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Restricted unbiased iterative generalized least-squares estimation
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SUMMARY

It is shown that the iterative least-squares procedure for estimating the parameters in a general
multilevel random coefficients linear model can be modified to produce unbiased estimates of
the random parameters. In the multivariate normal case these are equivalent to restricted maximum
likelihood estimates.

Some key words: Iterative generalized least-squares; Maximum likelihood; Multilevel model; Restricted
generalized least-squares; Restricted maximum likelihood.

Goldstein (1986, Appen. 1) showed that the iterative generalized least-squares estimates used
in the general multilevel random coefficient linear model are equivalent to maximum likelihood
estimates under multivariate normality. Like the maximum likelihood estimates, the iterative
generalized least-squares estimates are biased and the purpose of the present paper is to show
how unbiased estimates can be obtained. Under the assumption of multivariate normality these
are shown to be equivalent to restricted maximum likelihood estimates, so called because the
likelihood is based upon a set of n — p linearly independent error contrasts, where p is the number
of coefficients in the linear model and n is the number of observations. By analogy the unbiased
iterative generalized least-squares estimates will be referred to as restricted iterative generalized
least-squares estimates. The notation is that used by Goldstein (1986).

The general model can be written

Y=XB+Ze, E()=0, E{(Ze}Ze)"}=V,

where B is a vector of fixed coefficients and e is a vector of variables random at any level of the
hierarchy. The matrices X and Z are the design matrices for the fixed and random variables in
the model respectively, and V is the covariance matrix of the response vector Y. In the estimation
of the random parameters of the multilevel model, that is the varianc;s and covariances of the
random variables, at each iteration we regress vech {( Y—Xﬁ)( Y — XB)"} on the corresponding
design matrix for the unknown random parameters (Goldstein, 1986).

When B is estimated using generalized-least squares with V known

E{(Y-XB)(Y-XB)}=V-X(X"V'X)'X", (1)

where X is the design matrix for the fixed effects in the model, and is assumed to have full rank.
In the general case where V is to be estimated, at each iteration we use

(Y-XBNY-XB)+X(X"V'X)'Xx" ()

to provide an updated estimate of V which is based upon the current value V the term
X(XTV7'X)'XT can be regarded as a bias correction term.

Thus we work with (2) rather than just the first term of (2) when estimating the random
parameters. This involves adding the correction term to the calculated cross-product matrix for
every highest level unit; all the relevant matrices are already available from the computanons
Note that the matrix (XT “'X) ' canbe wnttenmtheform U™ U™, where (XTV'X) = UTU
and U is upper triangular. With Z = XU™', expression (2) becomes YY"+ ZZ7, where Y =
Y - XB.
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Hence, with minor modifications, we can apply computational procedures similar to those for
ordinary iterative generalized least-squares.

We now show that the restricted iterative generalized least-squares estimates are equivalent to
restricted maximum likelihood estimates when e has a multivariate normal distribution.

The log likelihood function which is minimized in restricted maximum likelihood is the full
likelihood function plus half the term —log (|X"V™'X|), where X is assumed to have full rank
(Harville, 1977). On differentiating the log likelihood this gives the extra term

axTvx)™!

oB*
where B* is the vector of random parameters. Following Appendix 1 of Goldstein (1986), in the
generalized least-squares minimization we replace S by S*, where

S*=S+X(X"™Q'x)'X", ?3)

with Q= E{(Y—XB)(Y — XB)"}. Thus, on differentiating and setting V = (1, the second term in
(3) leads to an additional term in the generalized least-squares estimation equations

tr{(XTV_'X) }=tr{—XT%X(XTV_‘X)"},

V—l
—tr{a X(XTV"X)"XT}.
B

Since tr (AB) =tr (BA), we have

-1

1
—log (|IXTV'X|) = —tr{a

X(XTV"X)"XT}
B

and the estimation procedures are e¢auivalent.
Finally, in the ordinary least-squares model, with V =¢*I, we see from (1) that

E{tr (YY) = n—tr {X(X"X)'XT}]=0*(n—p),

where (X7X) is of order p, and hence n unbiased estimate of o is given by the usual formula,
7*=tr (YY")/(n—p). In the special case where X is the unit vector we obtain ¢°=s>/(n—1),
which is the usual formula for an unbiased estimate of a variance.
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