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SUMMARY

A procedure is proposed for the analysis of multilevel nonlinear models using a
linearization. The case of log linear models for discrete response data is studied in detail.
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1. INTRODUCTION

Nonlinear models arise in a number of circumstances, notably when modelling discrete
data. In this paper we consider the multilevel nonlinear model. As in linear multilevel
models, we shall consider the general case where any of the model coefficients can be
random at any level, and where the random parameters may also be specified functions
of the fixed parameter estimates, discussed by H. Goldstein, R. Prosser and J. Rasbash
in an as yet unpublished report. In the next two sections we set out the model and define
notation; this is followed by a section on estimation and then some examples.

2. THE LINEAR MULTILEVEL MODEL

The general multilevel linear model can be written in the form (Goldstein, 1989)

E(e) = 0, E{(Ze)(Ze)T}= V,

where /3 is a vector of fixed coefficients, to be estimated, X is the design matrix for the
fixed coefficients, e is a vector of random variables and Z is the design matrix for these.
The columns of X and Z may or may not coincide.

The matrix V is typically unknown, but for a standard (/i + l)-level model (/i>0) is
structured as follows (Goldstein, 1986)

where £lh+l is the covariance matrix for the model parameters which vary randomly over
the (/i + l)-level units, that is at level (h + l). This equation expresses the matrix for a
(h +1) level model recursively in terms of matrices for lower level models. In particular,
Vt is the contribution to V of the level 1 variation and is proportional to the identity
matrix in the simplest case. The matrix Zh+X contains the values of the explanatory
variables with coefficients random at level (h + l).
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3. THE NONLINEAR MULTILEVEL MODEL

The general model can be written as the sum of a nonlinear component and a linear
component, both of which may contain fixed and random variables,

(1)

where / is a nonlinear function, e, u are sets of random variables with zero means and
corresponding design matrices Zr, Zu, p, y are vectors of fixed coefficients with design
matrices X,, X2. We write

X\ — ( x , i , . . . , X]|), X.2 — (X21,. . . , x2m), Z,u — \zu\,..., zup), Z,t — ( z , | , . . . , zeq).

Usually Zu, Z, are subsets of Xx, X2, but they need not be so, and they may contain
vectors in common. The random variables may be random at any levels. In many important
applications e will contain vectors random at level 1 and u will contain vectors random
at higher levels. An example of such a model is that proposed by Jenss & Bayley (1937)
for growth in height of children up to the age of six years. For age t this can be written

y,j = - exp (pOlJ + pi, t) + y0IJ + y^t, pOlJ = po+ um + emj,

P\j P\ ' upl ) "OIJ rO' uy0j ' Cyij' i U ' 1 r 1 '

where i indexes the measurement occasion for the jth individual. Here the design matrices
for the random and fixed parts of the models coincide.

In the present paper we consider in detail the particular case of the 2-level log linear
model for discrete response data. The extension to further levels is straightforward. The
response vector in this model is a vector of proportions, one for each cell (i) of a multiway
classification within each level 2 unit. We write

l o g ( T T h i J ) = X PjkXhijk,

TThij = e x p I £ PjkXh.jk I , Z / TThij = 1 ( h = l , . . . , q ; i = l , . . . , n i j ) ( 2 )
\<c=0 /

for the mean proportion for the /ith level 1 unit within the ith cell of the jth level 2 unit.
There are a total of qntj level 1 units in the jth level 2 unit.

Equation (2) describes the mean responses for a generalized linear model with observed
responses phiJ, where ny is the size of the ith cell of the jth level 2 unit and typically
HijPhij conditionally have a multinomial distribution with mean H^TT/,,,.

In the 2-level model some or all of the coefficients pJk are assumed to be random
variables at level 2. Thus

The uJk are continuously distributed level 2 random variables with zero mean and finite
covariance matrix. The xhlJk consist typically of dummy variables at level 1 defining
categories, and covariates at level 2 which are measured at that level; see Goldstein (1987,
Ch. 6) for details.

In the following development we first consider the general model (1) and then study
specific applications to discrete response data.
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4. ESTIMATION

We approach the estimation by considering first a linearization of / followed by
application of a standard procedure for the linear multilevel model. The IGLS algorithm
provides a particularly flexible procedure, although the Fisher scoring algorithm of
Longford (1987) or the EM procedure of Raudenbush & Bryk (1986) can also be adapted
for special cases. All three algorithms give maximum likelihood or restricted maximum
likelihood estimates in the normal case (Goldstein, 1986, 1989). Del Pino (1989) also
defines an IGLS algorithm, but in his formulation V is a function of the parameters /3
and he discusses in detail only the case of independent residuals, that is the single level
model.

At a given iteration, say (f + 1), we assume that values for the fixed coefficients and
the random parameters, that is the variances and covariances, are available from the
previous iteration. We consider the linear first-order terms of the Taylor expansion for
each element of/ Ignoring subscripts we have

/ = / ( / / , ) + ! hk(df/dhk),. (4)

Here H represents the fixed part of the model, Xtp, and hk denotes the /cth term in Zuu,
that is zukuk, with mean zero.

Consider first the random part of the model, that is the second term in (4) with the
expansion about the value H = H,. This can be written as

I «kz;!*, z*k = zuk(df/dhk), = zukf(H,). (5)

Likewise, the fixed part of the model, the first term in (4), can be written as the Taylor series

fc=O \ k-0 / k-0

x*k =

For the full model we now have
I \ J P m q

iP)- I Pk.i**k ) = I Pk,,-nx?k+ Z ukz*uk+ £ ykx2k+ I ekzek. (6)
(c-0 / k-0 k-\ k-0 k-\

We now have a standard form of the multilevel linear model and estimates for the fixed
and random parameters can be obtained in the usual way. The term in large parentheses
on the left-hand side of (6) is updated at each iteration.

Expression (6) has the general form

and the adjustment to fi, given by (/?,+, - /?,) is obtained as for the general quasilikelihood
model (McCullagh & Nelder, 1983, § 8.5). In the present case the variance matrix is not
generally diagonal and needs to be estimated from the data. This is done iteratively,
analogously to the ordinary multivariate normal case described above, and the weight
matrix used in the estimation of the variances and covariances is that which assumes
multivariate normality. While the estimates produced are consistent, their detailed proper-
ties are unknown. Nelder & Pregibon (1987, § 3.3) outline a similar approach to variance
estimation for the single level case.



48 HARVEY GOLDSTEIN

The above assumes that the series expansion expression for the random component
of (6) is exact rather than an approximation and we return to this issue following some
examples.

5. EXAMPLES

The examples are concerned with the analysis of unemployment data in Scotland. The
response variable is the proportion of individuals employed and is categorized by gender
and qualification level, i.e. unqualified, qualified. A total of 122 geographical areas were
sampled and so we have a 2-level model with 4 (2 x 2) level 1 units per level 2 unit but
often with some level 1 units missing. In this case the response vector in (2) has only
two categories and the constraint that they sum to one yields a single response variable.
The number, mh of cells per level 2 unit has a maximum value of 4.

We write a main effects model

n,j = exp (fto + PiX/ji + /32xtf2){l + exp (PJO + P^ + /32xy2)}- (i = 1 , . . . , 4), (7)

where xlJX is a dummy variable for gender, xlJ2 is a dummy variable for qualification level
and 7r/7 is the expected proportion in the ith cell of the 2x2 classification for the jth
area. The intercept term is random, pJ0 = fio+ ttj. Differentiating, we have

For the random part zu is the vector of ones so that z* = {ir',j}.
For the fixed part we have x*, = x,>17Ty, x*2 = x{J2tr\j. Suitable starting values can be

obtained by first fitting an empirical logit model to the observed proportions

logit (PiJ) = Pjo + PtX^ + PiXyi + eij, (8)

where the e^ are regarded as independent level 1 random variables with variances as
given below. We can subtract or add say, 0-25 for cell numerators which are equal to
the denominators or are zero. In practice just one iteration for (8) is required to obtain
suitable starting values for (7).

If we assume that the p{j have a binomial distribution then at each iteration the variances
of the pij are fixed at

where nu is the cell number and TT, is the population mean proportion for the ith cell,
with current sample estimates being substituted. There are no covariances between the
Pij. As in § 2 the weight matrix is given by

V2=V, + z*z*V», V, = diag{<r?(0}.
This model yields the same numerical estimates as proposed by Longford (1988), who
uses a scoring algorithm, on the few comparisons so far carried out. Longford considers
a model which results from a Taylor series expansion similar to that used here. He obtains
a quasilikelihood model conditional on given values for the level 2 random variables
and obtains an unconditional model by assuming a multivariate normal distribution for
these variables.

As suggested by Goldstein (1987) we can relax the binomial assumption and simply
require the variances to be inversely proportional to n,7. This essentially involves defining
dummy explanatory variables zeiJ = (nu)~^ which are mutually uncorrelated, so that the
level 1 variance for cell (i,j) is, say, cr2

eini/.
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To form a comparison with the binomial variance assumption we can define

with variance crj,2n '̂ and test for o-*2= 1.
Table 1 shows the results of fitting this model. In brackets are the equivalent results

from fitting a model assuming a binomial distribution, that is constraining a*? = 1. The
fixed effect estimates show a higher probability of employment for those with a
qualification and, to a lesser and non statistically significant extent, for males. The level
1 scale factors are fairly close to 1-0 and the level 2 variance estimate and the estimates
for the fixed coefficients are close to those obtained assuming level 1 binomial variation.
If a common scale factor for all four categories is fitted the estimate for it is 1-03.

Table 1. Proportion of individuals employed
related to gender and qualification with the inter-

cept varying between areas

Parameter

Fixed
Intercept
Gender
Qualification

Random
Level 2:

a-2

Level 1:

a*\

"I?
a*2

Estimate

0-522 (0-526)
0148 (0149)
1-003(0-998)

0-225 (0-234)

1-20
0-94
0-88
109

St. error

011(011)
011(011)

008

0-20
016
014
016

Values in parentheses are estimates obtained assuming
binomial variation with a-*2 = 1.

Level 1 parameters ordered by gender within
qualification. Gender coded 0 = female, l=male;
qualification coded 0 = unqualified, 1 = qualified.

Number of level 1 units (cells) = 401; number of level 2
units (areas) = 122.

Table 2 shows the results of allowing the gender coefficient to vary randomly over
level 2 units. It is almost uncorrelated with the intercept term, and the between area
variance estimate for males, 0-49, is three times as large as that for females, 0-16, although
the estimated standard error for the gender difference variance, cr2,,, is relatively large.
The level 1 scale factors deviate from 1-0 rather more than in the previous analysis, so
that the estimates based upon the binomial assumption are also more discrepant.

Just under half the cells in the analysis have denominators which are one. For these
cells the binomial assumption will be true, so that a test for extra-binomial variation
should exclude these cells. When this is done the analysis gives scale factors which are
considerably smaller than one, being respectively 0-76, 0-65, 0-53 and 0-57. One explana-
tion for this is that the probability of employment varies across individuals within areas
and is related to explanatory factors omitted from the model. A further discussion of
such extra-binomial variation models is given by H. Goldstein et al. in an unpublished
report.
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Table 2. Proportion of individuals employed
related to gender and qualification with the inter-
cept and gender coefficients varying between areas

Parameter
Fixed

Intercept
Gender
Qualification

Random
Level 2:

ol,
O'uOl

Level 1:

*ii

Estimate

0-511
0162
1008

0-158
0-325
0005

1
0
0
0

(0-514)
(0-159)
(1-005)

(0-177)
(0-407)
(0116)

•22
•88
•73
•95

St. error

0-12 (0-12)
010 (011)

011
0-20
0-12

0-21
015
0-15
0-16

Values in parentheses are estimates obtained assuming
binomial variation with a*} = 1.

Level 1 parameters ordered by gender within
qualification. Gender coded 0 = female, 1 = male;
qualification coded 0 = unqualified, 1 = qualified.

The subscripts (0,1) for level 2 random parameters refer
to intercept and gender coefficients respectively.

Number of level 1 units (cells) = 401; number of level 2
units (areas) = 122.

6. Q U A D R A T I C A P P R O X I M A T I O N

The adequacy of the first order approximation which linearizes the random part of
the model needs to be studied further. Considering the random variation at level 2 for
illustration, the typical second order term in the Taylor expansion is given by u2

kz
2
ukf'(H,).

The random part now involves random variables and their squares. Assuming normality,
we can write expressions for the third and fourth moments of the uk as follows:

E(uj) = E(uJul) = 0, E{u)) = a), E(Ujuk) = ajk,

E{uAj) = 3a% E(uju2
k) = 2a] )

This model can be analyzed as follows. The squared random variables are treated as
additional random terms whose variances and covanances are not estimated directly but
calculated from the current variance and covariance estimates of the basic random
variables. The ML3 software for analyzing multilevel data (Rasbash, Prosser& Goldstein,
1989) allows such a specification. In the present case the second derivative is given by

The model in Table 1 has been reanalyzed with a second order approximation, with the
random parameter estimates given in Table 1 as starting values. The value of the level 2
variance is slightly reduced, from 0-225 to 0199, but the other parameter estimates are
affected only slightly.
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7. DISCUSSION

The general approach adopted in this paper to the estimation of multilevel nonlinear
models has the merit that it directly generalizes the linear model case. Estimates of
'shrunken' residuals can also be obtained in the same manner as in linear multilevel
models (Goldstein, 1987). In the discrete response data examples analyzed, the approach
appears to work well and can be viewed as a straightforward generalization of iteratively
reweighted least squares estimation in the single level case.

The addition of a quadratic term to the Taylor expansion of the random component
does not appear markedly to change the parameter estimates, although more experience
with other data sets would be useful. We can introduce cubic and higher order terms if
it is suspected that the linear or quadratic approximations are inadequate. This paper
has not pursued the general problems associated with nonlinear estimation which relate
to the linear approximation for the fixed part of the model, especially those concerned
with convergence properties, and more work is needed in that area. Further work also
needs to be carried out on the properties of the estimates of the random parameters,
where the current procedure uses a weight matrix based upon multivariate normality
assumptions.
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