
Computational Statistics & Data Analysis 31 (1999) 457–474
www.elsevier.com/locate/csda

Parallel implementation of a
multilevel modelling package

J.M. Bulla ;∗, G.D. Rileya, J. Rasbashb, H. Goldsteinb

aCentre for Novel Computing, University of Manchester, Manchester, M13 9PL, UK
bInstitute of Education, University of London, London, WC1H 0AL, UK

Received 15 August 1998; received in revised form 13 March 1999; accepted 1 April 1999

Abstract

A portable parallel implementation of MLn, a multilevel modelling package, for shared memory
parallel machines is described. Particular attention is paid to cross-classi�ed and multiple membership
models, which are more computationally demanding than those with simple hierarchical structure.
Performance results are presented for a range of shared-memory parallel architectures, demonstrating a
signi�cant increase in the size of models which can be handled interactively. c© 1999 Published by
Elsevier Science B.V. All rights reserved.

Keywords: Multilevel models; Cross classi�cation; Multiple membership; Parallel computing; Shared
memory; Threads

1. Introduction

Multilevel models are also known as random e�ects models, variance components
models, random coe�cient models and hierarchical linear models. This last term is
something of a misnomer since these techniques have expanded to include non-linear
models and non-hierarchical population structures. There is currently an explosion of
interest in these techniques amongst quantitative researchers in the social and bio-
logical sciences. Multilevel models extend regression and generalised linear models
to allow multiple random e�ects to be included in the model. This allows these
techniques to directly model the patterns of heterogeneity that are imposed by the

∗ Corresponding author.
E-mail addresses: mbull@cs.man.ac.uk (J.M. Bull), griley@cs.man.ac.uk (G.D. Riley), j.rasbash@
ioe.ac.uk (J. Rasbash), h.goldstein@ioe.ac.uk (H. Goldstein)

0167-9473/99/$ - see front matter c© 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S 0167-9473(99)00042-0



458 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

complex population structures from which social and biological scientists draw data
for modelling. There is a growing literature on these techniques: three of the more
widely read texts are Goldstein (1995), Bryk and Raudenbush (1993) and Longford
(1993).
MLn is a widely used software package that was designed speci�cally for the

estimation and exploration of multilevel models. The purpose of this paper is to
describe a parallel implementation of MLn for shared memory parallel computers.
Section 2 provides some background on multilevel models, Section 3 describes the
algorithms used in MLn and Section 4 describes how parallelism can be exploited
in them. Section 5 covers the issues involved in the implementation, paying attention
to choice of parallel programming paradigm, portability and parallelisation strategy.
In Section 6 we present performance results on some benchmark data sets across a
variety of shared memory parallel machines. These results are analysed in Section 7,
and in Section 8 we draw conclusions and give pointers to future work.

2. Multilevel models and MLn

2.1. Hierarchical models

Initially, multilevel modelling focused on strictly hierarchical population struc-
tures. Some simple examples of these are: pupils within schools, individuals within
households within areas, and repeated measurements within cows within herds within
farms.
The simplest multilevel model corresponds to a one-way random e�ects analysis

of variance,

yij = (� + uj + eij)x;

where uj ∼ N(0; �2u) and eij ∼ N(0; �2e). This basic model has the following important
extensions:

• Inclusion of any number of hierarchical levels.
• Inclusion of explanatory variables de�ned at any level.
• The coe�cient of any explanatory variable may be random at any level.
• Handling of non-Normally distributed responses.

2.2. Cross-classi�ed models

The assumption of purely hierarchical populations often does not hold true for
many of the data sets collected by social and biological scientists. For example,
pupils attending any school are drawn from many neighbourhoods and pupils from
one neighbourhood attend more than one school. No pure hierarchy can be found
and pupils are said to be contained within a cross-classi�cation of schools by neigh-
bourhoods. Other examples are: pupils within (primary × secondary school), patients



J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474 459

within (primary health care units × secondary health care units), and repeated mea-
sures within (individuals×raters).
The basic model can be written as

yi( j1j2) = X� + uj1 + uj2 + ei( j1j2);

where uj1 ∼N(0; �2u1), uj2 ∼N(0; �2u2) and ei( j1j2)∼N(0; �2e). If we take an educational
system example, yi( j1j2) is the response measurement for the ith pupil from the (sec-
ondary school j1, primary school j2) cell in the cross-classi�cation, X is a matrix of
explanatory variables with �xed coe�cients �, uj1 ; uj2 and ei( j1j2) are random e�ects
at the secondary school, primary school and pupil levels, �2u1 ; �

2
u2 ; and �

2
e are the

between secondary school, between primary school and between pupil variances. The
same extensions that apply to hierarchical models apply to cross-classi�ed models.
However, there is the additional extension to multi-way cross-classi�cations.

2.3. Multiple membership models

Where lower level units are members of more than one higher level unit we have
a multiple membership model. The di�erences between multiple membership and
cross-classi�cation models are sometimes subtle. For example, suppose we measure
pupils every three months for two years. At each occasion we have a response mea-
surement for each pupil. Some children will move schools over the period. Now we
have a population structure which is cross-classi�ed: repeated measurements within
(individuals × schools).
Each lowest level unit, measurement occasion, is a member of only one school and

one individual. However, suppose we have a single response on each pupil, taken
say at the end of the study, but we know the identities of the schools each pupil
attended over the two years. Now the lowest level units are pupils and some pupils
are members of multiple schools. Hence we have the multiple membership model.
The multiple membership model provides a framework for representing structures

where individuals are simultaneously members of multiple social groups (such as
peer friendship groups or extended families). These groupings are dynamic, they
form, break down and reform in di�erent con�gurations over time. The multiple
membership model provides a powerful quantitative framework for modelling these
social processes in studies which track such groupings over time. The multiple mem-
bership model is set out and an example analysis described in Hill and Goldstein
(1998). This paper uses a notation for the multiple membership model which is not
entirely consistent, although its intent is clear. A general notation for a two-level
multiple membership model is

yi{j} = (X�)i{j} +
∑

h∈{j}
uh�ih + ei{j};

with uh∼N(0; �2u) and ei{j} ∼N(0; �2e), where j is the full set of the m level 2
units. The level 1 units, for example pupils, are indexed uniquely by i and may
be a member of more than one school. The weight �ih represents the proportion of
membership of pupil i in school h. Thus if pupil i spent a quarter of their time



460 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

in school h a weight of 0.25 would be reasonable. For the particular cases of a
simple hierarchy, where every level 1 unit belongs to a single level 2 unit, or a
two-way cross-classi�cation where every level 1 unit belongs to a single level 2 unit
from each classi�cation then yi{j} can be replaced respectively by yij, yi( j1j2) without
ambiguity.
In a single model we can have mixtures of hierarchical, cross-classi�ed and mul-

tiple membership structures. For example, we may have pupils within classes within
schools. We may also have measured peer-friendship group activity at the within
class-room level: pupils will therefore be multiple members of peer-friendship groups.
We may also have family information: families will be cross-classi�ed with schools
and individuals may be members of multiple families. We can estimate patterns of
variability attributable to pupils, peer-groups, classes, schools and families. Further-
more, we can introduce explanatory variables associated with each of these units in
an attempt to explain the estimated variability.
One major drawback with cross-classi�ed and multiple membership models is

that they are extremely computationally intensive both in terms of processor time
and storage. This paper explores and explains the use of parallelism to reduce the
elapsed run-time to bring a wider range of cross-classi�ed and multiple membership
models within a time scale where the software can be used interactively. Experience
has shown that users �nd it acceptable to wait up to about 10–15 min to estimate
models interactively. When waits go beyond this, users tend to move to a di�erent
pattern of work where using the software is mixed with other activities.

3. Statistical and computational algorithms

3.1. The statistical algorithm

In this section we describe in more detail the underlying statistical and com-
putational structures and algorithms and describe why multiple membership and
cross-classi�ed models are more computationally intensive. This section also sets
the context for subsequent sections on parallelisation strategy.
The general linear model with multiple sets of random e�ects can be written as

Y = XB+
R∑

r=1

Zrur; (1)

where X is a matrix of explanatory variables with coe�cients B (the �xed param-
eters), R is the number of sets of random e�ects in the model and Zr is a design
matrix for ur , the rth set of random e�ects. Zr is of size n × nr , where n is the
number rows in the entire data set, nr is the size of the rth set of random e�ects
and ur is a vector of length nr. We wish to estimate B and 
, the R × R variance
covariance matrix of the sets of random e�ects.
To clarify this, consider a simple two-level variance components model, of pupils

within schools. Suppose we have 3000 pupils nested within 50 schools. Let Z1 be the
design matrix for the pupil-level set of random e�ects and Z2 be the design matrix



J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474 461

for the school-level set of random e�ects. Z1 is an identity matrix of order 3000,
while Z2 is dimensioned 3000 × 50, with Z2ij having the value one if the ith pupil
is in school j, and zero otherwise. In this example we considered nested random
e�ects, though (1) allows for the more general case of non-nested random e�ects.
Where cov(Y |XB) = V is known, the usual generalised least-squares estimators,

for the �xed e�ects, can be used:

B̂= (X TV−1X )−1(X TV−1Y ) and cov(B̂) = (X TV−1X )−1: (2)

Given B we can obtain estimates of the parameters of V , which are B? (the vector
of the upper triangular elements of 
), from the estimator

B̂
?
= (Z?T(V?)−1Z?)−1Z?T(V?)−1Y? and cov(B̂

?
) = (Z?T(V?)−1Z?): (3)

Here Y? is the vector of the elements of (Y−XB)(Y−XB)T, and therefore has length
n2, V? is the covariance matrix of Y? and Z? is the design matrix linking Y? to V
in the regression of Y? on Z?. Z? is of size n2×P, where P is the number of random
parameters to be estimated. In the case where all elements of 
 are to be estimated,
P=R(R+1)=2. However, in almost all models it is only sensible to estimate a subset
of all possible covariances, since there are strong substantive reasons to assume that
many of the pairwise combinations of sets of random e�ects are independent. For
example, it is sensible to assume that pupil-level and school-level sets of random
e�ects are independent. The form of (V?)−1 is V−1 ⊗ V−1, and thus it is of size
n2 × n2. Columns of Z? relate to the variance of a set of random e�ects, or the
covariance between two sets of random e�ects. In the case of a variance the column
has the form vec(ZrZTr ) and in the case of a covariance, vec(Zr′Z

T
r + ZrZ

T
r′).

When V and B are both unknown, which is the usual case, then the iterative
generalised least-squares estimates are those which simultaneously satisfy both (2)
and (3). In the case where the sets of random e�ects follow a multivariate Normal
distribution these estimators are equivalent to maximum likelihood. For a discussion
of multilevel models with non-normal random e�ects, see Goldstein (1991) and
Goldstein and Rasbash (1996).
The estimation procedure commences from an initial estimate of V , typically V=I ,

which is then used to obtain estimates of B̂. Improved estimates of B̂
?
(the parameters

of V ) are then obtained, and so on, alternating between (2) and (3) until convergence
is achieved, see Goldstein (1986).

3.2. Computational issues

The evaluation of (3) dominates computation, though a simpli�cation is available.
Consider a typical element of the �rst part of (3), for the variance of the rth set of
random e�ects

vec(ZrZTr )
T(V−1 ⊗ V−1)vec(ZrZTr ):



462 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

The number of operations required to evaluate this term is proportional to n4. By a
well-known result (see Searle, 1982), this is equal to

trace(ZrZTr V
−1ZrZTr V

−1): (4)

The number of operations required to evaluate the rearranged form is proportional
to n3. If the random e�ects fall into an hierarchical structure, and random e�ects
operating at di�erent levels of this structure are assumed independent, then V and
its inverse have a nested block diagonal structure. Suppose we have a three-level
model (pupils:classes:schools, say). It immediately follows that we can rewrite (4)
as

K∑

k=1

trace(Zr(k)ZTr(k)V
−1
(k) Zr(k)Z

T
r(k)V

−1
(k) ); (5)

where k indexes schools. The number of operations is now proportional to
∑K

k=1 n
3
(k).

The di�erence between
∑K

k=1 n
3
(k) and n

3 for most datasets will be several orders of
magnitude. Furthermore, with hierarchical random e�ects we can partition V(k) and
its inverse into a series of components, one for each level of the hierarchy. The
component for each level can be represented as a list of matrices with total storage
requirements for each list of 2n(k)Rl, where Rl is the number of sets of random e�ects
operating at level l of the hierarchy. Similarly, the sparse block diagonal structures
such as Zr(k)ZTr(k) can be represented by a list of dense vectors with total storage
requirement n(k) for variance terms or 2n(k) for covariance terms. These techniques,
described in detail in Goldstein and Rasbash (1993), reduce the number of operations
to be proportional to nR2.
Some models contain a sub-group of sets of random e�ects which �t into an

hierarchical structure and other sets of random e�ects which have a cross-classi�ed
or multiple membership relationship. In this case the hierarchical sub-group can be
handled using the techniques just described. For the non-hierarchical sets of e�ects
some partitioning of V and its inverse are possible. This reduces computation to be
proportional to nm2, where m is the number of categories in the crossed or multiple
membership classi�cation. For example, if we have 10,000 students drawn from 500
primary schools attending 100 secondary schools, then we can sort the data into
student within primary school and �t secondary schools as a non-nested crossed
classi�cation. Computation is proportional to 10; 000 × 1002 = 108, as opposed to
10; 0003=1012, which would result from ignoring the structure in V and naively using
(4). The techniques for e�ciently estimating multilevel models with non-hierarchical
random components are described in detail in Rasbash and Goldstein (1994).
For illustration, we consider the above example (10,000 students, 500 primary

schools and 100 secondary schools) and compare the cases where primary school is
nested within secondary school and where primary and secondary school are crossed.
We also assume that we have three sets of random e�ects, one for each level, and
that the maximum number of pupils in a secondary school, max(n(k))=800. Storage
requirements are proportional to max(n(k))R=800× 3= 2400 for the nested random
e�ects model and to nm=10; 000×100=106 for the non-nested random e�ects model.



J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474 463

The number of operations required is proportional to nR2 =10; 000×32 =90; 000 for
the nested random e�ects model and to nm2=10; 000×1002=108 for the non-nested
random e�ects model.

4. Parallelism in MLn

The multilevel algorithm comprises four layers. The �rst three layers are imple-
mented in C++ classes. Each class represents an archetypal matrix structure that
occurs in the algorithm, de�nes an e�cient storage representation and matrix alge-
bra and manipulation methods for the structure. The lowest layer, layer 1, handles
both symmetric and rectangular dense matrix objects. Layer 2 de�nes lists of these
dense matrix objects that correspond to matrix structures such as the components
of V , described in Section 3.2. The third layer handles matrix structures such as V
itself which can be represented as lists of layer 2 objects. The highest layer, layer 4,
uses these three classes to implement the algorithm: with purely hierarchical random
e�ects this involves iteration across each highest level unit, as in (5).
Parallelism is discernible at each layer and can be described as follows:
Layer 1: Matrix operations. Parts of result matrices can be computed indepen-

dently.
Layer 2: Operations on lists of matrices. Entire matrices within the list can be

processed independently.
Layer 3: Operations on lists of layer 2 objects. Each layer 2 object can be pro-

cessed independently.
Layer 4: Highest level units in the hierarchy can be processed independently.
As we move from layer 1 up to layer 4 the parallelism involved becomes more

coarse-grained, the storage overhead for implementing parallelism increases and the
changes required to the source code become less well encapsulated. Since cross-
classi�ed models are dominated by the computation of terms which cannot exploit
(5), virtually no parallelism exists at layer 4 for these models. At layers 2 and 3,
there will be instances where the number of items in the list is small (sometimes
there is only one), so exploiting parallelism in these layers can only be e�ective if
implemented in combination with parallelism at lower layers.
If we wish to focus on hierarchical models, which intrinsically have a low storage

requirement, it would be reasonable to attempt to utilise the parallelism in layers
3 and 4. However, with cross-classi�ed models there is no parallelism in layer 4
and parallelism in layer 3 requires a large storage overhead. The sequential algo-
rithm for estimating cross-classi�ed models already has a large storage requirement
(for example, in a 2-level cross-classi�ed model with n level 1 data items and m
cross-classi�ed categories, the dominating storage requirement is for a number of
temporary matrices of size n × m). Parallelising layer 3 of the algorithm would re-
quire replication of this temporary storage on every processor, greatly increasing the
likelihood of having to use virtual memory. Once this occurs the overhead of paging
to and from disk is likely to result in performance deteriorating beyond any bene�ts
gained from the parallel implementation.



464 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

The computation time for cross-classi�ed models is dominated by a few types
of operation on large dense matrices. For moderately sized cross-classi�ed data sets
(n ∼ 2000, m ∼ 100) more than 95% of the time is spent in just 7 types of matrix
operation:
(1) A := BC,
(2) A := A+ B,
(3) t := trace(AB),
(4) A := diag(v)B or A := B diag(v),
(5) A := SC,
(6) A := 0,
(7) A := B,
where A, B and C are rectangular matrices, S is a symmetric matrix, v is vector and
t is a scalar. As the problem size increases, the �rst of these operations (rectangular
matrix product, which has complexity O(nm2)) increasingly dominates the execution
time.
Thus it is reasonable to expect that layer 1 parallelism can be applied e�ectively

to these models. Exploiting the parallelism in this layer has the advantages that there
is no additional storage overhead, and the changes required to the source code are
well encapsulated within a C++ matrix class library. We also explore the use of
layer 2 parallelism, which has a small additional storage overhead, but also requires
relatively minor changes to existing code.

5. Implementation

5.1. Threads versus message passing

The �rst decision which has to be taken before embarking on the parallelisation of
MLn is to choose which parallel programming paradigm to employ. Given that the
existing package is written in C++, and that we wish the parallel version to be robust
and portable, we are e�ectively restricted to choosing between a distributed mem-
ory, message passing paradigm (as supported by PVM (Geist et al., 1994) or MPI
(Message Passing Interface Forum, 1994)) and a shared memory, multiple threads
paradigm (as supported by, for example, POSIX threads (International Organization
for Standardization (ISO), 1996)). There are a number of (possibly conicting) ob-
jectives which the choice of paradigm should satisfy. As well as portability, we
should consider ease of programming, e�ciency of the resulting code, and compati-
bility with the hardware typically available to the user base. We now consider each
of these in turn.
Considering portability, message passing has the advantage that both PVM and

MPI are freely available for a wide variety of systems. In contrast, POSIX threads are
not nearly so widely available. Some operating systems on shared memory parallel
systems (for example IRIX and Windows NT) provide only a native threads interface.
Threads libraries, however, are normally part of the standard operating system release,
whereas message passing libraries require separate installation. It is worth noting



J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474 465

that the recently announced OpenMP speci�cation includes support for C and C++,
which if widely adopted would solve the portability issue for shared memory systems.
It is widely accepted that threads libraries provide a simpler programming paradigm

than message passing, largely because they support a global address space across
all processors. This is especially signi�cant when porting well-established sequen-
tial software, as opposed to developing parallel code from scratch. Use of threads
will typically result in fewer changes to the existing code (therefore o�ering better
maintainability) and shorter development time than is the case for message passing.
Given that we intend to exploit parallelism in the lower layers described in

Section 4, the parallelism will be �ne grained, and require signi�cant communication
between processors. Furthermore, the data objects in MLn (dense matrices) have a
short lifetime, compared, say, to the main data objects in scienti�c programs, and
are embedded in complex structures representing the sparse, nested block diagonal
matrices described in Section 3.2. There is therefore no obvious data decomposition
strategy on which to base a message passing implementation. Furthermore, due to
the �ne-grained nature of the parallelism and the short lifetime of data objects, we
might expect a message passing implementation to require large numbers of small
messages to be sent between processors. Since each message sent incurs a startup
overhead, this is unlikely to be an e�cient solution. A threads implementation, run-
ning on shared memory hardware, would not su�er the same overhead, as memory
access costs are independent of the number of data items accessed.
The majority of MLn users have PCs, with the bulk of the remainder using UNIX

workstations. For a message passing implementation to have any chance of being
e�cient on a distributed memory system, a fast, dedicated network as found in large
MPP systems would be required: a typical Ethernet-based network of workstations
or PCs with message startup costs of the order of 100�s (see, for example Warren
et al., 1997) is not likely to prove adequate.
To quantify this issue, consider running matrix–matrix multiplication, the dominant

operation in MLn, on a network of eight workstations each delivering 250 Mop=s,
with a message startup time of 100 �s. The number of messages required depends on
the data distribution strategy of operand and result matrices, but with the reasonable
estimate that each processor would need to send four messages, a simple calculation
shows that the number of oating point operations must be at least 8 × 105 for
parallelisation to be worthwhile. For the typical problem sizes we are interested
in, however, MLn spends signi�cant time in matrix products with fewer than this
number of operations. As will be shown in Section 6, matrix multiplications with
up to two orders of magnitude fewer operations can be successfully parallelised on
shared memory architectures.
A signi�cant number of users have access to multiprocessor PCs, multiprocessor

workstations, or shared memory UNIX servers, whereas very few have access to large
MPP machines. Although message passing libraries can be e�ciently implemented
on shared memory hardware, the overhead of message startup costs will still be
present.
Apart from the portability issue, the above arguments favour the use of threads

over message passing. The portability issue can be overcome by utilising the native



466 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

threads libraries for each operating system and tightly encapsulating the di�erences
between them so that they are invisible to nearly all of the application.

5.2. A portable threads interface

To overcome the portability issues described in Section 5.1, all parallel function-
ality is encapsulated in a small C++ class library. The library is designed to contain
only the basic features required for parallel programming, which is a small subset
of the functionality available in the underlying threads libraries. The library contains
just three classes:
(1) Thread Manager class: The main feature of this class is a doParallel

method, which takes a function and a list of arguments and executes the function
with those arguments on all the threads. The standard facility varargs is used to
pass the arguments. The class also contains methods to create the threads, and to
return the current number of threads and the identity number of the calling thread.
(2) Barrier class: This class contains a method for synchronising all threads. It is

used by the Thread Manager class to synchronise the threads at the beginning and
end of each function executed using the doParallel method. It is also available to
be called directly by the user, though this is not required in MLn. Since barrier syn-
chronisation is often a signi�cant source of overheads in shared memory programs,
we have implemented an e�cient barrier algorithm (the static F-way tournament of
Grunwald and Vajracharya (1993)) as well as a simple centralised counter algorithm.
The static F-way tournament algorithm is lock-free, and scales as the logarithm of
the number of threads. Even for small numbers of threads, we have found it to be
faster than a simple centralised counter scheme.
(3) Lock class: This class permits mutual exclusion between threads, using lock

and unlock methods. These can be used to synchronise the updating of shared
variables.
We use conditional compilation to provide versions for POSIX, Solaris, IRIX and

Windows NT threads. The class library is compact, consisting of less than 700 lines
of code in total.

5.3. Parallelisation strategy

We chose to perform sequential optimisation on the existing code before paral-
lelisation. This ordering is not always sensible, since sequential optimisation may
prevent subsequent parallelisation. However, the types of optimisation applied (elim-
inating indexing variables, ensuring stride-one memory access, loop unrolling and
loop blocking) have no such impact. Applying them before parallelisation prevented
us from expending e�ort parallelising code which, once optimised, did not account
for a signi�cant proportion of the execution time. This was important in the case
of MLn, which contains some 50,000 lines of code in 660 methods, with many
little-used branches, but would be unnecessary in simpler codes.
While parallelisation of dense matrix algebra can be seen as straightforward, we

must take into account the wide variety of shapes and sizes of the matrices which



J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474 467

occur in MLn. For su�ciently small matrices, parallelisation is not worthwhile, as
any bene�ts are outweighed by the overheads incurred, which are principally due to
synchronising the processors at the beginning and end of each operation. For each
matrix operation we compute the number of basic operations (either oating point
operations or assignments) required. Only if this exceeds a given threshold is parallel
execution enabled for that operation. The threshold is left as a tunable parameter,
as the cost of synchronisation versus computation may vary signi�cantly between
platforms, and should be selected whenever the code is ported to a new platform.
For those operations which are large enough to be parallelised, we partition over

either the rows or columns of the result matrix. If there are more rows than columns,
we partition over rows, and vice versa, thus minimising any load imbalance which
might occur if we partition over a small number of rows or columns. The sole
exception to this is the operation t := trace(AB), where we partition over either rows
or columns of A whichever is the larger number, and each processor accumulates a
partial sum of t. These are then reduced to a global sum.
Parallelism at layer 2 (over lists of matrices) is exploited by dividing iterations

of the loop over the list elements between processors. The matrices in the list may
be of di�erent sizes, so a simple partitioning may result in load imbalance. To over-
come this, we use a dynamic scheduling algorithm. Since minimising synchronisation
overheads is important and load imbalance not usually severe, we use the trapezoid
self-scheduling algorithm (Tzen and Ni, 1993), which is designed for loops with these
properties. Each of the p processors is initially assigned one pth of the iterations of
the loop. Each processor’s set of iterations is divided into approximately four chunks
of decreasing size. The chunks are executed largest �rst, and if a processor runs out
of work, it steals a chunk from the processor with the most remaining chunks.
Again, if the number of matrices in the list is too small, say less than four times

the number of processors, then we exploit parallelism at layer 1 instead. In layer 2
we only exploit parallelism in one operation, which consists of computing the product
A=BC, where B is a block diagonal matrix, and the list of matrices consists of the
(dense) blocks.
A minor change to the algorithm used by MLn was made to increase the gran-

ularity of one of the matrix algebra operations: a set of vector cross-products was
subsumed into a single matrix-crossproduct operation. This actually had a small ben-
e�cial impact on the sequential execution time.

5.4. Numerical libraries

Since many vendors supply a library of highly tuned and, in some cases, paral-
lelised matrix algebra routines in the form of the Basic Linear Algebra Subprograms
(BLAS) (Lawson et al., 1979; Dongarra et al., 1988, 1990), we considered the pos-
sible use of this library in the parallel version of MLn. Of the seven most important
matrix operations, only A = BC can be implemented by a single BLAS call. All
the others must be implemented as a loop over multiple BLAS calls, and to avoid
unnecessary synchronisation, parallelism must be exploited over the multiple calls,
rather than within each call.



468 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

Unfortunately, although the library’s (Fortran) interface is standard, its behaviour
with respect to parallelisation is not, and mixing parallelism in both user code and
library code tends to have undesirable results. Typically, a parallel version of the
library creates its own set of threads, and it is not possible for the same set of
threads to execute both user code and library code. Since, for example, the threads
created by our portable threads interface busy wait (for e�ciency reasons) between
calls to doParallel, this will waste parallel resources by having more threads than
processors.
Experiments on a Silicon Graphics Challenge showed no performance gain in

MLn from implementing A=BC using the BLAS library. On a twin processor, 200
MHz PentiumPro PC, our optimised matrix–matrix multiply delivered 240 MFlop=s
on large matrices, compared to 294 MFlop=s for the BLAS implementation by Intel
Corporation for Windows NT. Thus we concluded that the potential bene�ts of using
native BLAS library calls did not outweigh the potential disadvantages. We should
emphasise, however, that this decision was speci�c to MLn, and certainly should
not be generalised to other code where use of vendor-supplied BLAS libraries may
well provide an e�ective solution.

5.5. Experiences and lessons learnt

The work described above was estimated to have required approximately four
man-months of programming e�ort. This was roughly equally divided between (i)
sequential optimisation, (ii) developing and testing the threads library and (iii) adding
parallelism to MLn. The majority of code changes (about 2000 new or modi�ed
lines) occurred in phases (i) and (ii): in phase (iii) debugging and tuning took most
of the time.
Pro�ling of the sequential code was found to be crucial in determining which

parts of the code e�ort should be expended on. However, pro�ling by itself did not
tell the whole story, since the total time spent in the linear algebra methods was
composed of many calls with a wide range of shapes and sizes of matrices. We
found histogramming execution time against numbers of oating point operations
to be a useful tool, to discover whether the time was being spent mainly in large
numbers of short calls, or in small numbers of long ones. This was achieved by
adding calls to a high-resolution system timer in the appropriate parts of the code.
Pro�ling of the parallel code also gave us much useful information about sources

of overhead, such as the time spent in barrier synchronisation, and in unparallelised
sections of the code. It also meant that we could compute speedups for individual
methods, helping us to locate potential performance problems. Timer calls were also
required to detect overhead due to load imbalance.
The use of C++ caused us few di�culties. The performance comparison with

BLAS libraries described above suggests that performance comparable to Fortran
can be achieved on linear algebra kernels, provided that suitable optimisations are
applied. When calling a method in parallel, it is necessary to trace all methods called
from within that method, to ensure that it is safe to do so. We found that use of
operator overloading and virtual functions does complicate this process somewhat.



J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474 469

We o�er the following advice to others contemplating a similar exercise:

• Do not consider parallelisation until you are certain that sequential optimisation
and=or use of existing libraries cannot solve your performance problems (we ob-
served up to an order of magnitude increase in performance from such optimisa-
tion).

• If functionality is still being added to the code, be aware that parallelisation will
complicate revision control procedures.

• When choosing the parallel paradigm, carefully weigh up the issues of availability,
portability, performance and programming e�ort.

• Be familiar with tools such as pro�ling, timers and parallel debuggers that might
assist in locating and identifying problems in the parallel code.

• Remember that package users are unlikely to be familiar with parallelism: its
presence should be as unobtrusive as possible.

• Be aware of all the possible causes of overhead in parallel programs. For example,
barrier synchronisation can be a very signi�cant source of overhead on shared
memory architectures.

6. Results

To test the e�ciency of the optimised and parallelised code, we have used a family
of two-level cross-classi�ed data sets. These data sets were produced by simulation,
but are representative of typical real-world problems. For clarity, we can describe
these data sets as patients being cross-classi�ed by the clinic they attended and
neighbourhood they live in. The dimensions of the data sets are as follows:
xc100: 2000 patients, 200 clinics, 100 neighbourhoods.
xc200: 4000 patients, 200 clinics, 200 neighbourhoods.
xc400: 10,000 patients, 200 clinics, 400 neighbourhoods.
For the reasons described in Section 3.2, the data is always sorted as patient within

clinic, so that the clinic classi�cation is absorbed into a hierarchical structure. Where
we have a cross-classi�cation of 400 neighbourhoods, this is computationally equiv-
alent to (i) a three-way cross-classi�cation of clinics with two other classi�cations,
each with 200 units, for example, (clinics × neighbourhoods × doctors), or (ii) a
model where patients are multiple members of neighbourhoods, neighbourhood is
cross-classi�ed with clinic, and there are 400 neighbourhoods. In general, if we have
r classi�cations, the lowest level units, in this case patients, can be single or multiple
members of the higher level classi�cations. If mi is the number of units in the ith
classi�cation, then the computational load is de�ned by the number of patients and∑r

i=1mi. Thus, although the data sets simulated and tested have a relatively sim-
ple structure, they accurately calibrate the computational performance of the adapted
algorithm for a wide range of more complex models.
In each case we ran the iterative generalised least-squares procedure to conver-

gence. This requires four iterations for xc100 and three iterations for xc200 and
xc400. Note that the �rst iteration is di�erent from subsequent iterations because



470 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

Table 1
Speci�cations of test platforms

Platform CPU L1 cache L2 cache OS Compiler

Dell Work 300 MHz PentiumPro 16 kb 512 kb NT 4.0 Microsoft
station 400 VC++ 5.0

SGI Challenge 100 MHz MIPS R4400 16 kb 1 Mb IRIX 5.3 IRIX CC 4.0
Cray CS6400 66 MHz Sparc 16 kb 2 Mb Solaris 2.5 SunSoft

C++ 4.1
Sun Enter- 250 MHz Ultra Sparc 16 kb 4 Mb Solaris 2.5.1 Sun WorkShop
prise 10000 C++ 4.2

SGI Origin 2000 195 MHz MIPS R10000 32 kb 4 Mb IRIX 6.4 MIPSpro CC 7.20

Table 2
Parameter values

Platform Threshold Block size

Dell Workstation 400 20,000 200
SGI Challenge 1000 32
Cray CS6400 1000 512
Sun Enterprise 10000 20,000 512
SGI Origin 2000 2000 512

an identity matrix is used as the initial estimate for the weights matrix required to
calculate the random parameters. This signi�cantly simpli�es the computation in the
�rst iteration, which therefore requires less time to execute than subsequent itera-
tions. Table 1 shows the speci�cation of the various platforms on which we have
run our benchmarks, including the CPU architecture, L1 and L2 data cache sizes
and operating system and compiler versions. On each machine the highest available
compiler optimisation level was used, but no other special options were invoked. The
benchmarks were run in an environment where we had exclusive use of the number
of processors required, but only on the PC did we have exclusive use of the whole
machine.
Table 2 shows the setting of two variable parameters, the parallelisation threshold

and block size for matrix–matrix multiplication, which we used on each machine.
These values were determined by experiment — the best block size is essentially
independent of data set or number of processors. The best parallelisation threshold
does depend weakly on the number of processors, but performance is not sensitive
to small changes in its value.
We have run performance tests on four versions of the code: Version 0 is the

original sequential code; Version 1 is the optimised code, using layer 1 parallelism
with a centralised barrier algorithm; Version 2 is as Version 1 but additionally ex-
ploiting layer 2 parallelism and Version 3 is as Version 2 but with the static F-way
tournament barrier algorithm. The reason for including Version 2 as well as Version
3 was to be able to quantify the bene�ts of fast barrier synchronisation. Due to time



J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474 471

Table 3
Execution times on dual processor PC (left) and SGI Challenge (right)

Table 4
Execution times on Cray CS6400 (left) and Sun Enterprise 10000 (right)

Table 5
Execution times on SGI Origin 2000

Version 0 Version 1 Version 2 Version 3

p 1 1 2 4 8 1 2 4 8 1 2 4 8

xc200 504 94 65 53 61 94 65 53 61 94 59 46 43
xc400 9836 801 421 259 176 756 450 263 183 755 407 240 158

and machine availability constraints we have not run all versions of the code on
all test data sets on every platform. However, the results presented are su�cient to
demonstrate the important performance characteristics of the di�erent versions of the
code. Tables 3–5 show the total execution time in seconds of various versions of
the code on the di�erent platforms.

7. Discussion

The �rst observation is that both sequential optimisation and parallelisation result
in substantial performance bene�ts on all the hardware platforms. The performance
gains from both sources are more signi�cant for the larger data sets. For the xc100
data set, some or all of the temporary matrices may �t into the L2 cache, and
therefore the bene�ts of blocking are not as signi�cant as for larger data sets. The
bene�ts of sequential optimisation vary quite widely between di�erent machines. For
example on the xc200 data set, we observe a factor of 2.3 decrease in execution
time on the PC, and a factor of 5.4 on the Origin 2000. These di�erences are due to



472 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

the di�erences in CPU architecture and in the quality of the compiler optimisations
across the di�erent platforms. Apart from choice of block size, the sequential op-
timisations are generic and not targeted at any particular system. It is likely that
further performance gains could be attained by tuning the code speci�cally for each
platform.
The larger the data set, the more computation occurs in tasks which are su�-

ciently large to make parallelisation worthwhile. In particular, multiplication of large
matrices increasingly dominates the execution time as data-set size increases. Thus
the relative cost both of synchronisation and of unparallelised code diminishes as
the data-set size increases. However, even for the largest data set these overheads
are still signi�cant, and we do not observe linear speedup on any hardware plat-
form. On several of the platforms, we come close to exhausting the potential for
performance gain from parallelism: for data set xc100 on the Cray CS6400, the
code is actually slower on six processors than on four. To make the code scalable
to larger numbers of processors, we would need to exploit more parallelism from
layers 2 and 3.
Adding parallelism in layer 2 has the largest bene�t for small data sets. For exam-

ple, the execution time for data set xc100 on four processors of the SGI Challenge,
is reduced from 60 to 48 s. The larger the data set is, however, the larger the in-
dividual tasks to be performed on each matrix in the list are. Thus for these tasks,
parallelism at layer 1 can be exploited e�ectively: moving up to layer 2 has less
impact.
Finally, we note that e�cient barrier synchronisation has a substantial impact on

performance. Comparing Versions 2 and 3 on the Origin 2000 shows that there
is a bene�t from two processors upwards, and for data set xc200 on eight pro-
cessors, a 30% reduction in execution time is obtained. For the larger xc400 data
set the improvements are smaller (because the parallel tasks are larger) but still
signi�cant.
Overall, we see that sequential and parallel optimisations combine to give perfor-

mance gains of up to 60-fold. These gains can make a signi�cant di�erence to the
way in which users are able to work with this package, as the size of models which
can be manipulated in an interactive mode has been greatly increased.

8. Conclusions and further work

A parallel implementation of MLn for shared memory architectures has been pre-
sented. The choice of the shared memory paradigm has been carefully justi�ed in
terms of the typical characteristics of the computation. Through the creation of a
portable threads library the issue of portability between parallel machines has been
addressed. Results for benchmark data sets across a selection of parallel architec-
tures have been presented. Useful performance gains are observed across a range of
data-set sizes.
There are a number of possibilities for future work in this area. Exploiting paral-

lelism at layer 4 would be bene�cial for modelling very large data sets with a simple



J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474 473

hierarchy, and also for multivariate response models. New simulation-based estima-
tion techniques implemented in MLwiN, the Windows version of MLn, notably
bootstrapping and Markov chain Monte Carlo methods, are very computationally
intensive. These techniques exhibit a coarse-grained parallelism and, unlike the al-
gorithms discussed in this paper, could be readily distributed across networks of
workstations as well as across the processors of shared memory parallel
machines.

Acknowledgements

The authors are grateful to the Joint Information Systems Committee for funding
this work under their Technology Applications Programme (JTAP). They would
also like to thank John Brooke of Manchester Computing, David Clayton of the
Medical Research Council Biostatistics Unit and Alastair Leyland of the University
of Glasgow for their assistance in running the benchmark tests.

References

Bryk, A.S., Raudenbush, S.W. 1993. Hierarchical Linear Models. Sage, Newbury Park, California.
J.J. Dongarra, J. Du Croz, S. Hammarling, I.S. Du�, A set of level 3 basic linear algebra subprograms.,
ACM Trans. Math. Software 16 (1) (1990) 1–17.

J.J. Dongarra, J. Du Croz, S. Hammarling, R. Hanson, An extended set of FORTRAN basic linear
algebra subprograms., ACM Trans. Math. Software 14 (1) (1988) 1–17.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V., 1994. PVM 3 Users
Guide and Reference Manual. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

H. Goldstein, Multilevel mixed linear model analysis using iterative generalised least squares.,
Biometrika 73 (1) (1986) 43–56.

H. Goldstein, Nonlinear multilevel models, with an application to discrete response data., Biometrika
78 (1) (1991) 45–51.

Goldstein, H., 1995. Multilevel Statistical Models. Edward Arnold, London and Wiley, New York.
H. Goldstein, J. Rasbash, E�cient computational procedures for estimating parameters in multilevel
models based on iterative generalised least squares., Comput. Statist. Data Anal. 13 (1993) 63–71.

H. Goldstein, J. Rasbash, Improved approximations for multilevel models with binary response., J. Roy.
Statist. Soc. A 163 (1996) 505–513.

Grunwald, D., Vajracharya, S., 1993. E�cient barriers for distributed shared memory computers. Tech.
Rep. CU-CS-703-94-93, Department of Computer Science, University of Colorado, Boulder, CO.

P.W. Hill, H. Goldstein, Multilevel modelling of educational data with cross-classi�cation and missing
identi�cation of units., J. Ed. Behav. Statist. 23 (2) (1998) 117–128.

International Organization for Standardization (ISO), 1996. Portable operating system interface (POSIX)
— Part 1: system application program interface. ISO=IEC Standard 9945-1.

C.L. Lawson, R.J. Hanson, D.R. Kincaid, F.T. Krogh, Basic linear algebra subprograms for FORTRAN
usage., ACM Trans. Math. Software 5 (3) (1979) 308–323.

Longford, N.T., 1993. Random Coe�cient Models. Clarendon Press, Oxford.
Message Passing Interface Forum, 1994. MPI: a message-passing interface standard. Internat. J.
Supercomput. Appl. High Performance Comput. 8 (3,4).

J. Rasbash, H. Goldstein, E�cient analysis of mixed hierarchical and cross-classi�ed random structures
using a multilevel model., J. Ed. Behav. Statist. 13 (4) (1994) 337–350.

Searle, S.R., 1982. Matrix Algebra Useful for Statistics. Wiley, New York, pp. 332–333.



474 J.M. Bull et al. / Computational Statistics & Data Analysis 31 (1999) 457–474

T.H. Tzen, L.M. Ni, Trapezoid self-scheduling scheme for parallel computers., IEEE Trans. Parallel
Distributed Systems 4 (1) (1993) 87–98.

Warren, M.S., Becker, D.J., Goda, M.P., Salmon, J.K., Sterling, T., 1997. Parallel supercomputing
with commodity components. In: Arabnia, H.R. (Ed.), Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA’97). CSREA Press,
pp. 1372–1381.


