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1. Introduction 
 
1.1 Background 
 
aML was developed by economists Lee Lillard and Stan Panis (Lillard and Panis, 2003), and first 
became commercially available in 2000.  aML may be used to fit a wide range of multilevel models, 
and specializes in multilevel extensions of models which are commonly used in econometrics.  The 
program was designed specifically for fitting multiprocess or simultaneous equation models to 
hierarchical data where one or more of the explanatory variables may be non-random or endogenous 
with respect to the outcome variable of interest.   
 
1.2 Software/hardware requirements 
 
aML is available for DOS, Unix and Linux operating systems.  The PC version is a 32-bit application 
which requires Microsoft Windows 95/98/ME/XP/NT/2000. 
 
1.3 Data input/output functionality 
 
Data input 
 
A potential source of confusion for some users is that the labeling of hierarchical levels is the reverse 
of that used in most of the multilevel literature and other multilevel software.  Thus, level 1 refers to 
the highest, most aggregated level and subsequent levels are labeled 2, 3, etc. in order of increasing 
disaggregation. This convention will be used throughout this review.   
 
aML will read data files in ASCII format only and the data must be structured in a particular way 
before they can imported.  To illustrate the data structure required by aML, suppose that we wish to fit 
a two-level model to data where students (level 2) are nested within schools (level 1).  The input data 
file must have one record per level 2 unit (though a record may span more than one line).  The first 
variable must contain the level 1 identifiers (called a control variable in aML).  This is followed by 
the level 1 variables, and then by the level 2 variables. 
 
For data with more than two levels, the user has a choice.  One option is to structure the data so that 
there is one record for each unit of observation.  For example, if we have a three-level structure with 
students (level 3) nested within classes (level 2) within schools (level 1) we could structure the data so 
that we have one record per level 3 unit.  For situations where individuals are the units of observation, 
this is generally the most convenient data structure.  The other option is to collapse levels so that there 
is one record per level 2 unit.  This alternative is often convenient for repeated measures data.  
Consider a three-level structure where there are tests (level 3) nested within students (level 2) within 
schools (level 3).  If the data are organized such that each (SAS, SPSS, Stata, ….) record corresponds 
to a student, with each test score stored as a separate variable, then it is easiest to write out an ASCII 
data set with one record per student; for each student the test scores, and any other level 3 variables, 
are written out as arrays with dimension equal to the number of tests for that student.  In aML 
parlance, each test is a level 2 subbranch; the number of subbranches may vary across students.  The 
number of level 2 subbranches is stored as a control variable which must follow the level 1 identifier 
in the ASCII data file to be read into aML.  Full details on data preparation, including examples and 
sample SAS and Stata code for creating ASCII input files, are given in the User Guide. 
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aML also supports multiple data structures, a feature that is sometimes useful when fitting 
multiprocess models.   In such cases the variables and/or levels may differ for each structure and it 
may be convenient to separate data into different data structures.  The User’s Guide gives the example 
of marriage formation where the model specification for the first marriage may differ from the 
specification for subsequent marriages, leading to separate data structures for each. 
 
Once the data have been restructured into the required format, a program called raw2aml is run to 
convert the data into a binary aML data file. 
 
Data output 
 
Two output files are created.  The first is the output from the raw2aml program and contains 
summary statistics; this is checked to verify that the data have been read in correctly.  The second 
output file, obtained after running the main program, contains various results from the model 
estimation.  A nice feature of the program is the facility to create an easy-to-read table of parameter 
estimates and standard errors using the mktab program; this program can also be used to tabulate 
output from several models for ease of comparison. 
 
It is not possible to output data files from aML.   
 
1.4 The interface 
 
aML is a DOS program which may be run only in batch mode.  The user creates two batch files: one 
containing instructions to read in the data, and the other containing the specification of the model to 
be fitted. 
 
The program offers some limited facilities for carrying out data manipulations, e.g. creating dummy 
variables and interactions and carrying out some transformations, but the authors recommend that 
more extensive data manipulations be carried out beforehand in a general purpose statistical package.  
There is no graphical interface. 
 
2. Standard modeling tools for multilevel analysis 
 
2.1 Available models 
 
It is possible to fit all of the most familiar multilevel models in aML. Hierarchical data with an 
arbitrary number of levels can be handled.  It is also possible to fit some cross-classified models for 
non-nested structures, but only for continuous outcomes. Table 1 provides a summary of the models 
which can be fitted in aML.  In addition to models for continuous and categorical responses, models 
for survival data and a number of econometric models are available.   For survival data, a semi-
parametric model is available in which the baseline log-hazard takes the form of a piecewise linear 
spline.  All models may include random coefficients for the explanatory variables, and complex 
variation at any level is possible.   
 
aML specializes in the estimation of multiprocess models, otherwise known as simultaneous equation 
models, of which the multivariate normal model and models for multiple mixed responses are special 
cases.  Any mixture of continuous, categorical, or survival outcomes can be modeled jointly.  
Multiprocess models are generalizations of models for multivariate responses in which outcomes 
appear as explanatory variables in equations for other outcomes.  These models can be fitted using 
methods for multivariate responses, provided that criteria for identifiability have been met.  More 
general structural equation models, which include a measurement or factor model, cannot be fitted in 
aML. 
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All models are estimated using full information maximum likelihood.  Where a closed form solution 
to the maximum likelihood function does not exist or where the residuals have a multivariate 
distribution of dimension greater then three, the residuals at each level are ‘integrated out’ 
numerically using Gauss-Hermite quadrature.  The default number of quadrature points is 12, but the 
user may specify alternative values.  In all examples considered in this review, the number of 
integration points was set to 16. Residuals are assumed to be normally distributed, although for 
univariate residuals this assumption may be relaxed by allowing residuals to have asymmetric finite 
mixture distributions. 
 
2.2 Tools for statistical inference and model diagnostics 
 
For each model, the log-likelihood value is output; this may be used to evaluate the overall goodness-
of-fit of a model and to compare nested models.  The amltest program, supplied with aML, can be 
used to perform a likelihood ratio test.  T-ratios can also be output using the mktab program.  By 
default approximate standard errors are computed, based on an approximation to the Hessian matrix.  
For small samples, standard errors based on the ‘numerical Hessian’ (the numerical first derivatives of 
the analytical first derivatives) or robust Huber-corrected standard errors are also available.  
Throughout this review standard errors based on the numerical Hessian are presented.  As 
computation of numerical standard errors can be slow, users are recommended to first estimate their 
models with the default standard error option and then to perform one final iteration using the 
numerical option. 
 
3. Model specifications: basic models 
 
3.1 Two-level continuous response models 
 
 
We begin by fitting a range of models to two-level continuous response data.  The dataset consists of 
observations on 4059 students from 65 schools in the UK.  The following variables were considered 
in the analyses: normalized exam score ( ), standardized London reading test score at intake ( ), 

a binary indicator for student’s gender ( ) which equals 1 for a girl and 0 for a boy, and a 

categorical variable for school gender ( ) which equals 1 for a mixed school, 2 for a boys’ school, 

and 3 for a girls’ school.  Taking the last category as the reference, dummy variables for  were 

created (  = 1 for mixed school, 0 for other;  = 1 for a boys’ school, 0 for other). 
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Notation 
 
The models that were considered are described in Table 2.  We adopt the notation of Goldstein 
(2003). Thus, for example, Model 1C in Table 2 is written: 
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or, alternatively, ijjijjijijjjijijij uxuxxzzxxy εββββββ ++++++++= 110215241322110 . 
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The subscripts i and j index students (level 2) and schools (level 1) respectively.   The student-level 
residuals, ijε , are assumed to follow a normal distribution.  The school-level residuals ( ) are 
assumed to follow a bivariate normal distribution with covariance matrix  
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In aML, standard deviations of the residuals and the correlations between residuals are estimated.  The 
correlation between the school-level residuals in the model above is denoted by 01uρ . 
 
aML syntax 
 
To specify a model in aML, the first step is to define the vector of variables forming the regression 
equation, called the regressor set.  Next, the residual distributions are specified.  The model statement 
specifies the type of model to be fitted and the fixed and random part of the regression equation.  
Finally, starting values for each parameter are supplied by the user.  As an illustration, the syntax used 
to specify Model 1C above is presented here; a detailed explanation is given below.  (The line 
numbers are provided for ease of reference only.) 
 
1 define regressor set BetaX; var = 1 x1 x2 (z==1) (z==2) x1*x2; 
 
2 define normal distribution; dim=2; name=u0; name=u1;  
3 define normal distribution; dim=1; name=eps; 
 
4 continuous model; 
5 outcome=y; 
6 model = regset BetaX  
7  + res(draw=1,ref=u0) 
8  + x1*res(draw=1,ref=u1) 
9  + res(draw=_iid,ref=eps); 
 
10 starting values; 
11 Beta0  T * 
12 Beta1  T * 
13 Beta2  T * 
14 Beta3  T * 
15 Beta4  T * 
16 Beta5  T *  
17 Sig_u0 T * 
18 Sig_u1 T * 
19 Rho_u01 T * 
20 Sig_eps T *; 
 
Note: * indicates a value to be supplied by the user. 
 
Line 1 defines the regressor set, i.e. the fixed part of the model, 

ijijjjijijij xxzzxxy 215241322110 ββββββ +++++= .   
 
Lines 2 and 3 define the distributions of the residuals.  The school-level residuals ( ) follow a 

bivariate normal distribution, while
jj uu 10 ,

ijε follows a univariate normal distribution.  The level at which 
each set of residuals is defined is specified later. 
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The type of model to be fitted is specified in lines 4 to 9.  Here, we have a continuous outcome 
variable  which is a function of the regressor set BetaX (the fixed part of the model defined in line 
1), some residuals, and an interaction between the variable x

ijy
1ij and residuals u1j.  Each residual is 

assigned to a level and given a label using res(draw=id, ref=name).  Draw=1 indicates that a 
residual is defined at the highest level (level 1) (recall that the level 1 identifiers were read in as 
control variables at the data input stage).  For residuals at lower levels, the name of the variable 
containing the identifying codes is substituted.  Line 7 indicates that the right hand side of the 
regression equation will include level 1 residuals, called u0.  The next line defines random 
coefficients at level 1, introducing the term . Residuals u0 and u1 are defined to be at the same 
level by specifying the same draw for each.  These residuals will be correlated since they were 
defined to come from a multivariate normal distribution in line 2.  Finally, the equation includes level 
2 residuals, called eps.  The draw=_iid option indicates that eps is defined at the lowest level. 

jijux 11

 
Starting values need to be supplied by the user.  Values for the fixed parameters are specified first, 
followed by the random parameters in the order that they appear in the definition statements. A ‘T’ 
indicates that a parameter is to be estimated; an ‘F’ may be specified to constrain a parameter to the 
initial value.  Several tips for obtaining good starting values are given in the User’s Guide.  The 
general advice is to start with a simple model, releasing a small number of parameters for estimation 
at each stage.  For example, in practice Model 1C was estimated in the following stages: 
 
i) A random intercepts model was estimated using OLS estimates as starting values for the fixed 

part parameters.  To obtain starting values for the level 1 and 2 residual standard deviations, 
the residual variance from the OLS model was divided by two. 

 
ii) The coefficient of  was allowed to vary randomly across schools, but  was 

assumed to be zero. 
ijx1 ),Corr( 10 jj uu

 
iii)  was estimated. ),Corr( 10 jj uu
 
 
Results 
 
Table 3 shows the parameter estimates and standard errors for the models described in Table 2.  Also 
presented are details of the starting values used and the convergence times (for a Pentium III, 1000 
MHz with 256 Mb RAM using Windows 2000 OS).  The syntax used to fit the models is given in 
Appendix A.   
 
3.2 Three-level continuous response models 
 
Models were fitted to three-level data with students (level 3) nested within educational establishments 
(level 2) within Local Education Authorities (LEA).  The outcome variable of interest ( ) is the 
total A/AS point score for student i in establishment j in LEA k, which is treated as continuous.  A 
three-level variance components model with no covariates was considered, i.e. 

ijky

 
,0 ijkjkkijk uvy εβ +++=   (Model 2) 

 
where ,  and kv jku ijkε  are normally distributed residuals with standard deviations ,  and  
respectively.  The syntax for specifying Model 2 is given in Appendix A. 

vσ uσ εσ

 
This is a large dataset with 31022 individuals in 2410 establishments in 131 LEAs.   Using the 
standard version of aML, it was not possible to fit multilevel models to these data.   An error message 

 5



 

is obtained, stating that the memory has been exceeded due to large cluster sizes; in these data, there 
are up to 969 students per LEA.  It should be noted, however, that aML was designed with 
applications where there are few observations per hierarchical unit in mind (e.g. repeated measures 
within individuals).  To partially address this problem extended versions of the program, called 
bigaml and hugeaml, are supplied free of charge with the standard version.  Multilevel models 
were successfully fitted to the data described above using bigaml, but convergence times were very 
slow.  The results for Model 2 and a 2-level model are shown in Table 4. 
 
To obtain starting values for the three-level model, a two-level model (omitting the LEA level) was 
fitted first.  In fitting the three-level model, the starting value for  was taken as its estimate from the 
two-level model; starting values for  and  were obtained using the estimate for  obtained 
from the two-level model and assuming a ratio of establishment-level variance to LEA-level variance 
of 2:1.   

εσ

uσ vσ uσ

 
3.3 Two-level models for binary data 
 
Two-level models were fitted to binary data from the 1989 Bangladesh Fertility Survey.  The data are 
a subsample of 1934 women grouped into 60 districts.  The outcome variable is use of contraception 
at the survey ( ) which equals 1 for using contraception and 0 otherwise. Denote Pr( =1) by ijy ijy ijπ .  

Three covariates are considered: age at survey, centred at the sample mean ( ); type of region of 

residence ( ) which equals 1 for urban and 0 for rural; and number of living children (0=none, 
1=one, 2=two, 3=three or more), represented by three dummy variables for the last three categories 
( ,  and  respectively).  Logit/probit models with random coefficients were considered; the 
full specifications are given in Table 5.  The syntax used to specify the models is given in Appendix 
B.   

ijx1

ij

x5

x2

ijx3 ijx4 ij

 
The parameter estimates, standard errors, details of starting values, and convergence times are shown 
in Table 6.   
 
3.4 Two-level models for count data 
 
Two types of model are available for analyzing count data in aML: Poisson and negative binomial 
models.  We illustrate Poisson models here using two-level data on malignant melanoma mortality 
from 354 counties within 78 regions.  The data are from 9 European countries, so there are potentially 
three hierarchical levels; we could allow for variation at the country level using fixed effects, but we 
do not pursue this here.  The data consist of the number of observed deaths (yij) and expected deaths 
(Eij) for county i in region j and a single explanatory variable, ultraviolet radiation exposure (xij).  The 
expected number of deaths is proportional to the size of the population exposed to the risk of mortality 
in a region and is therefore our ‘exposure’ variable. The standardized mortality rate (SMR) is: 
 

ij

ij
ij E

y
=λ . 

 
The following two-level variance components Poisson model for the SMR was considered: 
 

,)log( 010 jijij ux ++= ββλ  (Model 4) 
 
where  The syntax used to specify this model is given in Appendix C, and the 
parameter estimates and standard errors are shown in Table 7.   

).,0(~ 2
00 uj Nu σ
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It is possible to allow for overdispersion in aML by specifying a model of the form: 
 

,)log()log( 010 jijijij uxEy +++= ββα  
 
where α is the overdispersion parameter. 
 
 
 
3.5 Growth type models for repeated measures data 
 
Two-level models were fitted to repeated measures data.  Measurements on height ( ) were taken 
on nine occasions (level 2) for 26 boys (level 1) between the ages of 11 and 13 years.  The 
measurements are approximately 0.25 year apart.  Details of the two models that were considered are 
given in Table 8.  The syntax used to specify the models is given in Appendix D.  In the first model, 
height is modeled as a cubic function of age ( ); random coefficients for the linear and quadratic 
age terms allow for individual variation in growth curves.  In the second model, AR(1) residuals are 
assumed at the occasion level.  Other autoregressive and moving average models available in aML are 
AR(p), MA(q), and ARMA(p, q) for p≤9 and q≤9.  Autoregressive and moving average residuals may 
be incorporated in any model that can be fitted in aML, although ARMA residuals may be used only 
in continuous outcome models.  The results are shown in Table 9.   

ity

itx

 
4. Model specifications: other multilevel models 
 
4.1 Models for ordered categorical responses 
 
aML can fit ordered logit and probit models to ordered categorical responses, and supports models 
where the values of the thresholds that delimit categories are known or unknown.  In addition, 
outcomes that span more than one category are permitted.  We consider only the ordered logit model 
with unknown thresholds.  Two-level models are fitted to a subsample from the British Social 
Attitudes Survey.  The data consist of responses to a set of dichotomous items on a woman’s right to 
have an abortion under different circumstances.  The outcome variable (yij) is a score constructed from 
these items ranging from 1 to 7, with a higher score corresponding to stronger support for abortion.  
Each of 410 respondents was asked the same set of questions on four occasions, 1983-1986, and yij 
denotes the response at year i for individual j.  We consider one categorical covariate, religion 
(1=Roman catholic, 2=Protestant/Church of England, 3=Other, 4=None), represented by three dummy 
variables for the last three categories (x1j, x2j and x3j respectively). 
 
A random intercept ordered logit model is fitted: 
 

6.,.,.1,)]logit[Pr( 332211 =++++=≤ suxxxsy jjjjsij βββτ  (Model 6) 
 
where sτ  are the unknown thresholds, and uj are individual-specific random effects which are 
assumed to be normally distributed with standard deviation uσ . This model is commonly known as a 
proportional odds model or normal logistic model.  The syntax used to specify Model 6 is given in 
Appendix E. 
 
The parameter estimates and standard errors are shown in Table 10.  A single-level model, with very 
crude starting values, was fitted first and the estimates from this model were used as starting values 
for the two-level model.   
 
4.2 Models for unordered categorical responses 
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Multinomial logit and probit models can be fitted in aML.  Here, we consider a random intercepts 
multinomial logit model fitted to data with a two-level structure.  The data are a subsample from the 
Junior School Project with 1313 children nested within 48 primary schools (see Yang et al. 1999).  
The outcome variable is a teacher assessment of a child’s behaviour, which is coded as: 1=top 25%, 
2=middle 50% and 3=bottom 25%.  We consider only one covariate, gender (1=boy, 0=girl) denoted 
by xij.  Taking the second response category as the reference, a random intercepts multinomial logit 
model is written as: 
 
 

3,1,
)2Pr(
)Pr(

log )()(
1

)(
0 =++=













=
=

sux
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sy s
jij

ss

ij

ij ββ   (Model 7) 

 
The school-level random effects u  are assumed to follow a bivariate normal distribution with 

standard deviation  (s=1,3) and correlation .  The syntax used to fit Model 7 is given in 
Appendix E. 

)(s
j

)(s
uσ )13(

uρ

 
The parameter estimates and standard errors are shown in Table 10.  Starting values for the random 
effects model are from a single-level model.   
 
4.3 Models for survival data 
 
aML supports proportional hazards model where the baseline hazard is represented by a piecewise-
linear spline (also known as a piecewise-linear Gompertz model).  Time-varying covariates can be 
incorporated.  Durations need to be input in the form of a lower and upper bound for each time 
interval.  For example, if durations are measured in months then an event that occurred during the 10th 
month might be recorded with a lower bound of 9 and an upper bound of 10.  When specifying the 
model, the user must specify the nodes for the piecewise-linear baseline hazard function.  The slopes 
of the lines joining these nodes are then estimated.  The User’s Guide provides some advice for 
choosing an appropriate number of nodes. 
 
We illustrate the specification of a multilevel survival model using data on contraceptive pill 
discontinuation in Morocco (Steele 2003).  The data have a three-level structure with 1530 pill 
episodes nested within 1077 women in 105 sampling clusters.  The survival time of interest is the 
duration in months of a continuous period of pill use until discontinuation.  We consider two 
covariates: woman’s education level (1=none, 2=primary, 3=secondary+) and age at the start of the 
episode (1=less than 25, 2=25-34, 3=older than 35).  Dummy variables are created for the last two 
education categories (x1jk and x2jk) and for the first and last age categories (x3ijk and x4ijk).  A three-level 
random intercepts model of the following form is fitted: 
 

kjkijkijkjkjkijk vuxxxxtfth ++++++= 44332211)()](log[ ββββ  (Model 8) 
 
where f(t) is the baseline hazard which is represented by a piecewise-linear spline with nodes at 12, 
and 24 months, i.e.  
 

].24,0max[]]12,12min[,0max[]12,min[)( 3210 −+−++= ttttf αααα  
 
The parameters 1α , 2α  and 3α  are the slopes of the piecewise linear segments corresponding to 0-
12, 12-24 and 24+ months respectively. The woman and cluster-level random effects, ujk and vk , are 
assumed to follow normal distributions with standard deviations uσ and vσ .  The syntax used to 
specify Model 8 is given in Appendix E. 
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4.4 Models for mixed responses (multiprocess models) 
 
aML was specifically designed for the joint modeling of two or more processes.  The outcomes for 
these processes may be mixtures of any type of outcome variable supported by aML, e.g. continuous, 
binary, ordered/unordered categorical, survival, etc.  As an illustration, we consider an example in 
which we jointly model a continuous response (y1ij, an English reading test score) and a ordered 
categorical response (y2ij, a behaviour rating).  The data have a two-level structure with observations 
on 1119 children in 48 primary schools.  We consider only one covariate, gender (xij). 
 
The multiprocess model consists of two components: a continuous response model for y1ij and an 
ordered probit model for y2ij.  We assume that underlying the ordered response y2ij, there is a 
continuous latent variable such that *

2ijy
 









≥
<≤

<
=

2
*
2

2
*
21

1
*
2

2

if3
if2
if1

τ
ττ

τ

ij

ij

ij

ij

y
y

y
y  

 
where 1τ  and 2τ  are the thresholds separating the three categories. 
 
The multiprocess model is then written as: 
 

ijjijij

ijjijij

uxy

uxy

221
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εββ

++=

+++=
   (Model 9) 

 
 
where the school-level random effects, u  and , are assumed to follow a bivariate normal 

distribution with standard deviations 
j1 ju2

1uσ  and 2uσ , and correlation 12uρ .  The student-level random 
effects, ij1ε and ij2ε , are assumed to follow univariate normal distribution with standard deviations 

1eσ and 2eσ =1.   
 
The syntax used to specify Model 9 is given in Appendix E. 
 
4.5 Models for cross-classified structures 
 
Some types of cross-classified structures can be handled in aML.  In the User’s Guide an example is 
given where test scores are nested within students but, because students may have several teachers 
and teachers will teach more than one group of students, students and teachers are non-nested.  
Provided that there is clustering at the highest level, for example both students and teachers are nested 
within schools, it is straightforward to allow for student and teacher effects.  It is not possible to fit 
cross-classified models to non-nested structures where there is no clustering at the highest level, for 
example if students are cross-classified by primary and secondary schools and no higher level of 
clustering can be identified. 
 
4.6 Other models 
 
Other types of multilevel model supported by aML, which have not been considered in this review, 
include: 
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• Multinomial probit models. 
• Tobit models for censored normal outcomes. 
• Truncated normal regression models. 
• Heckman selection models. 

 
 
5. Documentation and user support 
 
A 446-page User’s Guide is provided with the software, and some additional technical support is 
available on the aML website in the form of a short list of frequently asked questions.  The User’s 
Guide is clearly written, and includes numerous examples of syntax and output.  In particular, data 
preparation is thoroughly explained and the inclusion of sample SAS and Stata code for creating data 
files in the required format is very useful.   
 
The User’s Guide assumes that users have a fairly high level of expertise in statistical modeling, and 
already have some familiarity with the models they wish to fit.  For example, someone who is not 
familiar with multilevel modeling would need to consult at least an introductory text before turning to 
aML.  For some more advanced topics, for example classical simultaneous equation models, it would 
be helpful if suggestions for further reading were provided. 
 
Given the wide range of models that can be fitted in aML, there is scope for more extensive 
documentation.  One example where more detailed documentation would be useful is the discussion 
of classical simultaneous models in the chapter on multiprocess modeling.  Further discussion of these 
models, including details of how to specify models for different types of outcome variable, with 
examples of output would be a welcome addition.   
 
There are two avenues for additional support.  An excellent email support service is offered to 
registered aML users by Stan Panis.  I have made extensive use of this service, and found the 
responses to be both quick and thorough.  Users are also encouraged to post conceptual questions and 
modeling questions, not directly related to the technical operation of aML, to the aML users forum.   
 
6. Final remarks 
 
aML offers the widest range of models for hierarchical data among all multilevel software packages.  
A particular feature that is unique to aML is the potential to fit multiprocess (simultaneous equation) 
models to any mixture of outcome variables.  aML is also recommended for fitting survival models 
and the econometric models mentioned in Section 4.6.  For users with univariate continuous/ 
categorical outcomes and multivariate continuous outcomes, however, there are easier-to-use 
packages on the market.  Also, users with datasets that include very large cluster sizes would be 
advised to consider other packages. 
 
The syntax is intuitive so that, once the user has grasped the fundamental concepts such as regressor 
sets and residual draws, more complex models can be specified fairly straightforwardly.  The need to 
provide starting values in the syntax file is a little awkward, though these can be updated easily using 
the update program that comes with aML.  Users should take care with the order in which they list 
starting values, particularly for some multiprocess models that are not documented in the User’s 
Guide; it is important that users check that the order is correct by examining the start of the output 
file. 
 
The flexibility of aML comes at some cost in terms of computational time.  In general, computational 
time increases with cluster size and the dimension of the random effect covariance matrix.  Also, 
convergence problems are likely to be encountered if the user does not build in model complexity 
gradually.  Although some guidance is given in the User’s Guide, the selection of suitable starting 
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values can be an art, and several attempts are sometimes necessary before convergence can be 
achieved. 
 
 
Contact details and price 
 
Full details on ordering aML can be found at www.applied-ml.com.  A free demonstration version of 
the software can also be downloaded from this site.  Current costs (all including a copy of the User 
Guide) are:  $1,199 for a standard license, $599 for an academic license (including government and 
non-profit organizations), and reduced prices for student and course licenses. 
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Table 1.  Multilevel models which can be fitted in aML 
 
Data/ model type Covariates Random 

slopes 
Weighting Variance 

function* 
Comments 

Continuous Yes Yes Yes Yes  
Binary/binomial Yes Yes Yes Yes Logit and probit 

links 
Poisson Yes Yes Yes Yes  
Negative binomial Yes Yes Yes Yes  
Repeated measures Yes Yes Yes Yes  
Nominal multinomial Yes Yes Yes Yes Multinomial logit 

and multinomial 
probit 

Ordered multinomial Yes Yes Yes Yes Logit and probit 
links 
Known and unknown 
thresholds 

Survival Yes Yes Yes Yes  
Time series Yes Yes Yes Yes ARMA(p,q) and 

CAR(1) 
Multivariate Normal Yes Yes Yes Yes Seemingly unrelated 

regression is a 
special case where 
different covariates 
appear in each 
equation 

Multiple mixed responses Yes Yes Yes Yes Any mixture of 
continuous, binary, 
categorical, survival, 
time series 
responses, etc. 

Tobit or censored normal  Yes Yes Yes Yes  
Truncated normal Yes Yes Yes Yes  
Heckman selection Yes Yes Yes Yes  
 
*Heteroskedasticity as a function of covariates at any level. 
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Table 2.  Specifications of models fitted to two-level continuous data 
 
Model Description Equation 
M1A Variance components with 

covariates 
ijj

jjijijij

u

zzxxy

ε
βββββ

++

++++=

0

241322110
 

M1B Variance component with 
interaction between x1 and x2 

ijj

ijijjjijijij

u

xxzzxxy

ε
ββββββ

++

+++++=

0

215241322110

M1C Random coefficient for   ijx1

ijjijj

ijijjjijijij

uxu

xxzzxxy

ε
ββββββ

+++

+++++=

110

215241322110

M1D Student-level variance depends 
on  ijx2

ijijijijjijj

ijijjjijijij

xxuxu

xxzzxxy

1202110

215241322110

)1( εε
ββββββ

−++++

+++++=
 

where 0),Corr( 10 =ijij εε  
 
Note: See Section 3.1 for variable descriptions. 
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Table 3.  Details of model fitting: models for two-level continuous data 
 
Model Parameter Estimate (SE) Starting values  
M1A 0β  -0.010 (0.073)
 1β  0.560 (0.012)
 2β  0.167 (0.034)
 3β  -0.159 (0.087)
 4β  0.013 (0.123)
 0uσ  0.285 (0.029)
 εσ  0.750 (0.008)

OLS estimates for fixed part parameters.  Starting 
values for 0uσ  and εσ based on the OLS residual 
variance, assuming equal variance at each level.  
 
 
 

M1B 0β  -0.004 (0.076)
 1β  0.562 (0.018)
 2β  0.167 (0.034)
 3β  -0.164 (0.087)
 4β  0.015 (0.123)
 5β  -0.003 (0.025)
 0uσ  0.285 (0.029)
 εσ  0.750 (0.008)

Final estimates for M1A with 5β =0. 
  
 
 
 
 
 
 

M1C 0β  -0.010 (0.073)
 1β  0.551 (0.026)
 2β  0.169 (0.034)
 3β  -0.179 (0.080)
 4β  -0.002 (0.114)
 5β  0.008 (0.030)
 0uσ  0.282 (0.029)
 1uσ  0.121 (0.019)
 01uρ  0.588 (0.140)
 εσ  0.742 (0.008)

Final estimates from M1B with 1uσ =0.5 
and 01uρ =0. 
 
 

M1D 0β  -0.012 (0.073)
 1β  0.550 (0.026)
 2β  0.169 (0.034)
 3β  -0.179 (0.080)
 4β  -0.000 (0.114)
 5β  0.007 (0.030)
 0uσ  0.282 (0.029)
 1uσ  0.121 (0.019)
 01uρ  0.585 (0.139)
 0εσ  0.766 (0.014)
 1εσ  0.724 (0.010)

Final estimates from M1C with 0εσ = 1εσ =0.742 
(the residual variance estimate from M1C). 
 

 
 
Note: All models converged in less than 20 seconds. 
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Table 4.  Details of model fitting: models for three-level continuous data 
 
 
Model Parameter Estimate (SE) Starting values 

0β  5.331 (0.042)
uσ  1.697 (0.035)

2-level 

εσ  
 

2.919 (0.012) 

OLS estimate for 0β . Starting values 
for uσ  and εσ based on the OLS 
residual variance, assuming equal 
variance at each level.  
 

3-level (Model 2) 0β  5.317 (0.058)
 vσ  0.387 (0.069)
 uσ  1.660 (0.036)
 εσ  2.917 (0.012)

Estimates from 2-level model for 0β  
and εσ .  Starting values for vσ  and 

uσ based on the estimate of uσ  from 
the 2-level model, assuming a ratio of 
2:1 for : . 2

uσ 2
vσ

 
 
Note:  The 2-level model converged in 6.9 hours, and the 3-level model in 4.8 hours. 
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Table 5.  Specifications of models fitted to two-level binary response data 
 
Model Description Equation 
M3A Variance components 

with covariates (logit 
link) 

jijijijijijij uxxxxx 055443322110)logit( ++++++= ββββββπ

M3B Random coefficient on 
(logit link) ijx2 jijj

ijijijijijij

uxu

xxxxx

120

55443322110)logit(

++

+++++= ββββββπ
 

M3C Random coefficient on 
(probit link) ijx2 jijj

ijijijijijij

uxu

xxxxx

120

55443322110)probit(

++

+++++= ββββββπ
 

 
Notes: See Section 3.3 for variable descriptions. 
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Table 6.  Details of model fitting: models for two-level binary data 
 
Model Parameter Estimate (SE) Starting values  

0β  -1.686 (0.148)
1β  -0.026 (0.008)

M3A 

2β  0.733 (0.119)
 3β  1.117 (0.158)
 4β  1.359 (0.174)
 5β  1.339 (0.180)
 0uσ  0.470 (0.083)

Fixed part starting values from single-level logit 
model; 0uσ =0.5. 
 

M3B 0β  -1.725 (0.161)
 1β  -0.027 (0.008)
 2β  0.826 (0.170)
 3β  1.142 (0.160)
 4β  1.366 (0.177)
 5β  1.363 (0.183)
 0uσ  0.623 (0.102)
 1uσ  0.810 (0.199)
 01uρ  -0.787 (0.122)

Starting values for fixed part and 0uσ from 
M2A.  Starting values for 1uσ and 01uρ  are 0.5 
and 0 respectively. 
 
 

M3C 0β  -1.047 (0.095)
 1β  -0.016 (0.005)
 2β  0.507 (0.107)
 3β  0.689 (0.096)
 4β  0.825 (0.106)
 5β  0.825 (0.109)
 0uσ  0.379 (0.061)
 1uσ  0.496 (0.120)
 01uρ  -0.797 (0.117)

Model estimated in two stages: i) variance 
components model estimated (taking single-
level estimates as starting values and 0uσ =0.5); 
ii) random coefficients model estimated taking 
variance components estimates as starting 
values for fixed part parameters and 0uσ , 
and 1uσ  =0.5, 01uρ =0. 
 

 
 
Note: M3A and M3B converged in less than 10 seconds; M3C converged in 45 seconds. 
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Table 7.  Details of model fitting: Poisson model for two-level count data  
 
 
Model Parameter Estimate (SE) Starting values  

0β  -0.138 (0.017)M4 
1β  -0.056 (0.004)

 0uσ  0.361 (0.014)

Fixed part starting values from single-level 
Poisson model; 0uσ =0.5. 

 
 
Note: Model converged in 5 seconds. 
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Table 8.  Specifications of growth type models for continuous repeated measures data 
 
Model Description Equation 
M5A Polynomial growth curve (up 

to cubic) with random 
coefficient (up to quadratic) 

itiitiitiitititit uxuxuxxxy εββββ +++++++= 2
2

10
3

3
2

210

M5B M5A with AR(1) residuals at 
occasion level itiitiitiitititit uxuxuxxxy εββββ +++++++= 2

2
10

3
3

2
210  

where ittiit δφεε += −1, , 0),Cov( =jsit εε  for  ji ≠
 
Note: See Section 3.5 for variable descriptions. 
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Table 9.  Details of model fitting: growth type models for two-level continuous data 
 
Model Parameter Estimate (SE) Starting values  

0β  148.992 (1.548)

1β  6.177 (0.352)

M5A 

2β  0.748 (0.176)
 3β  0.461 (0.163)
 0uσ  7.890 (1.107)
 1uσ  1.666 (0.237)
 2uσ  0.789 (0.141)
 01uρ  0.612 (0.127)
 02uρ  0.221 (0.214)
 12uρ  0.667 (0.139)
 εσ  0.469 (0.027)

Estimated in 3 stages: i) variance components model 
using OLS estimates as starting values for fixed part 
parameters; ii) random coefficient for ; iii) 

random coefficient for . 
itx

2
itx

 
 
 

 
Note: M5A converged in 20 seconds (taking total across 3 stages); M5B, using starting values from 
M5A with φ=0.5, did not converge. 
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Table 10.  Results from fitting multilevel models to ordered and unordered categorical outcomes 
 
 
Model Parameter Estimate (SE) Starting values 

M6: Ordered logit 1τ  -4.056 (0.640) 
 2τ  -2.300 (0.604) 
 3τ  0.510 (0.593) 
 4τ  1.449 (0.595) 
 5τ  2.341 (0.601) 
 6τ  3.384 (0.608) 
 1β  2.064 (0.634) 
 2β  0.688 (0.707) 
 3β  2.841 (0.651) 
 uσ  2.283 (0.161) 

Starting values for fixed 
part parameters from 
single-level model; 

uσ =0.5. 

M7: Unordered logit )1(
0β  -0.587 (0.141) 

 )1(
1β  -0.550 (0.146) 

 )3(
0β  -1.159 (0.127) 

 )3(
1β  0.553 (0.145) 

 )1(
uσ  0.688 (0.120) 

 )3(
uσ  0.368 (0.105) 

 )13(
uρ  -0.220 (0.329) 

Starting values for fixed 
part parameters from 
single-level model; 

= =0.5, and 

=0. 

)1(
uσ

)13(
uρ

)3(
uσ

 
 
 
 
Notes:  
 
1. See Sections 4.1 and 4.2 for details of model specifications and variable definitions. 
2. Both models converged in 5 seconds. 
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APPENDIX A: Syntax for two- and three-level continuous response models 
 
Two-level models are described in Table 2.  Starting values must be supplied by the user, but are 
denoted by * here. 
 
Model 1A 
 
define regset BetaX; 
  var = 1 x1 x2 (z==1) (z==2); 
 
define normal distribution; dim=1; name=u0; 
define normal distribution; dim=1; name=eps; 
 
continuous model; 
outcome=y; 
model = regset BetaX + res(draw=1,ref=u0) + res(draw=_iid,ref=eps); 
 
starting values; 
 
Beta0  T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
Beta4  T * 
Sigu0  T *     
Sigeps     T * 
; 
 
Model 1B 
 
define regset BetaX; 
  var = 1 x1 x2 (z==1) (z==2) x1*x2; 
 
define normal distribution; dim=1; name=u0; 
define normal distribution; dim=1; name=eps; 
 
continuous model; 
outcome=y; 
model = regset BetaX + res(draw=1,ref=u0) + res(draw=_iid,ref=eps); 
 
starting values; 
 
Beta0  T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
Beta4  T * 
Beta5  T * 
Sigu0  T *     
Sigeps     T * 
; 
 
 

 22



 

Model 1C 
 
define regset BetaX; 
  var = 1 x1 x2 (z==1) (z==2) x1*x2; 
 
 
define normal distribution; dim=2; name=u0; name=u1; 
define normal distribution; dim=1; name=eps; 
 
continuous model; 
outcome=y; 
model = regset BetaX + res(draw=1,ref=u0) 
        + x1*res(draw=1,ref=u1) 
        + res(draw=_iid,ref=eps); 
 
starting values; 
 
Beta0  T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
Beta4  T * 
Beta5  T * 
Sigu0  T * 
Sigu1  T * 
Rho_u01 T * 
Sigeps T * 
; 
 
Model 1D 
 
define regset BetaX; 
  var = 1 x1 x2 (z==1) (z==2) x1*x2; 
 
define normal distribution; dim=2; name=u0; name=u1; 
define normal distribution; dim=1; name=eps0;  
define normal distribution; dim=1; name=eps1; 
 
continuous model;  keep if (x2==0); 
  outcome=y; 
  model = regset BetaX + res(draw=1,ref=u0) 
        + x1*res(draw=1,ref=u1) 
        + res(draw=_iid,ref=eps0) 
       ; 
 
continuous model;  keep if (x2==1); 
  outcome=y; 
  model = regset BetaX + res(draw=1,ref=u0) 
        + x1*res(draw=1,ref=u1) 
        + res(draw=_iid,ref=eps1) 
       ; 
 
starting values; 
 
Beta0  T * 
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Beta1  T * 
Beta2  T * 
Beta3  T * 
Beta4  T * 
Beta5  T * 
Sigu0  T * 
Sigu1  T * 
Rho_u01 T * 
Sigeps0 T * 
Sigeps1 T * 
; 
 
 
Model 2 
 
define regset BetaX; 
  var = 1; 
 
define normal distribution; dim=1; name=v; 
define normal distribution; dim=1; name=u; 
define normal distribution; dim=1; name=eps; 
 
continuous model; 
outcome=y; 
model = regset BetaX + res(draw=1,ref=v) + res(draw=school,ref=u)  

+ res(draw=_iid,ref=eps); 
 
starting values; 
 
Beta0  T * 
Sigv  T * 
Sigu  T *     
Sigeps     T * 
; 
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APPENDIX B: Syntax for two-level binary response models 
 
Model 3A 
 
define regset BetaX; 
  var = 1 x1 x2 x3 x4 x5; 
 
define normal distribution; dim=1; number of integration points=16; 
   name=u0; 
 
 
logit model; 
  outcome=y; 
  model = regset BetaX + intres(draw=1,ref=u0); 
 
starting values; 
 
Beta0  T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
Beta4  T * 
Beta5  T * 
Sigu0     T * 
; 
 
Model 3B 
 
define regset BetaX; 
  var = 1 x1 x2 x3 x4 x5; 
 
define normal distribution; dim=2; number of integration points=16; 
   name=u0; name=u1; 
 
logit model; 
  outcome=y; 
  model = regset BetaX + intres(draw=1,ref=u0) 
        + x2*intres(draw=1,ref=u1); 
 
starting values; 
 
Beta0  T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
Beta4  T * 
Beta5  T * 
Sigu0  T * 
Sigu1  T * 
Rho_u01 T * 
; 
 
Model 3C 
 
Same as for Model 3B with logit model replaced by probit model. 
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APPENDIX C: Syntax for two-level Poisson model (M4) 
 
Model specification given in Section 3.4. 
 
 
define regset BetaX; 
  var = 1 x; 
 
define normal distribution; dim=1; number of integration points=16; 
  name=u0; 
 
poisson model;  
  outcome=y; 
  exposure=e; 
  incidence= exp(regset BetaX + intres(draw=region,ref=u0)); 
 
starting values; 
 
Beta0  T * 
Beta1  T * 
Sigu0  T  * 
; 
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APPENDIX D: Syntax for two-level growth curve models to continuous data 
 
Model 5A 
 
define regset BetaX; 
  var = 1 x x^2 x^3; 
 
define normal distribution; dim=3; name=u0; name=u1; name=u2; 
define normal distribution; dim=1; name=eps; 
 
continuous model; 
  outcome=y; 
  model = regset BetaX + res(draw=1,ref=u0) 
        + x*res(draw=1,ref=u1) 
        + x*x*res(draw=1,ref=u2+ res(draw=_iid,ref=eps); 
 
starting values; 
 
Beta0  T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
sigu0  T * 
sigu1  T * 
sigu2  T * 
Rho_u01 T * 
Rho_u02 T * 
Rho_u12 T * 
Sigeps T * 
; 
 
Model 5B 
 
define regset BetaX; 
  var = 1 x x^2 x^3; 
 
define normal distribution; dim=3; name=u0; name=u1; name=u2; 
define ar(1) distribution; 
  timevar (within level 1) =occasion; 
  name=eps; 
 
continuous model; 
  outcome=y; 
  model = regset BetaX + res(draw=1,ref=u0) 
        + x*res(draw=1,ref=u1) 
        + x*x*res(draw=1,ref=u2)+res(draw=_iid,ref=eps); 
 
starting values; 
 
Beta0  T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
sigu0  T * 
sigu1  T * 
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sigu2  T * 
Rho_u01 T * 
Rho_u02 T * 
Rho_u12 T * 
Phi  T * 
Sigeps T * 
; 
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APPENDIX E: Syntax for other selected multilevel models 
 
Model 6: Two-level ordered logit model, with random intercept and unknown thresholds 
 
 
define vector Taus; dim=6; 
 
define normal distribution; dim=1; number of integration points=32; 
name=u; 
 
define regset BetaX; 
  var = x1 x2 x3; 
 
 
ordered logit model; 
  outcomes=y-1 y; 
  thresholds=Taus; 
  model = regset BetaX + intres(draw=1, ref=u); 
 
starting values; 
 
Tau1  T * 
Tau2  T * 
Tau3  T * 
Tau4  T * 
Tau5  T * 
Tau6  T * 
Sigu  T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
; 
 
Model 7: Two-level unordered logit model, with random intercept and unknown thresholds 
 
define regset BetaX1; 
  var=1 x; 
define regset BetaX3; 
  var=1 x; 
 
 
define normal distribution; dim=2; number of integration points=32; 
  name=u1; 
  name=u3; 
 
multinomial logit model; 
   outcome = y; 
   model 1 = regset BetaX1 + intres(draw=1, ref=u1); 
   model 3 = regset BetaX3 + intres(draw=1, ref=u3); 
 
 
 
 
starting values; 
Beta01 T * 
Beta11 T * 
Beta03 T * 
Beta13 T * 
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Sigma1      T * 
Sigma3      T * 
Rho         T * 
; 
 
 
Model 8: Three-level random intercept survival model 
 
 
define spline Dur; nodes = 12 24; 
 
define regressor set BetaX; 
  var = 1 x1 x2 x3 x4; 
define normal distribution; dim=1; number of integration points=16; 
  name = v; 
define normal distribution; dim=1; number of integration points=16; 
  name = u; 
 
hazard model; 
  censor=censor; duration = lower upper;  
  model = durspline(origin = 0, ref = Dur) + regset BetaX + 
intres(draw=1,ref=v)+ 
     intres(draw=womanid,ref=u); 
 
starting values; 
 
Alpha1      T * 
Alpha2      T * 
Alpha3      T * 
Alpha0      T * 
Beta1  T * 
Beta2  T * 
Beta3  T * 
Beta4  T * 
Sigv        T * 
Sigu        T * 
; 
 
Model 9: Two-level multiprocess model for a continuous response and an ordered categorical 
response  
 
 
define vector Taus; dim=2; 
 
define regset BetaX; 
  var=1 x; 
define regset GammaX; 
  var=x; 
 
 
define normal distribution; dim=1; name=eps1;  
define normal distribution; dim=1; name=eps2; 
define normal distribution; dim=2; 
  name=u1; 
  name=u2; 
 
continuous model; 
  outcome=y1; 
  model=regset BetaX+res(draw=1,ref=u1)+res(draw=id,ref=eps1); 
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 31

ordered probit model; 
  outcomes=y2-1 y2; 
  thresholds=Taus; 
  model=regset GammaX+intres(draw=1,ref=u2)+res(draw=_iid,ref=eps2); 
 
 
starting values; 
 
starting values; 
Tau1        T * 
Tau2        T * 
Beta0  T * 
Beta1  T * 
Gamma1 T * 
Sigeps1     T * 
Sigeps2     F * 
Sigu1       T * 
Sigu2       T * 
Rhou  T * 
; 
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