes in the two seta; denote the two scoring systems
by vectors x1 and x2 of lengths 74 and n2 and the associated weights by vectors wx and wa.
If the attribute scores for the mth subject are zxim and zSjm (i = I,...,7i1;j=* 1, ....Aj) we
define the two overall scores to be

and the disagreement to be simply dm = (2m, —22m)2. We now choose the scoring systems to
minimize D = Smdm. We have

D = x[Z11x1 + xiZiix2-2x?Z12x2.

Here £ u and Z& are equivalent to the matrix Z of § 2-2, while iJ12 is an 74 x n3 matrix with
typical element ttutii^U, the number of subjects exhibiting stage j of attribute i in the
first set of attributes and simultaneously stage I of attribute k in the second set. Again there
is a trivial solution in which all the X^B and xa's are equal and we must impose a constraint
to avoid this.

4-2. Quadratic constraints

We may constrain the variances of both of the overall scores to be nonzero, say
'Zm&km—2*)* = 1» with zk = SjnZjm/JV (k = 1,2). We can still impose arbitrary origins on
the scores for each attribute, and we do this so that "LjN^x^j = 0, for all i (k = 1,2),
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noting that this gives ẑ  = z, = 0. In matrix form the constraints are

l, xgZnxt=l, (4-1)

= 0, xfStR = 0, (4-2)

where nŜ  and #a are diagonal with elements wuNUi and w^Ntii, and where Q and J? are of
sizes T^xJii and T»2 X h^, with unity in those elements of the tth column that correspond to
stages of the tth attribute and zeros elsewhere. The problem becomes that of maximizing
subject to (4-1) the quantity E = xfZ12x2 which amounts to the correlation between the
two overall scores. This is the canonical correlation problem, the scores being given by the
canonical vectors corresponding to the largest correlation. When each set contains only one
attribute, the problem is that of obtaining optimal additive scores from a contingency
table (Kendall & Stuart, 1961, p. 569; Fisher, 1938, §49-2).

The maximization equations are

Z12xt-2\1Z11x1-/t1S1Q = 0, Z^x1-2X2Ztax%-fiiSiB = 0,
leading to

in terms of generalized inverses of the singular matrices Zn and ZM. This can be solved by
standard techniques which allow for the singularities; see Appendix. The largest root is
A = 1, giving the trivial solution, and the required scores are the elements of the vectors
corresponding to the next largest root. Further sets of uncorrelated scores can be derived
from the vectors corresponding to subsequent roots.

In some applications of the above method, the two sets of attributes are in fact the same
set measured at two different occasions, and it may then be of interest to impose the extra
constraint that the two scoring systems shall be identical. We now have to maximize
E = xTZltx subject to

zT(Z
which leads to

{

The same procedure can clearly be applied to the more usual canonical correlation situation,
in which the Z matrices contain sums of squares and products of continuous variables.

4-3. Linear constraints

We can alternatively impose the 7^ + ht + 2 linear constraints, for all i (k = 1,2),

In matrix form these are

xTri=l, x£rt=l, xjQ^O, xJQ^Q, (4-3)

where r is defined in (2-5) and Qb is of size nk x hk with unity in the »th column corresponding
to the first stage of the ith attribute and zeros elsewhere. Minimization leads to

2Z11x1-2Zlixi-\1r1 -Q1/i1 = 0, -2ZJax1 + 2Z2%xi-\tri-Qifii = 0,

and these with (4-3) provide « 1 + TIB + A1 + A2 + 2 equations in as many unknowns. Further
sets of uncorrelated scores can be determined as before.

If we impose the extra condition that the two systems of scores Bhould be identical, we
are led to
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5. EXAMPLE

We use the data from § 3 with responses to the same questions by the mothers of the same
children at the age of 7. The number of responses was 10180 and the estimated scores using
quadratic constraints are given in Table 3, along with the optimal scores for the two ages
separately and those for the paired data constrained to be the same at both ages. The
separate systems at the two ages are very similar, and it is perhaps not too surprising that
the optimal linked scores, although based on a different kind of disagreement, are not very
different from them.

Table 3. Scaled 'canonical' scores for behaviour attributes

Attribute Category

Never
Sometimes
Frequently

Never
Sometimes
Frequently

Never
Sometimes
Frequently

11-year score

0 (0)
18-0(19-7)
44-9 (39-4)

0 (0)
13-3 (9-2)
26-3 (27-6)

0 (0)
9-0 (9-7)

28-7 (330)

7-year score

0 (0)
16-9 (180)
40-9 (31-0)

0 (0)
13-7(11-8)
30-3 (31-2)

0 (0)
10-1 (12-6)
28-8 (37-8)

Equal 11-year and
7-year scores

0
14-3
35-4

0
15-4
32-6

0
10-9
320

Separate age scores given in brackets
Correlation between 7-year and 11-year individual scores: (a) unequal scores, 0-441;

(6) equal scores, 0-410; (c) separate systems at each age, 0-433.

6. RELATING MORE THAN TWO SETS OV ATTRIBUTES

6*1. General considerations

We can extend the methods of §4 to the situation in which each subject has more than
two sets of attributes. If there are p sets, we introduce a further set of weights and define the
disagreement for the mth subject to be

dm = S cfc(zfcm-zm)«
*-i

with
P

Zm = S CjfcZ^, T,kCk = 1.
fc-1

The total disagreement is

D = Smdm = I.kck(l-ck)x£Zkkxk- 2 ckclxlZklxl,

where xk, of length nk, is the vector of scores for the fcth set of attributes and the Z
matrices are as defined in § 4. We need constraints to avoid the trivial solution with all
the xMi equal.
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6-2. Quadratic constraints
We may impose

0 , ( 1 -

where, for all» and k,
Zfc = SmzJtm/^, 2tNktixUi = 0.

In matrix form these are
ck(l-ck)xlZkkxk=l, xJ8kRk = 0,

with 8k, Rk denned in the same way as Sv St and R in (4-2). We minimize the disagreement
by maximizing

k+l

which is the weighted sum of all the correlations between pairs of sets. This is analogous
to the STJMOOB method described by Kettenring (1971) for continuous variables. The result
is p sets of equations

S ckclZldxl-\ck{l-ck)Zkkxk = 0 (k=i,...,p),
l+k

which can be solved by a straightforward extension of the method described in § 4. The
largest latent root A = 1 corresponds to the trivial solution, the optimal scores correspond
to the second largest root and further seta of scores can be derived from the vectors corre-
sponding to subsequent roots.

If we make all the scoring systems the same, by imposing

xk = x (k=l,...,p), (6-1)
we need, to maximize

E = £ ckclx
rZklx

k+l
subject to

Sfcct(l -ck)x-*Zkkx = 1, Xkckz*SkRk = 0,

which leads to the equations

XL^l-c^Z^x = 0.{
k+l

6-3. Linear constraints
We impose

^ r f c = l , xlQk=0 (Jfc=l p), (6-2)

where rk and Qk are defined as in (4*3). We then obtain the p sets of equations

2c f c ( l -c f c )Z i f c z t -2 2 ckclZklxl-kkrk-Qkfik = 0 (k=l,...,p),
k+l

which gives with (6-2) ~Lk(hk + nk+1) equations in as many unknowns. If we impose the
extra condition (6-1), we obtain the equations

k+l

As before, further uncorrelated sets of scores can be determined.
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7. SAMPLING CONSIDERATIONS

We have expressed our results in terms of matrices of numbers of subjects in a standard-
izing group who exhibit various combinations of stages in different attributes. If we divide
by the total number of subjects they become the proportions in the standardizing group
and may in certain circumstances be regarded as estimates, even maximum likelihood
estimates, of probabilities in an appropriate population.

In the application to physical maturity, the reference population is one with all ages
equally represented, though it is necessary to truncate this at some suitable ages to avoid
the inclusion of large numbers of wholly immature or fully mature subjeots. It is difficult
in practice to obtain a random sample from such a population, and some form of age-
stratification will usually be needed, the probabilities being estimated separately in the
different strata and combined to give estimates of those in the desired standard population.

8. DISCUSSION

We have shown that the simple notion of minimizing disagreement between parallel
assessments of the same quantity unifies a number of current methods of scale construction
and leads straightforwardly to extensions covering new problems. Our work is closely
related to that of Guttman (1941) and previous workers, notably Thurstone (1929); an
extensive bibliography is given by Torgerson (1958). Much recent work on scaling has
stemmed from papers by Shephard (1962) and Gower (1966); these are based on the concept
of distance betweeen subjects and seem to us to be only loosely connected'with our problems.

The scoring methods for relating several sets of attributes may be compared with those
for continuous variables given by Kettenring (1971). Our proposals could readily be ex-
tended to this situation and would appear to lead to much simpler calculations. Most
applications to categorical attribute data seem to have been restricted to the two-set case,
usually with just one attribute in each set, although Lingoes (1973, Chapter 19) considers
the p-set case with one attribute in each set. Srikantan (1970) investigates the sampling
distributions of functions of the latent roots in the two-set case with one attribute in each
set. The methods for relating several sets may be of practical interest in longitudinal
studies; in intelligence testing, for example, it is necessary to use different attributes on
each occasion, but a combined measure of some underlying factor assumed to be present at
each occasion is required. Also in longitudinal studies we may wish to give less weight to
those ages which are, for example, closer together.

The approach used in this paper can readily be adapted to special systems. One such case
has been considered by Hill (1974) among others under the name of 'first order correspon-
dence analysis', and is essentially intermediate between the system defined in § 2-2 and that
denned in §6-2, with just one attribute per set. It imposes a single quadratic constraint
analogous to (2-1) and a constraint for each attribute analogous to (4-2). Thus it may be
regarded either as additionally constraining the system (2-1) by requiring each attribute
to have the same zero mean, or as allowing each attribute in § 6-1 to operate on a different
scale, subject only to an overall quadratic constraint.

It would be of interest to investigate systems in which the data themselves determine
the weights, which could then be applied to single stages as well as to whole attributes. In
an application to the assessment of physical maturity, the attributes are the bones of the
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hand and wrist and the categories are the recognizable stages of development through
which the bones pass. If a particular stage normally lasts for a long time, observing it clearly
gives less information than the observation of a stage which is more transitory and so more
characteristic of a particular level of maturity; presumably therefore the more transitory
stage should receive a higher weight. Such a system would provide a total weight which
differed from subject to subject, indicating that certain combinations of attribute categories
gave a more precise indication of the overall score than others. However, this approach
leads to very large scale nonlinear minimization problems and we have not pursued it
further.

loo-.

0 1

10020 40 60 80
Score with quadratic constraint

Fig. 1. Antisocial behaviour attributes. Comparison of scores with two different constraints.

The imposition of constraints has played a major role in the development of our methods.
Quadratic constraints of the kind we have used are universally used in multivariate statis-
tics, and characterize the two basic techniques of principal components and canonical
correlation analysis. We have found it interesting that our linear constraints lead to algebra
that is as straightforward and computation that is somewhat simpler. More importantly,
however, our use of linear constraints is motivated by the nature of the attribute categories
themselves. Since these have a defined ordering within each attribute, they allow us to
specify the two end-points of the scale. The lowest point occurs when a subject responds
with the lowest category of each attribute, and the highest point occurs when a subject
responds with the highest category of each attribute. It seems natural to use this informa-
tion, therefore, to specify the constraints in the way we have done. An important point
emerges from the example in Table 2, where we show that the two types of constraint
produce noticeably different scoring systems. Figure 1 shows the resulting scores on the
two systems from the 27 possible combinations, linearly scaled so that the three responses
'never' and the three responses 'frequently' score 0 and 100, respectively; Kendall's r for
these 27 pairs of values is only 0-55. This seems to show that a particular scoring system can
be almost as much determined by the constraints imposed as by the data on which it is based.

The work of the second author has been partly supported by grants from the Department
of Health and Social Security, the Department of Education and Science and the Social
Science Research Council.
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APPENDIX

We wish to solve
(Z-ZaZ-Zl,-X^I)x = 0. (A 1)

The matrices Zm and Z, have nullity hm — 1 and h,— l, respectively, and the vectors formed by
summing the rows for each attribute are equal. Hence a simple way of constructing the generalized
inverses Z~ and Z~ is to form the reduced matrix obtained by omitting the first category of each
attribute except the last, inverting the resulting nonsingular symmetrio matrix and then inserting
rows and columns of zeros corresponding to the first categories of all attributes except the last.

The equations (A 1) then give the particular solution with the scores for the omitted categories
equal to zero. When the corresponding rows and columns of the matrices in (A 1) are omitted we have
the reduced form (A — A*I)u = 0, which can be solved by standard methods to give the vector u
containing the nonzero elements of x.
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