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1. A brief introduction to S-plus  

1.1 Background  
S-plus is a software for exploratory data modelling and statistical analysis, with advanced graphic 
facilities and a graphical user interface (GUI).  
 
It is a commercial implementation of the object-oriented Si programming language which was originally 
developed by John Chambersii and his colleagues at Bell Labs (of AT&T, now Lucent Technologies) in 
the late 70’s. This is compared with Riii which is sometimes referred to as the “free clone” of the S 
language distributed freely by the Free Software Foundationiv. The S language was specifically designed 
for organising, visualizing and programming with data.  
 
The S language gained popularity in post-graduate and higher academic environment in North America 
in the early 80’s. The commercialization of the S language in the form of S-plus came about in 1987 
through the initiatives of R. Douglas Martin who founded StatSci Inc. In 1993 StatSci obtained an 
exclusive license for selling products incorporating S. In the same year the company was sold to 
MathSoft Inc. and StatSci became the Data Analysis Products Division (DAPD) of MathSoft. MathSoft 
was later consolidated, had their headquarters migrated to Seattle and renamed the company to Insightful 
in 2001. S-plus has since been marketed and supported by Insightful Corporationv. At the time of writing 
the latest version of S-plus for Windows is 6.2 and is the version under review in this report. The 
incorporated S language is at version 4.  
 
User-contributed add-on packages or libraries are held at an electronic archive, StatLib. It is independent 
of Insightful and the packages are downloadable from the StatLib website: http://lib.stat.cmu.edu/S. S-
news is an email newsgroup for both S and S-plus users. See the following link for further information: 
http://www.biostat.wustl.edu/s-news/s-news-intro.html.  
 

1.2 Operating systems  
S-plus 6 is available on Windows:  

• recommended system requirements to run S-plus 6 for Windows are Pentium II/233 processor 
with 96 MB of RAM  

• at least 275MB of free disk space for the typical installation (and, if not installing on drive C:\, 
an additional 75MB free disk space on drive C:\ to unpack the distribution 

• support platforms: Windows NT 4.0 (Service Pack 6), 2000, XP Professional and 2003 server 
 

                                                      
i http://cm.bell-labs.com/cm/ms/departments/sia/S/ 
ii http://cm.bell-labs.com/cm/ms/who/jmc/index.html 
iii http://www.r-project.org/ 
iv http://www.gnu.org/ 
v http://www.insightful.com/ 
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and UNIX platforms including Solaris and Linux:   
• supported platforms: Sun Solaris 2.8 or 2.9 on SPARC 32-bit architecture, Sun Solaris 2.8 or 2.9 

on SPARC 64-bit architecture, Red Hat Enterprise Linux 3.0, Red Hat Linux 8, 9, IBM AIX 5.1, 
HP Alpha running Tru64 UNIX 4.0F or 5.1A, and HP-UX 11.0 or later.  

 

1.3 Data input/output functionality 
S-plus can read and write a wide variety of data formats and supports the Open DataBase Connectivity 
(ODBC) standard, allowing users to import and export between S-plus and any ODBC-compliant 
database. In addition, it can import data from financial databases such as Bloomberg, FAME, and MIM. 
 
Data can be read in by using the Import From File dialog from the GUI or by commands in the 
Commands window. Data in ASCII (tab delimited, fixed-width or other spreadsheet-like) format can be 
read in by command-line functions like scan and read.table. A more versatile command to use is 
importData which lets users read in data from a wide variety of formats.   
 
Data types that can be imported and exported are SAS, SPSS, Excel, Text (ASCII), Quattro Pro, Paradox, 
Lotus 1-2-3, dBase, Sigma Plot (import only), Systat, STATA, Gauss, Access, MATLAB, LIM, 
Bloomberg, FAME, Minitab, FoxPro, Epi Info, Oracle, Sybase, DB2, SQL Server, ODBC and HTML 
(export only).  
 
Large data sets are supported in S-plus 6 through new techniques in handling larger objects in S version 
4. It is, however, not clear from its current documentation of the size of the largest data object that S-plus 
6.2 can handle. 
 
Graphics can be exported in the following formats: Windows Bitmap (.BMP), Encapsulated PostScript 
(.EPS), CompuServe (.GIF), GEM Bitmap (.IMG), JPEG (.JPG), Adobe Photoshop (.PSD), Adobe PDF 
(.PDF), HP Printer Control Language (.PCL), PaintBrush (.PCX), Tagged Image Format (.TIF), True 
Vision Targa (.TGA), Windows Metafile (.WMF), and Portable Network Graphics (.PNG). Users can 
publish interactive graphic information on the Web using the new S-plus Graphlets (see reference on S-
plus website: http://www.insightful.com/graphlets).   
 
Connectivity with programming languages C++ (Windows) and JAVA (Unix) is made possible in S-plus 
6 through its CONNENT/C++ Foundation Class Library. This allows C++/JAVA programmers to write 
their own program using data objects from the S engine, run S functions and manipulate the results or 
vice versa.  
 
See S-plus User’s Guide (Insightful (2001)) for more detailed description of the import and export 
facilities in S-plus 6 for Windows.   
 

1.4 Interface features 
1.4.1 Launching S-plus  
S-plus can be launched in three different modes (BATCH, CONSOLE and GUI) from the Windows Start 
menu.  
 
When it is launched from the batch mode, a dialog called BATCH appears on the screen. There are fields 
to enter the Input File, Output File, Log File and Working Directory (the default directory is shown in the 
field). The input file containing S-plus commands can be prepared by any word-processor in plain-text 
(or ASCII) beforehand. Options are given to provide control over the output and to stop processing when 
the first error is encountered.  
 
When one chooses to start S-plus from the CONSOLE mode, a DOS-type window appears showing 
copyrights information and the full path of the default directory. After clicking once on Enter, a right-
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pointing arrow prompt appears and it is ready for the use to enter commands interactively. For those who 
use R, this console is very similar to the R Console window in the R GUI.  
 
1.4.2 Starting with GUI mode 
When S-plus is launched from the GUI mode, the user is prompted to enter a folder in which a S-plus 
project is to be stored in the optional Open S-plus Project window. A S-plus project folder may include 
data sets, graph sheets, Excel worksheets, Report Files, Script Files, and project settings for the Object 
Explorer. A default folder with full path is automatically inserted for the user. Clicking on the OK button 
launches the S-plus GUI. This is how the reviewer uses S-plus in this review.  
 
The user is then presented with the Object Explorer and Commands windows in the GUI. Data sets, 
graphs, functions, and other objects used during the current S-plus session are shown in the Object 
Explorer. The Commands window allows the user to enter command-line functions interactively. The 
function source allows users to run S-plus in batch mode within the GUI.  
 
Users may also choose to open a script file (with file extension *.ssc) from the File menu to store and run 
S-plus commands from. The Script File screen is split into two halves. The top half shows the content of 
the script file while the bottom half shows the output from a run. Users may choose to run the whole 
script or a section of the script by highlighting a section and then issue a run by either clicking the play 
button in the menu bar or by pressing F10. 
 
The shell (or GUI) of S-plus offers point-and-click facilities allowing users to access the built-in 
functions for data manipulations, graphing and data analysis though advanced users might find issuing 
commands in the Commands window allows more flexibilities. An extensive list of statistical techniques 
is available from the S-plus GUI (they can all be called using the equivalent commands). They include 
linear models, ANOVA, nonlinear regression (maximum/quasi- likelihood), nonparametric regression 
(including GAMs and Loess), linear and nonlinear mixed-effects models, tree models, smoothing, 
resampling, multivariate analysis, cluster analysis, calculation of power and sample size, survival 
analysis, time series analysis, and more. In this review all models are fitted using S-plus/S commands. 
 
1.4.3 Getting help  
Two types of on-line help are available from the GUI. S-plus Help from the menu bar provides help on 
using the GUI while Language Reference is for the S-plus/S language. On-line help is also available 
from the Commands windows using the function help(). Once a S-plus function library has been 
loaded its reference and documentations can be accessed under Help from the menu bar. 
 
1.4.4 Menus 
The software comes with a number of online manuals (in PDF format) accessible from Help. The general 
references are Getting Started Guide, User’s Guide, Programmer’s Guide and S-plus supplement. The 
advanced references include Guide to Statistics Volumes 1 and 2, LME for SAS PROC MIXED Users, 
Robust Library and Missing Data Analysis Library.  
 
 

2. Standard modelling tools for multilevel analysis 

2.1 Features and syntax structure  
The main S-plus functions for fitting multilevel models are lme and nlme (of the nlme library by 
Pinheiro and Bates (2000)) for normal responses and glme (correlatedData library (Chao (2003)) 
for normal and discrete outcomes. They share a useful function, groupedData, for specifying grouped 
data structure of data objects in S-plus which greatly facilitates the displaying of and model fitting on 
hierarchical data. The groupedData object has the following syntax structure:  
   
groupedData(response~covariate(s)|group,data,options)  (1) 
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The first part of the expression specifies the response and the primary covariate(s) of interest. If none 
cannot be identified as the primary covariate, “1” (for constant) can be used. The multilevel grouping of 
data, e.g. a three-level structure of pupils in classes nested within schools, can be specified as g1/g2 in 
the group part of the syntax where g1 is replaced with the school identifier and g2 by the class identifier.  
In S-plus pupil is not taken as a level of grouping. That is, level one in, say, MLwiN is not taken as a 
level in S-plus. Once such hierarchical structure has been specified functions are available for plotting 
(e.g. trellis plots) and summarizing the data over each level of grouping. 
 
The function, lme, fits linear mixed-effects model with much flexibility given to the specification of the 
within-group variation structure. Within-group residuals are allowed to be correlated and/or have unequal 
variances. lme has the following syntax structure:  
 
lme(response~covariate(s),data,random,correlation,weights,method,options) (2) 
 
The argument response in the expression is the response of the data being modelled. The next section, 
after the ~ operator, is for specifying the fixed part of the model and is sometimes known as the formula 
part of the syntax. data can be a data frame or groupedData object. If it is the latter, lme will pick 
up the grouped data structure inherited in the object. random is optional and is for specifying the 
random part of the model. For example, using the school example again if one wants to include a 
constant term and a covariate of GCSE score in the random part of the model, the syntax is 
random=~gcse. The constant term (“1”) is included implicitly while a “-1” in the syntax will remove 
it. The result of the syntax is to include both the constant term and the GCSE score in the random part in 
all the grouping levels (i.e. school and class levels) of the model.  
 
If different covariates are to be included in different levels, the function list is used to bind the 
formulae for different levels as a single argument for random. For example, 
random=list(School=~GCSE, Class=~1) specifies a random intercept and random slope for 
GCSE at the school level and only a random intercept at the class level.  
 
To update part(s) of and re-fit an existing fitted model object use the function update(). 
 
correlation is used to specify the optional within-group correlation structure. A set of classes of 
correlation structure are available, for example, corCompSymm for compound symmetry, corAR1 and 
corARMA for time series models, etc. See corStruct in S-plus documentation for details. weights 
is used for specifying the within-group heteroscedasticity structure (see varFunc). For example, 
varIdent can be used to allow different variances in different stratum, gender say, of a stratification 
variable. Maximum likelihood and (REstricted)ML estimates can be derived via method. The default is 
REML.  
 
The function glme of the correlatedData library for normal and discrete outcomes uses similar 
syntax as lme except that it has the additional options for specifying family for different distributions 
(including Gaussian, binomial, poisson, Gamma, inverse.Gaussian and quasi) with different link 
functions and dispersion for modelling under- or over-dispersion. The estimation methods available 
in glme are (restricted) penalized quasi-likelihood, (restricted) marginal quasi-likelihood, adaptive 
Gaussian quadrature and Laplace approximation to the likelihood. At its current release the function 
glme is limited to fitting hierarchical models of two grouping levels (i.e. pupils in classes nested with 
schools where pupil is not considered as a level).   
 
General estimating equations (GEE) or population average models can be fitted by the function gee of 
the same library. Since the focus of this review is on random effects models the function gee is not 
considered any further. Interested readers are referred to the documentation of the correlatedData 
library.  
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The function glmmPQL of the MASS library is also available for fitting mixed-effects models with 
discrete outcomes. Its syntax is similar to those of (2) above. Its estimation method is penalized quasi-
likelihood.   
 
The use of the S-plus functions mentioned in this section will be demonstrated in the models shown in 
section 3. A brief check of modelling capability of S-plus has been summarized in Table 1.  
 

2.2 Tools for statistical inference and model diagnostics 
For models fitted with lme, supply as an argument a fitted object to summary.lme(fitted obj) to 
extract details of the model like AIC (Akaike Information Criterion), BIC (Bayesian Information 
Criterion) to assess the model fit, and standard errors, t-values, degrees of freedom and p-values of the 
individual fixed effect parameters. plot.lme provides a series of diagnostic plots including residuals 
plots versus fitted values, boxplots of residuals, normal plots and Cook’s distance plots.  
 
Nested models can be compared using the function anova.lme which performs likelihood ratio tests 
and display the AIC and BIC values for each model being compared, or by simulate.lme which 
performs simulation-based evaluation of the likelihood ratio statistics. Some warnings regarding the use 
of REML estimates in such evaluations are given in Pinheiro and Bates (2000) (in section 2.4).  
 
Approximate confidence intervals for fixed as well as random parameters can be calculated by 
intervals.lme(). Random effects at any level can be extracted by random.effects.lme() 
and predictions by predict.lme(). Most of these functions can also be used with models fitted using 
glme of the correlatedData library by removing “.lme” from the end of the commands. 
Documentation on the use of these functions with glme is, however, limited. 
 
The available tools for inference and diagnostics in S-plus have been summarized in Table 2. 
 
 

3. Model specifications – Basic models  
 
The following benchmarking is performed with S-plus for Windows 6.2 (Rev Date: 2 Dec. 2003 Build: 
6713) on a Samsung laptop computer running on Windows XP Professional with Intel Pentium M 
processor at 1700Mhz and 512MB of RAM.  
 
The standard notation as used in the software, MLwiN, is adopted here. Lowest level unit is denoted by 
the subscript i (e.g. pupil), nested within the next higher level j (e.g. class) and then k (e.g. school) and so 
on as the number of levels increases. Note that levels in S-plus are defined as the number of levels of 
nested random effects in a model. For example, a two-level model in MLwiN is essentially a “one group-
level” model in S-plus. Clear distinction will be made between the two conventions whenever it is called 
for.  
 
In the current version of S-plus linear and nonlinear mixed-effects models can be fitted by the functions 
lme and nlme from the user-contributed nlme package by Pinheiro and Bates (2000). This library is 
included in S-plus 6. Generalised linear mixed-effects models can be handled by the glme function of 
the correlatedData library (Chao (2003)) written by S-plus’ in-house research library. It is 
downloadable from the Insightful research libraries website: 
http://www.insightful.com/downloads/libraries.   
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3.1 Two-level Normal models  
The dataset, EXAM, described in the MLwiN User’s Manual is used here for illustration. The data came 
from a much larger set of examination results from six inner London Education Authorities. The primary 
aim of the original analysis was to examine whether schools varied in terms of their ‘effectiveness’ in 
promoting students’ learning and development while taking into account the variations in characteristics 
of students when they started secondary school. There are 4,059 students from 65 schools in this dataset. 
The response variable consists of exam scores obtained by each student at age 16 normalised to have an 
approximate standard normal distribution (normexam). Covariates include:  

x ij1 : school intake variable, standardised London reading test (standlrt);  

x ij2 : gender of students with boys as the reference group (gender as factor); 

x j3 : school gender for mixed school against girls' school (schgend as factor); 

x j4 : school gender for boys' school against girls' school (schgend as factor). 
 
Five models will be considered with varying fixed and random parts and the results are shown in Table 3.  
 
The S-plus function groupedData, discussed in 2.1, facilitates the modelling of hierarchical data by 
offering a way to specify a data frame object together with its hierarchical structure. The hierarchical 
structure of the data in this example can be specified as follows.  
 
m1.0 <- groupedData(normexam~1|School, data=EXAM, FUN=mean, 

labels=list(x="constant", y="Normalised exam score"), units=list(x="", 
y="score point")) 

 
The above statement specifies that the response, normexam, is grouped by a group-level identifier 
School with a constant term as the only covariate in the structure. The “~” in the expression can be read 
as “is modelled as”. EXAM is a data frame object. Mean is chosen as the optional summary function, FUN, 
of the response for ordering the data in plots. Finally optional labels and units are given for display 
purpose for the response and the covariates in the grouped data object. The entire grouped data structure 
is stored as object m1.0.  
 
A basic variance component model with covariates standlrt, gender and schgend can be 
expressed as follows.  

1 2 3 4 00 1 2 3 4ij ij j j ijij jy x x x x eβ β β β β= + + + + +  

00 0 jj uβ β= +  , 

where 2
0 0~ (0, )σij eNe  and 2

0 0~ (0, )σj uu N . Student’s gender and school gender are declared as 
factors. The “contr.treatment” contrast method is chosen for the factors in which each level of a factor 
variable is compared against its first level. The syntax for these specifications is as follows.  
 
exam$schgend <- factor(exam$schgend) 
exam$gender  <- factor(exam$gender)  
options(contrasts=c(factor="contr.treatment",ordered="contr.poly")).  
 
The model is then fitted by supplying the grouped data object, m1.0, to lme as an argument and then 
saved as a fitted object, fm1.0, with the following syntax:  
 
fm1.0 <- lme(m1.0). 
 
A more complicated model explored is the one with an interaction between gender and standlrt. 
The corresponding model is expressed as:  
 

1 2 3 4 3 4 00 1 2 3 4 5( )β β β β β β= + + + + + × +ij ij j j j j ijjijy x x x x x x e  
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00 0 jj uβ β= + , 

where 0ije and 0 ju  are as previously defined. This new model can be fitted by using the update 
function to update the fixed part of the model only, for example:  
 
fm1.2 <- update(fm1.0, fixed=normexam~standlrt*gender+schgend).  
 
Interaction and its main effects of standlrt and gender are included in the model by putting 
standlrt*gender in the covariate part of the syntax as shown above. The same model could have 
been specified by standlrt+gender+standlrt:gender+schgend where 
standlrt:gender is the interaction term.   
 
A model with random slopes on standlrt can be fitted using the update function to update only the 
random part of the model. Since the only difference between this and the earlier fitted model, fm1.2, is 
in the random part, only the new specification for the random part needs to be included in the syntax. The 
constant term in included in the random part implicitly. 
 
fm1.3 <- update(fm1.2, random=~standlrt|School) 
 
Stratum-specific variances at the lowest level (level 0 in S-plus terms or level 1 for MLwiN) can be 
specified in the weights option of the modelling statement. In this case boys and girls are assumed to 
have different variances at the lowest level of the hierarchy. The model can be expressed as:  

1 2 3 4 1 20 1 2 3 4 5( )ij ij j j ij ij ijij j jy x x x x x x eβ β β β β β= + + + + + × +  

00 0 jj uβ β= +  

11 1 jj uβ β= +  

, where 0 1 2ij ije xα α= +  and it can be fitted by updating the previous fitted object using the syntax: 
 
fm1.4 <- update(fm1.3, weights=varIdent(form=~1|gender)) 
 
varIdent belongs to a set of classes of variance functions, varFunc, provided in the nlme library to 
model the variance structure of within-group errors using covariates. It can be used to represent a 
variance model with different variances for each level of a stratification variable s, where s=1…S, 

2 2( )
ijij e SVar ε σ δ= . 1δ is set at 1 for identifiability purpose as the baseline. Variances at other levels of 

the stratification are represented in the output as proportions to this baseline.  
 
Level one variance may also be dependent on a continuous covariate, e. g. standlrt. The model is:  

1 2 3 4 1 20 1 2 3 4 5( )ij ij j j ij ij ijij j jy x x x x x x eβ β β β β β= + + + + + × +  

00 0 jj uβ β= +  

11 1 jj uβ β= + ,  

where 0 1 1ij ije xα α= +  and x1 is the continuous variable standlrt. Another built-in class of variance 
function to be considered here is varConstPower. This variance model is defined as 

22 2
1( ) ( | | )ij e ijVar e δσ δ υ= + . Under this specification the variance is modelled as a function of a constant, 

1δ , plus a power, 2δ , of the absolute value of the variance covariate, ijυ , or standlrt in this case. 
The syntax for specifying this variance function via the optional weights while holding the constant, 

1δ , fixed at the value of 1 is:  
 
weights= varConstPower(form=~standlrt,fixed=list(const=1)). 
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In general, the within-group variance function is defined as 2 2( | ) ( , , ),ij j e ij ijVar u gε σ µ υ δ=  

1... , 1...ji n j M= =  where [ | ]ij ij jE y uµ = , ijυ  is a vector covariates involved in the variance function 
and g(.) is the variance function. Other forms of the function g(.) are available in the nlme library. 
Interested readers are referred to section 5.2 of Pinheiro and Bates (2000).  
 
Parameter estimates and S-plus syntaxes of the various models considered in this section are shown in 
Table 3.  
 

3.2 Three-level Normal models  
CHEM97 is a large dataset and is useful to test the efficiency of the algorithm. It contains A/AS-level 
chemistry examination results of 1997 on 31,022 students from 2,280 schools in 131 Local Education 
Authorities (LEA) in England. The explanatory variable, x1, is a school intake score, the average GCSE 
score of students. It has been centred around its mean before putting into the model.   
 
Two models are considered. The first one is a three-level (or two group levels in S-plus terms) variance 
component model:   

0 0 00 k jk ijkijky v u eβ= + + + ,  

where 2
0 0~ (0, )σijk ee N , 2

0 0~ (0, )σjk uu N  and 2
0 0~ (0, )σk vv N  and i indicates student, j for school 

and k for LEA. The other one is the same model but including the averaged GCSE (centred) score as the 
only covariate. The model is:  

1 0 0 00 1 ijk k jk ijkijky x v u eβ β= + + + + ,  

where x1 is the centred averaged GCSE intake score.  
 
The groupedData function is used to declare the hierarchical structure of the data before fitting the 
models. The syntax for specifying a three-level structure with constant as its main covariate is as follows. 
 
fm3.2.1 <- groupedData(points~1|Lea/School, data=CHEM97,  
 FUN=max, labels= list(x="constant", y="A-lev chem point score"), 

units=list(x="", y="score point")) 
 
School (group-level 2 in S-plus terms) is nested within LEA (group-level 1), that is, g1/g2, as shown in 
the group part of the expression above. The results of fitting these two models are summarized in Table 4.  
 

3.3 Two-level models for binary data  
The BANG data come from the 1998 Bangladesh Fertility Survey. The file consists of a sub-sample of 
1,934 women grouped in 60 districts. The binary response variable is the use of contraceptive at the time 
of the survey (1 for those who used contraception and 0 otherwise). The covariates of interest are:  

urban:  region of residence (1 for urban, 0 rural),  
cage:    centred age about the mean, 
c2-c4:  number of living children (no children set at 0 as baseline, c2=1 child, c3=2 children 

and c4=3 or more children)  
 
Two models are explored on the BANG data. A variance component model with all covariates included 
and the same model with random effect on urban are fitted using the function glmmPQL (using 
Penalized Quasi-Likelihood) from the MASS library. The syntax for glmmPQL is similar to those of lme 
except that users have to specify the family of the distribution of the response and the link function to use. 
Dispersion can be modelled or prespecified in glmmPQL. Results of the fitted models with logit and 
probit links are shown in Table 5.  
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3.4 Two/three-level models for count data  
The MMMEC data come from a study in the European Community looking at the impact of UV 
radiation exposure on Malignant Melanoma Mortality. A three-level hierarchical structure with which 
county is nested within region and region nested with nation is present in the data.  
 
Only one variable namely, uvb, is considered as the covariate in the models explored in this section. It is 
a measure of the ultraviolet light (UVB) dose reaching the earth's surface in each county and has been 
centred around it mean. 
 
The function, glme, of the correlatedData library (Chao (2003)) fits generalised linear mixed-
effects models in the formulation described in Breslow and Clayton (1993) and it will be used for 
modelling these data. Syntax for glme is again similar to those for lme except that family of the 
distribution of the response needs to be specified (with Gaussian as default) and dispersion can either be 
prespecified or left to be estimated. Optional starting values can be provide as initial values for 
estimating parameter values. Offsets are allowed in glme and it can be specified as offset(lnexp) 
for the log of expected deaths in the formula.   
 
Two and three level (in MLwiN terms) models for the standardized mortality rates (SMR) each with uvb 
as the only covariate are considered. The models are:  

1 00 1exp( )ij
ij ij j

ij

y
x u

E
β βλ = = + +  

1 0 00 1exp( )ijk
ijk ijk k jk

ijk

y
x v u

E
β βλ = = + + + ,  

where Eijk  is the expected number of death, x1ijk is the level of exposure to UVB, 2
0 0~ (0, )σjk uNu  and 

2
0 0~ (0, )σk vv N . Results of the above models are shown in Table 6.  

 

3.5 Growth type models for repeated measures data  
The OXBOYS dataset consists of repeated measurements of 26 boys taken on 9 occasions between the 
age of 11 and 13 years. The measurements are approximately 0.25 years apart. Two models are explored 
on these data. The first polynomial growth curve is expressed as:  

2 3 4
0 1 2 3 4ij ij ij ij ij ijj j jht t t t t eβ β β β β= + + + + +  

hjhj h uβ β= + , h=0,1,2 

2~ (0, )hj MVNu Ω , 2~ (0, )ij eNe σ , 
 
and tij is the centred age of a boy. The random effects for 0β , 1β  and 2β  are allowed into the model by 
specifying random=~cage+cage2|id in the syntax where id is boy-level identifier.   
 
A more complicated model which adds sine and cosine functions into the fixed part of the model with the 
autocorrelation structure for level 1 (or within-group in S-plus terms) residuals is expressed as:  

2 3 4
0 1 2 3 4 5 6sin cosij ij ij ij ij ij ij ijj j jht t t t t eβ β β β β β β= + + + + + + +  

hjhj h uβ β= + , h=0,1,2 

 2~ (0, )hj MVNu Ω ,  ( 1)ij i j ije eρ δ−= +  
 
The sine and cosine terms in the model are the sine and cosine of π *season/6. Season is the season 
number in decimal year and the autoregressive structure incorporated into the model is that of order 1 for 
the level 1 residuals. The autoregressive structure is specified in the syntax via the optional 
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correlation argument as cor=corAR(1). A number of built-in correlation structures are available 
via the corStruct classes of the glme library. Interested readers are referred to section 5.3 of 
Pinheiro and Bates (2000). Results of the models explored in this section are shown in Table 7.  
  
 

4. Model specifications – other random effects models  

4.1 Multinomial models for ordered or unordered response 
Multinomial logistic models for unordered and ordered categorical models can be handled by the 
functions multinom (library nnet) and polr (MASS) respectively. Both of these libraries are 
included in the version of S-plus being reviewed. Neither of them is designed for data with hierarchical 
structure. Interested readers are referred to their respective online documentation. 
 

4.2 Cross-classified models 
The data, 2LEV-XC (renamed as XC in the syntax), were collected from 3,435 children who attended 
148 primary schools (pid) and 19 secondary schools (sid) in Scotland. One of the goals of the original 
analysis was to disentangle the effects of attending the 148 primary schools and 19 secondary schools on 
the attainment score (attain) at age 16. The six variables in the data set are: 

vrq:  a verbal reasoning score from tests pupils took when entered secondary school. 
attain: attainment score of pupils at age 16. 
pid:  primary school identifying code. 
sex:  pupil's gender (boy=0, girl=1). 
sc:  pupil's social class scale (continuous score from low to high social class) 
sid:  secondary school identifying code 

 
In these data children are cross-classified by the secondary and primary schools that they attended. The 
secondary and primary schools are indexed by j and k respectively. Two models are considered here. The 
first one is a cross-classified model without any covariate and the second includes sex as a covariate in 
its fixed part. The second model is:  

1 ( )0 00 1( ) β β= + + + +ij i jkk ji jk v uy x e  

2
00 ~ (0, )σ vkv N , 2

00 ~ (0, )σ uju N , 2
( ) ~ (0, )i jk eNe σ , 

1
0
1ij

boy
x girl

⎧
= ⎨
⎩

 

 
A two-level (in MLwiN terms) model is fitted to these data with a block-diagonal variance-covariance 
matrix where the blocks corresponds to the primary and the secondary school effects in this case. The 

variance-covariance matrix of the random effects can be expressed as: 
2
0 (148)

2
0 (19)

0

0
v

u

I

I

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 where I(d) is 

the identity matrix of dimension d (148 for primary and 19 for secondary).  
 
The data are first organised into a groupedData object, XcgroupedData, as follows. 
 
XCgroupedData <- groupedData(attain~sex|cons, data=XC)  
 
The grouping factor, cons, is a column of ones of length 3,435 which specified that all observations 
come from the same group. sex is specified as the primary  covariate. The syntax for this model is:  
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lme(attain~sex,random=pdBlocked(list(pdIdent(~pid-1),pdIdent(~sid-1))), 
data=XCgroupedData) 

  
The special variance-covariance structure entailed by this model is handled by the pdMat (positive-
definite matrices) feature in the nlme library. A combination of two pdMat classes, pdBlocked and 
pdIdent, is required in the random part of the modelling syntax. The former specified that the 
variance-covariance matrix is block-diagonal and the latter specified its elements are multiples of the 
identity matrix. The “-1” in pdIdent is required to remove the constant term.  
 
A number of other built-in pdMat classes are available in the nlme library and are discussed in detail in 
section 4.2.2 of Pinheiro and Bates (2000).  The results of the two models are shown in Table 8.  
 

4.3 Multivariate Normal response models  
The data, GCSEMV, contain GCSE examination scores on a science subject. Two components of the 
data are considered as the outcome variables: written paper and course work scores. The aim of the 
following illustrative analysis is to examine the effect of gender on the scores of the two components of 
the exam scores. There are 1,905 students from 73 schools in England in the data. There are missing 
values in the two components and they are coded as -1. The five fields in the dataset are:  

school:  school ID 
student:student ID 
girl:  girl (0 = boy, 1 = girl) 
wrtnscr: total score of written papers 
crwkscr: total score of course work 

 
The multiple response model for the j-th student in the k-th school is: 

1 11 0 1 jk k jkjky x v uβ β= + + +
 

0 1 2 22 jk k jkjky x v uα α= + + +
 

1

2
~ (0, )k

v
k

v N
v
⎛ ⎞

Ω⎜ ⎟
⎝ ⎠

: 1

12 2

2

2
v

v
v v

σ

σ σ

⎛ ⎞
⎜ ⎟=Ω ⎜ ⎟
⎝ ⎠

 

1

2
~ (0, )jk

u
jk

u
N

u
⎛ ⎞

Ω⎜ ⎟
⎝ ⎠

: 1

12 2

2

2
u

u
u u

σ

σ σ

⎛ ⎞
⎜ ⎟=Ω ⎜ ⎟
⎝ ⎠

. 

y1 is the written test score and y2 is the coursework score in the model.  
 
There is not any standard function in S-plus for fitting multiple normal responses random effects models. 
However, lme can, with suitable manipulation of the data, be used for fitting such models as if to 
repeated measures while taking into proper account of the correlated structure between the two responses.  
 
To analyse such data in lme the multiple responses must first be stacked into a single column while the 
covariates are duplicated within the grouping variable which is student in this case. For example, the 
data of two students in School 1 are: 
 
   school student girl wrtnscr crwkscr  
   1         1     0      23    20.1 
   1         2     1      65    71.2 
 
This is often referred to as the wide format where there is a row of data per lowest lever unit (or student 
in this case). Stacking the multiple responses turns the data into a long format where there are multiple 
rows per student. For example, after stacking, the data of the two students with a few new variables are 
as follows.  
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   school student girl  score    wtn   cwk  I(wtn*girl) I(cwk*girl)  
   1         1     0      23     1     0       0          0 

1         1     0      20.1   0     1       0          0 
1         2     1      65     1     0       1          0 
1         2     1      71.2   0     1       0          1 

 
Dummy version of the covariates have been created to match up with the right responses in the new 
response variable, score. The dummy variables for the constant terms and girl with exam component 
terms are wtn, cwk, I(wtn*girl) and I(cwk*girl) respectively. The long-formatted data are 
saved as gcselong. 
 
The syntax for fitting this model is:  
 
lme(score~-1+wtn+cwk+I(wtn*girl)+I(cwk*girl),  

random=~-1+wtn+cwk|school, weights=varIdent(form=~1|wtn), 
correlations=corCompSymm(form=~1|school/student), na.action=na.omit, 
data=gcselong) 

 
A three-level model is used to fit these data while a new level one is created as the “pseudo” level one. 
The word pseudo is used because this level is not a genuine hierarchical level of the data but a “level” 
created only to make it possible to model the complex variation between the observations within a 
student. This is, however, regarded as a two-level model in S-plus terms as S-plus does not consider the 
multiple responses within a student as a grouping level. S-plus refers to it as level zero.   
 
The complex level 1 (or within-group in S-plus terms) variation is handled by the optional weights 
which allows it to be modelled as a function of covariate(s). By specifying weights= 
varIdent(form=~1|wtn), different within-group (or pseudo level 1 in MLwiN terms) variances at 
each level of the stratifying variable, wtn, are allowed. Because wtn and cwk are mutually exclusive 
terms, one could have used cwk in the syntax and got exactly the same results.  
 
The compound symmetric (i.e. all off-diagonal elements being equal to the same value) structure of the 
level 1 correlation is specified by  
correlations=corCompSymm(form=~1|school/student)in the syntax. The corStruct 
class, corCompSymm, specifies the compound symmetric structure. The right hand side of the | 
operator specifies the grouping of the data in which students are nested within schools. Results of the two 
models explored in this section are shown in Table 9.  
 

4.4 Models for Meta-analysis  
The data META are used to illustrate how to perform a meta-analysis in S-plus. Only aggregate level 
data are available and they consist of a collection of 19 published studies on the effect of teacher 
expectancy on pupil IQ (Bryk and Raudenbush (1992)). The four fields are in the dataset are:   

(1) Effect size estimate  
(2) Variance of effect size estimate  
(3) Weeks of prior contact  
(4) Study code  

 
The type of model being considered can be written as:  

( ) j jjj Xy u eβ ••• = + +   

2~ (0, )j uNu σ , 
2

~ 0, je
j

j
Ne n

σ
•

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

,  
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where the •  denotes the mean or some summary measure of the corresponding variable, e.g. mean of yij 
over the i’s within study j. 2σ u  is the between-study variance to be estimated and 2σ

je is within-study 

between-subject variance for the j-th study and is assumed known from the study. Results of this model 
are shown in Table 10.  
 

4.5 Other models  
Other models that can be handled by existing S-plus functions or functions in user-contributed libraries 
but have not been explored in this review are briefly described in this section.  
 
4.5.1 Survival models  
Extensive facilities written by Terry Therneaui (Mayo Foundation) implementing parametric and 
nonparametric techniques in survival analysis are available in S-plus for Windows version 6.0 and above. 
Nonparametric methods like Kaplan-Meier estimates of survival and Cox proportion hazards models are 
performed by the functions survfit and coxph respectively. Survival models are not explored in this 
review. Interested readers are referred to Chapter 13 of Venables and Ripley (2002) and Chapters 28 to 
33 of the S-plus online manual Guide to Statistics, Vol. 2.  
 
4.5.2 Structural equation models and factor analysis 
There is currently no function in S-plus for fitting structural equation models. A SEM package by John 
Foxii is nonetheless available in R (see Packages on the CRAN website: http://cran.r-project.org).  
 
Factor analysis in S-plus is performed using the function factanal. Two main techniques for 
estimating the factors, namely the principle factor estimate and maximum likelihood estimate, along with 
a variety of choice of rotations, e.g. varimax, oblimin, etc., are available in factanal. Interested 
readers are referred to Chapter 21 of the S-plus online manual Guide to Statistics, Vol. 2 (Insightful 
(2001)). 
 
4.5.3 Nonlinear models  
Nonlinear models are handled by the command nlme of the similarly named library, nlme3 (Pinheiro 
and Bates (2000)). The number three being the latest version of this library. This library is part of the 
current version of S-plus. The syntaxes used for this command are similar to those used for lme. 
Interested users are referred to Pinheiro and Bates (2000).  
 
 

5. Conclusions 
S-plus is a versatile piece of software for data manipulation, thanks to the object-orientated nature of the 
programming language S, graphing and statistical modelling. Multilevel or random-effects modelling in 
S-plus can be handled in S-plus by primarily the functions lme in the nlme library and glme in the 
correlatedData library for normal and discrete responses. glme is essentially an extension to the 
extensive work done by Pinheiro and Bates for the nlme library. 
 
The function, groupedData, in the nlme library is a well thought-out function for specifying 
hierarchical data structure for use with graphing and modelling such data. The flexibility offered by this 
library through the facilities (or classes in S-plus terminology) pdMat (for specifying special forms for 
the random-effects variance-covariance matrix), varFunc (for modelling heteroscedasticity among 
groups, e.g. boys and girls) and corStruct (for modelling dependencies among within-group (or level 
one in MLwiN terms) errors) enables S-plus users to fit complex multilevel models without 
reductionistic compromise.  
                                                      
i http://www.mayo.edu/hsr/people/therneau.html 
ii http://socserv.mcmaster.ca/jfox/ 
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Although there is plenty of online documentation for the nlme library, users will find the book by 
Pinhero and Bates (2000) indispensable in fitting linear and nonlinear mixed models using S-plus. A 
book on the correlatedData library for mixed models with discrete outcomes with a comparable 
degree of depth and clarity is currently not available. However, the reviewer suggests that this might 
prove equally enlightening for multilevel modellers using S-plus.  
 
In summary, S-plus is very versatile due to its core S programming language and is highly recommended 
by the reviewer for use in multilevel modelling.  
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8. Tables  
 
Table 1 Multilevel models that can or cannot be fitted in S-plus version 6.2 

Data / model type 
 

S-plus (S) function 
(library) 

Estimation procedures  
(see notes)1 

Limitation on 
group levels in 

data2 

Allowin
g 
covariat
es  

Allowing 
random 
slopes 

Weightin
g 

Fitting 
variance 
function 
(any level) 

Other comments/limitations 

Normal response 
 
Repeated measures with 
Normal response 
 
Cross-classified  
 
Multivariate Normal 
 
Time Series 
 
Nonlinear  

lme, nlme (NLME) 
or glme 
(correlatedData with 
family=gaussian)  

ML/REML No Yes Yes Yes Yes Use lmList  to fitted 
separate regression within 
each group and for other sub-
group explorations.  

glmmPQL (MASS)  PQL(1) followed by 
Laplace approximation 

1 Yes Yes Yes Yes Binary/Binomial 
 
Poisson  glme 

(correlatedData) 
(REstricted)PQL, 
(RE)MQL, AGQUAD 
and LAPLACE   

2 Yes Yes Yes Yes 

glmList is the equivalent 
function of lmList for 
discrete outcome models. 
Dispersion parameter can be 
pre-specified or modelled. 

Negative Binomial glm.nb (MASS)  ML Arbitrary  Yes No  ? ?  
Nominal multinomial multinom (nnet) ML Can’t do multilevel Yes No No No  
Ordered multinomial polr (MASS) ML Can’t do multilevel Yes No No No  
Multiple membership 
 
Multiple mixed responses  

Not available        

coxph ML Survival 

survReg Newton-Raphson 

Can’t do multilevel Yes No No No  

Structural Equation models factanal (for factor 
analysis) 

principle factor solution 
or maximum likelihood 
estimate  

Can’t do multilevel No No No No  

Generalized Estimating 
Equations models (GEE)  

gee (correlatedData) QL Arbitrary  Yes No Yes Yes  

Notes: 
1. (RE)ML: (restricted) maximum likelihood; (RE)P/MQL: (Restricted) Penalized/Marginal quasi-likelihood; AGQUAD: adaptive Guassian quadrature; 
LAPLACE: Laplace approximation to the likelihood  
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2. These are group-level in S-plus terms. That is, pupils in classes nested within schools implies a two group-level model in S-plus. Pupil is not considered as a 
grouping level.  
?: not clear from documentation  
 
 
Table 2 S-plus tools for inference and diagnostics 
Models that can 

be fitted 
Tests for 
nested 

models1  

Inference on 
fixed effects, 
(i.e. tests, CI) 

Inference on random 
effects (i.e. tests, CI) 

Diagnostics (give list) Other specific features 

Normal response 
fitted by lme or 
nlme 

AIC, BIC, 
log-
likehood  

t-test, CI  LR test, CI plots.lme for residual plots (verus fitted 
values), boxplots of residual at any higher levels, 
normal plots  

Residuals at different levels can be extracted using 
random.effects on a fitted model object  

Generalised 
Linear model 
fitted by glme   

AIC, BIC, 
(approx.) 
log-
likehood 

t-test, CI  LR test, CI most tools available to lme and nlme are also 
available to glme 

Residuals at different levels can be extracted using 
random.effects() on a fitted model object  

Notes:  
1. AIC (Akaike Information Criterion) = -2logL + 2nparam,  
BIC (Bayesian Information Criterion) = -2logL + nparam log(N)  
where npar is the number of parameters in the model 
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Table 3 Parameter estimates and S-plus syntaxes for two-level Normal models (using lme) 

Model Fixed parameter 
estimate  

Random effect estimate REML 
estimates  
 

(95% C.I.) Syntax specifications to set up models -2*logL Secs. 
to 
conver
gence 

constant ( 0β )  -0.013 (-0.119, 0.093) 

 school ( uσ ) 0.414 (0.342, 0.502) 

Variance 
components 
without 
covariates 
 
 

 residual ( eσ ) 0.921 (0.901, 0.941) 

# create data structure  
m1.0 <- 

groupedData(normexam~1|Schoo
l, 

 data=EXAM, FUN=mean, 
 labels= list(x="constant", 

y="Normalised exam score"), 
 units=list(x="", y="score 

point")) 
# Fit model 1.0  
fm1.0 <- lme(m1.0)  

11014.65 0.5 

constant ( 0β )  -0.009 (-0.162, 0.143)  

standlrt  ( 1β )  0.560 (0.535, 0.584)  

gender ( 2β )  0.167 (0.101, 0.234)  

schgend1 ( 3β )  -0.159 (-0.338, 0.020)  

schgend2 ( 4β )  0.019 (-0.233, 0.271)  

 school ( uσ ) 0.293 (0.239, 0.359)  

Variance 
component 
with 
covariates 
'standlrt', 
'gender' and 
'schgend' i 

 residual ( eσ ) 0.750  (0.734, 0.767)  

# set first levels of factors 
as baseline 

options(contrasts=c(factor="con
tr.treatment",ordered="contr
.poly")) 

fm1.1 <-  
 update(fm1.0 ,fixed = 

normexam ~  
standlrt+gender+schgend ) 

  
 

9347.67 0.5 

constant ( 0β )  -0.009 (-0.162, 0.143) 

standlrt  ( 1β )  0.563 (0.527, 0.599) 

gender ( 2β )  0.167 (0.100, 0.234) 

schgend1 ( 3β )  -0.159 (-0.338, 0.020) 

schgend2 ( 4β )  0.019 (-0.233, 0.271) 

standlrt*gender ( 5β )  -0.005 
 

(-0.053, 0.043) 

 school ( uσ ) 0.293 (0.239, 0.359) 

Variance 
component 
with 
interaction, 
'gender' * 
'standlrt' 

 residual ( eσ ) 0.750 (0.734, 0.767) 

 
fm1.2 <-  
 update(fm1.1,fixed = 

normexam ~ 
standlrt*gender+schgend ) 

  
 

9353.20 0.6 

constant ( 0β )  -0.012 (-0.158, 0.134) Random 
slopes on 

standlrt  ( 1β )  0.550 (0.500, 0.600) 

 
fm1.3 <-  

9308.24 0.8 
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gender ( 2β )  0.169 (0.102, 0.235) 

schgend1 ( 3β )  -0.178 (-0.342, -0.014) 

schgend2 ( 4β )  -0.0004 (-0.233, 0.232) 

standlrt*gender ( 5β )  0.007 (-0.051, 0.065) 

 school ( 0uσ ) 0.289 (0.236, 0.355) 

 standlrt ( 1uσ ) 0.123 (0.091, 0.167) 

 school.standlrt ( 01uσ ) 0.575 (0.238, 0.788) 

'standlrt' 

 residual ( eσ ) 0.742 (0.726, 0.758) 

 update(fm1.2, 
 random=~standlrt|School) 
 
 

constant ( 0β )  -0.012 (-0.157, 0.133) 

standlrt  ( 1β )  0.550 (0.499, 0.602) 

gender ( 2β )  0.169 (0.102, 0.235) 

schgend1 ( 3β )  -0.178 (-0.341, -0.015) 

schgend2 ( 4β )  -0.0005 (-0.234, 0.233)  

standlrt*gender ( 5β )  0.007 (-0.051, 0.065)  

Level 2 school ( 0uσ ) 0.289 (0.236, 0.355)  

 standlrt ( 1uσ ) 0.125 (0.092, 0.168)  

 school.standlrt ( 01uρ ) 0.573 (0.237, 0.787)  

Level 1 Boy ( bσ ) 0.767 (0.741, 0.794) 

Level 1 
variances by 
'gender' 

 Girl ( gσ ) ii 0.725 (0.700, 0.751)  

 
fm1.4 <-  
 update(fm1.3, 
 weights=varIdent(form=~1|gend

er)) 

9302.21 2.9 

constant ( 0β )  -0.012 (-0.157, 0.134) 

standlrt  ( 1β )  0.550 (0.500, 0.601)  

gender ( 2β )  0.169 (0.102, 0.235) 

schgend1 ( 3β )  -0.178 (-0.342, -0.014)  

schgend2 ( 4β )  -0.0004 (-0.233, 0.232)  

standlrt*gender ( 5β )  0.007 (-0.051, 0.065)  

Level 2 school ( 0uσ ) 0.289 (0.236, 0.354)  

 standlrt ( 1uσ ) 0.123 (0.091, 0.167)  

 school.standlrt ( 01uρ ) 0.574  (0.237, 0.787) 

Level 1iii 
eσ  0.371 (0.359, 0.384)  

Level 1 
variance as 
function of 
'standlrt' 

 
2δ

 0.0009 (-0.078, 0.080)  

 
fm1.5 <-  
 update(fm1.4, 
 weights=varConstPower(form=~

standlrt,fixed=list(const=1)
) 

 

9308.24 2.9 
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Notes:  
i. The variable ‘schgend’ is fitted in the models as two dummy variables. ‘schgend1’ is 1 for mixed schools and 0 otherwise, while ‘schgend2’ is 1 for boys’ school and 0 otherwise. 
ii. Point estimate and its 95% C.I. are calculated by multiplying the estimates of the level 1 standard deviation for boys by a ratio provided under Variance function in the lme output. In the 
documentation of lme, the ratio is said to between two variances but in fact it is between two SDs. The lme output says “Different standard deviations per stratum” and it 
is the correct interpretation.  
iii. The class of variance functions in the nlme library used here to specify the within-group variance is varConstPower. The level 1 variance is modelled as 22 2

1( ) ( | | )ij e ijVar e δσ δ υ= +   

where ‘standlrt’ is the variance covariate. 1δ is restricted to be positive but is held fixed at 1 (by “fixed=list(const=1)”) in this example. 2δ  is unrestricted and is estimated in this case. It 
can take any value in the real line allowing the variance to increase as standlrt moves away from zero.  
 
 

Table 4 Parameter estimates and S-plus syntaxes for three-level Normal models (using lme) 

Model Fixed parameter 
estimate  

Random effect 
Ests 

REML 
estimates  

(95% C.I.) Syntax specifications to set up models -2*logL Secs. to 
converg
ence 

constant ( 0β )  5.319 (5.205, 5.433) 

 lea ( 0vσ ) 0.392 (0.278, 0.553) 

 school ( 0uσ ) 1.658 (1.589, 1.729) 

Variance 
component 
without 
covariate 

 pupil ( eσ ) 2.918 (2.894, 2.942) 

# create data structure  
m3.2.1 <- groupedData(points~1|Lea/School, 

data=CHEM97, FUN=max, 
labels=list(x="constant", y="A-lev chem 
point score"),  

 units=list(x="", y="score point") )  
 
# Model: var comp with no covariate 
fm2.1 <- lme(m2.1) 

157873.8 3.3 

constant ( 0β )  5.635 (5.574, 5.697)  

GCSE centred ( 1β )  2.473 (2.439, 2.506)  

 lea ( 0vσ ) 0.123 (0.049, 0.305) 

 school ( 0uσ ) 1.080  (1.029, 1.133) 

Variance 
component 
with the 
only  
covariate 
average 
GCSE 
(centred) 
score 

 pupil ( eσ ) 2.270  (2.252, 2.289)  

 
fm3.2.2 <- update(fm3.2.1, fixed= points~ 

avegcse) 
 

141697 3.5 
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Table 5 Parameter estimates and S-plus syntaxes for two-level logistic model (using glmmPQL)  

Model Fixed effect 
parameter  

Random effect 
parameter 

Logit link Probit link Syntax specifications to set up models 

  REML 
estimates  

(95% C.I.) REML 
estimates  

(95% C.I.) 

constant ( 0β )  -1.661 (-1.941, -1.380) -1.020 (-1.187, -0.855) 

urban ( 1β )  0.719 (0.491, 0.948)  0.446  (0.306, 0.585) 

centred age 
( 2β ) 

 -0.026 (-0.041, -0.011) -0.016 (-0.025, -0.007) 

c2 ( 3β )  1.092 (0.790, 1.394) 0.665 (0.483, 0.848)  

c3 ( 4β )  1.355 (1.021, 1.689) 0.829  (0.627, 1.030)  

c4 ( 5β )   1.324 (0.982, 1.667) 0.809 (0.603, 1.015)  

 district ( 0uσ ) 0.457  (0.331, 0.631)  0.280 (0.204, 0.386)  

Dispersion (ϕ )  0.984 (0.953, 1.016) 0.985 (0.954, 1.017) 
-2logLi  8489.0  6554.5  

Variance 
component 
with all 
covariates  

Secs to 
convergence 

 2.2  2.4  

 
# declare ‘c’ as a factor and 

specify what type of 
contrast to use 

BANG$c <- factor(BANG$c) 
options(contrasts=c(factor="co

ntr.treatment",ordered="con
tr.poly")) 

 
# for logit link  
glmmPQL(use~urban+cage+c, 
random=~1|district,  
family=binomial(link=logit), 
data=bang) 
 
*  replace ‘logit’ with ‘probit’ for probit link 

    
constant ( 0β )  -1.667 (-1.968, -1.365)  -1.029 (-1.209, -0.850) 

urban ( 1β )  0.792 (0.470, 1.114) 0.494 (0.296, 0.692) 

centred age 
( 2β ) 

 -0.026 (-0.041, -0.011)  -0.016 (-0.025, -0.007)  

c2 ( 3β )  1.099  (0.796, 1.401)  0.674  (0.491, 0.856)  

c3 ( 4β )  1.334 (1.000, 1.668)  0.821  (0.619, 1.023) 

c4 ( 5β )   1.323  (0.979, 1.666)  0.815  (0.609, 1.022)  

 district ( 0uσ ) 0.609 (0.447, 0.830) 0.373  (0.275, 0.507) 

 urban ( 1uσ ) 0.799  (0.509, 1.255)  0.493  (0.313, 0.774)  

 district.urban ( 01uρ ) -0.795  (-0.933, -0.456)  -0.796  (-0.933, -0.458)  

Dispersion (ϕ )  0.976 (0.945, 1.008)  0.977 (0.946, 1.009)  
-2logL  8519.5  6576.1  

Random 
effect on 
Urban  

Secs. to 
convergence 

 4.3  4.3  

 
glmmPQL(use~urban+cage+c,rando

m=~ urban|district, family= 
binomial(link=logit), 
data=bang) 

 
 
*  replace ‘logit’ with ‘probit’ for probit link 

Notes: 
i. The –2logL value is an approximate as pseudo-quasi likelihood is used in the estimation. 
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Table 6 Parameter estimates and S-plus syntaxes  for multilevel Poisson models (using glme) 

Model Fixed 
parameter 
estimate  

Random effect 
Ests 

REM
L 
estim
ates  

(95% C.I.) Syntax specifications to set up models -2*logL 
(approx.) 

Secs. to 
convergen
ce 

intercept ( 0β )  -0.131 (-0.229, -0.033) 

uvb ( 1β )  -0.034 (-0.053, -0.015) 

Two-level 
variance 
component 
model with 
‘uvb’ as 
the only 
covariate 

Level 2 Intercept ( uσ ) 0.416 (0.347, 0.498) 

 
glme(deaths~offset(lnexp)+uvb, 

random=~1|region, 
 family=poisson(link=log), data=mmmec, 

dispersion=1) 
 

341.726 0.8 

intercept ( 0β )  -0.129 (-0.226, -0.315) 

uvb ( 1β )  -0.038 (-0.057, -0.018) 

Level 2 Intercept ( uσ ) 0.408  (0.339, 0.490) 

Two-level 
variance 
component 
model with 
‘uvb’ as 
the only 
covariate 
(allowing 
dispersion) 

Level 1  Dispersion (ϕ ) 1.135 (1.044, 1.234) 

 
glme(deaths~offset(lnexp)+uvb, 

random=~1|region, 
family=poisson(link=log), data=mmmec) 

329.576 0.7 

intercept ( 0β )  -0.057 (-0.335, 0.222) 

uvb ( 1β )  -0.028 (-0.050, -0.006) 

Level 3 Intercept ( vσ ) 0.395 (0.230, 0.679) 

Three-
level 
variance 
component 
model with 
‘uvb’ as 
the only 
covariate 

Level 2 Intercept ( uσ ) 0.221 (0.177, 0.276) 

 
glme(deaths~offset(lnexp)+uvb, 

random=~1|nation/region, 
family=poisson(link=log), data=mmmec, 
dispersion=1) 

283.537 1.4 

intercept ( 0β )  -0.061 (-0.338, 0.215) 

uvb ( 1β )  -0.031 (-0.054, -0.008) 

Level 3 Intercept ( vσ ) 0.391 (0.227, 0.672) 

Level 2 Intercept ( uσ ) 0.212 (0.167, 0.268) 

Three-
level 
variance 
component 
model with 
‘uvb’ as 
the only 
covariate 
(allowing 
dispersion)  

Level 1 Dispersion (ϕ ) 1.133 (1.043, 1.231) 

 
glme(deaths~offset(lnexp)+uvb, 

random=~1|nation/region, 
family=poisson(link=log), data=mmmec) 

272.404 1.4 
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Table 7 Parameter estimates and S-plus syntaxes for repeated measurement normal ‘growth’ model (using lme) 

Model Fixed parameter 
estimate  

Random effect 
Ests 

REML 
estimates  

(95% C.I.) Syntax specifications to set up models -2*logL Secs. to 
converg
ence 

intercept ( 0β )  148.98 (145.88, 152.07) 

cage ( 1β )  6.166 (5.461, 6.870) 

cage2 ( 2β )   1.091 (0.396, 1.786) 

cage3 ( 3β )  0.468 (0.145, 0.790) 

cage4 ( 4β )  -0.340 (-0.936, 0.255)  

Level 2 intercept ( 0uσ ) 8.001 (6.062, 10.559) 

 cage ( 1uσ ) 1.696 (1.278, 2.251)  

 cage2 ( 2uσ ) 0.813 (0.571, 1.157)  

 int.cage ( 01ρ ) 0.613 (0.305, 0.805)  

 int.cage2 ( 02ρ ) 0.218  (-0.221, 0.583)  

 cage.cage2 ( 12ρ ) 0.660 (0.289, 0.859)  

Polynomi
al growth 
model 
(upto 
quartic 
term) with 
random 
coeff. 
(upto 
quadratic) 
without 
time series   

Level 1 residual ( eσ ) 0.469 (0.420, 0.525)  

 
m5.1 <- 

groupedData(height~cage|id,data=oxboys
,  FUN= mean, labels=list(x="centred 
age", y="height"),  
units=list(x="",y="(cm)")) 

 
fm5.1 <- 

lme(m5.1,fixed=height~cage+cage2+cage3
+cage4,random=~cage+cage2|id) 

 

629.825 0.8 

intercept ( 0β )  148.87 (145.78, 151.97) 

cage ( 1β )  6.174 (5.461, 6.887)  

cage2 ( 2β )   2.061 (1.149, 2.973) 

cage3 ( 3β )  0.406  (0.051, 0.760) 

cage4 ( 4β )  -1.432 (-2.310, -0.555)  

sinseas ()  0.015 (-0.088, 0.118)  
cosseas ()  -0.223 (-0.356, -0.090) 
Level 2 intercept ( 0uσ ) 7.992 (6.055, 10.550)  

 cage ( 1uσ ) 1.665  (1.250, 2.216)  

 cage2 ( 2uσ ) 0.764  (0.513, 1.140)  

 int.cage ( 01ρ ) 0.618 (0.308, 0.809)  

 int.cage2 ( 02ρ ) 0.261 (-0.206, 0.632)  

 cage.cage2 ( 12ρ ) 0.702  (0.285, 0.896)  

Level 1 residual ( eσ ) 0.507 (0.443, 0.580)  

Same 
model as 
above but 
with auto-
correlatio
n structure 
(AR1)  

 AR(1) corr. 
structure (φ ) 

0.239 (0.115, 0.355)  

 
# create the sine and cosine functions  
oxboys$sinseas=sin(pi*oxboys$season/6)  
oxboys$cosseas=cos(pi*oxboys$season/6)  
 
 
fm5.2 <- update(fm5.1, 

fixed=height~cage+cage2+cage3+cage4+ 
sinseas+ cosseas, 
cor=corAR1(),data=oxboys) 

623.554 2.6 
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Table 8 Parameter estimates and S-plus syntaxes for cross-classification model (using lme) 

Model Fixed 
parameter 
estimate  

Random effect 
Ests 

REML 
estimat
es  

(95% C.I.) Syntax specifications to set up models -2*logL Secs. to 
converg
ence 

intercept 
( 0β ) 

 5.502 (5.151, 5.852) 

Level 2 secondary (
ju

σ ) 0.611 (0.384, 0.973) 

 primary (
ku

σ ) 1.064 (0.865, 1.307)  

Cross-
classified 
model 
without 
covariate 
in the 
fixed part  Level 1 residual ( eσ ) 2.848 (2.780, 2.918)  

 
XCgroupedData <- groupedData(attain~sex|cons, 

data=XC)  
 
lme(attain~1,random=pdBlocked(list(pdIdent(~pid

-1),pdIdent(~sid-1))), data=XCgroupedData) 
 
(Note: it is essential to declare ‘pid’ and ‘sid’ as factors beforehand) 

17150.7
6 

30.9 

intercept 
( 0β ) 

 5.255 (4.894, 5.617) 

sex ( 1β )  0.499 (0.306, 0.691) 

Level 2 secondary (
ju

σ ) 0.608 (0.386, 0.958) 

 primary (
ku

σ ) 1.053 (0.904, 1.228) 

Same 
model 
with ‘sex’ 
as a 
covariate 
in the 
fixed part  

Level 1 residual ( eσ ) 2.838 (2.770, 2.908) 

 
lme(attain~sex,random=pdBlocked(list(pdIdent(~p

id-1),pdIdent(~sid-1))),data=XCgroupedData) 

17127.9
1 

31.4 
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Table 9 Parameter estimates and S-plus syntaxes for multivariate Normal response model (using lme)  

Model Fixed parameter 
estimate  

Random effect 
Ests 

REML 
estimates  
 

(95% C.I.) Syntax specifications to set up models -2*logL Secs. to 
convergen
ce 

intercept ( 0β )  49.009 (47.172, 50.847) 

( 0α )  69.622 (67.313, 71.931) 

girl ( 1β )  -2.492 (-3.591, -1.392) 

( 1α )  6.757  (5.442, 8.073) 

Level 2 (school) wtn (
1v

σ ) 6.877 (5.644, 8.378) 

 cwk (
2v

σ ) 8.727 (7.204, 10.572) 

 wtn.cwk (
12v

ρ ) 0.423 (0.178, 0.618)  

Level 1 (student) wtn (
1v

σ ) 11.160 (10.794, 11.539)  

 cwk (
2v

σ ) i 13.422 (12.981, 13.878) 

Bivariate 
normal 
response 
model 
with ‘girl’ 
as the 
only 
covariate  

 wtn.cwk (
12v

ρ ) 0.486  (0.456, 0.514)  

 
lme(score~-
1+wtn+cwk+I(wtn*girl)+I(cwk*girl), 
random=~-1+wtn+cwk|school, 
weights=varIdent(form=~1|wtn), 

 corr=corCompSymm(form=~1|school/student
), na.action=na.omit, 

 data=gcselong)ii 

26794.6 11.3 

Notes:  
i) Estimates of 

2v
σ  are derived from multiplying those of 

1v
σ  by the parameter of the variance function (see documentation on varIdent) of 1.203.  

ii) The I( ) is the syntax is necessary for creating the indicator variables for the two responses. The first one takes the value 1 when the response is a written paper score and 
the student is a girl. The latter does so when the response is the course work score and the student is a girl.  
 
Table 10 Parameter estimates and S-plus syntaxes for meta-analysis (using lme) 

Model Fixed 
parameter 
estimate  

Random 
effect Ests 

REML 
estimates  
 

(95% C.I.) Syntax specifications to set up models -2*logL Secs. to 
convergence 

0β   0.409 (0.225, 0.592) 

1β   -0.158 (-0.234, -0.082) 

Level 2 
uσ  0.000096 - 

Model with 
‘weeks’ as 
the only 
covariate   

Level 1 
uσ  1.0 - 

lme(fixed=d~wks, data=meta, 
random=~1|study, 
weights=varFixed(~Vofd), 
control=lmeControl(sigma=1)) 

-2.679 
 

1.0 

Note: Level 1 residual has been constrained to one for correct model specification. Standard error cannot be estimated for level 2 variance because of non-positive definite 
approximate variance-covariance.   
 


