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Forthcoming Workshops 

1-3 December 2004.  A three-day 
introductory workshop in multilevel 
modelling for medical and public health 
researchers using MLwiN will take 
place at the Institute of Community 
Health Sciences, Queen Mary, 
University of London. 
 
Enquiries to: 
 
Tami Lapidot 
Forensic Psychiatry Research Unit, St. 
Bartholomew's Hospital, William 
Harvey House, 61 Bartholomew Close, 
London EC1A 7BE, United Kingdom. 
Tel: +44 (0) 20 7601 7511 
Fax: +44 (0) 20 7601 7969 
Email: t.lapidot@qmul.ac.uk

 

 
 
If you plan to run any workshops using 
MLwiN, please notify Amy Burch 
a.burch@ioe.ac.uk and she will 
advertise these workshops on the 
multilevel web site. 
 
 
 

The Royal Statistical Society- 
Joint Meeting of the Social 
Statistics Section/ General 
Applications Section 

19 October 2004.  Recent Advances in 
Multilevel Modelling Methodology And 
Applications. 2.00 pm to 5.30 pm at the 
Royal Statistical Society ,12 Errol 
Street, London, EC1Y 8LX. 
 
All are welcome and the event is free: 
Registration details on the Society’s 
web page www.rss.org.uk or contact 
a.fielding@bham.ac.uk. 
 
The following papers will be given: 
 

Also in this issue 
ESRC Research Methods Festival 

RC33 Sixth International Conference 
on Social Science Methodology 

Multilevel Multiprocess Modelling of 
Partnership and Childbearing Event 

Histories 
An Illustration of the Use of 

Reparameterisation Methods for 
Improving MCMC Efficiency in 
Crossed Random Effect Models 

Review of ‘Small Area Estimation’ 

________________________________ 
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A Pickles, N.Shryane, & E. Fieldhouse 
(University of Manchester).  Joint 
analysis of ranked preferences and 
electoral voting to identify patterns of 
tactical voting.  Generalised Linear 
Latent and Mixed Model frameworks 
using GLLAMM will be discussed to 
examine the contrast between ranked 
preferences and voting behavior. 
 
A Leyland (University of Glasgow) & 
Ø. Næss (University of Oslo, Norway).  
Correlated cross-classified multilevel 
models: lifecourse epidemiology in the 
Oslo mortality study.  Individual 
mortality data in which the effect of 
area of residence at four timepoints 
(censuses 1960-1990) is modelled will 
be investigated. Mobility of people is 
modelled by cross-classified effects 
incorporating area effects that are 
correlated over time. 
 
F. Steele, C. Kallis, H. Goldstein & H. 
Joshi (Institute of Education, University 
of London). Modelling correlated event 
histories: partnerships and childbearing 
among British women in the 1958 birth 
cohort. A new method for the analysis 
of correlated event histories will be 
described using a simultaneous equation 
multilevel multi-state model of repeated 
transitions from marital and non-marital 
unions and childbearing within co-
residential partnerships. 
 
P. Bassett (Institute of Education, 
University of London).  An application 
of multilevel methods in examining the 
effects of class size upon pupil 
attainment in English primary schools.  
In this talk an analysis of a large-scale 
longitudinal study investigating the 
effects of class size upon pupil 

attainment in primary schools will be 
discussed. 
 
H. Goldstein (Institute of Education, 
University of London). Multilevel 
smoothing spline models. 
Generalisations of existing methods for 
generalised additive modelling will be 
examined with particular applications to 
repeated measures data.  It will be 
shown how existing algorithms can be 
modified to incorporate such models. 
 
J. Rasbash (University of Bristol). 
Multilevel social network models and 
their application to family relationship 
data.  In family relationship studies, the 
data are often of the form of measured 
behaviour from one family member to 
another family member.  Models that 
decompose family relationships into 
terms for actor, partner, dyad and family 
level effects will be described. 
 
ESRC Research Methods 
Festival 

This very successful event, held in 
Oxford on 1 – 3 July 2004, featured a 
number of presentations on multilevel 
modelling.  These included papers by 
Kelvyn Jones, Ed Fieldhouse, Alastair 
Leyland and Ian Plewis in a session 
called ‘What is multilevel modelling?’ 
that was very well attended; and also 
more advanced papers by James 
Carpenter in the session ‘Modelling 
complex processes’, and by Fiona 
Steele and colleagues, and by Jon 
Rasbash and Tom O’Connor in the 
session ‘Understanding family 
processes’. 
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More details about the presentations can 
be found at: 
http://www.ccsr.ac.uk/methods/festival/
programme/
 
RC33 Sixth International 
Conference on Social Science 
Methodology 

The RC33 Sixth International 
Conference on Social Science 
Methodology was held in Amsterdam 
on 16-20 August 2004. 
 
The following papers were presented at 
the Multilevel Analysis session: 
 
Frequentist MCMC Estimation Methods 
for Multilevel Logistic Regression 
Carlos Coimbra and Tom A.B. Snijders, 
Department of Sociology, University of 
Groningen, Grote Rozenstraat 31, 9712 
TG Groningen, The Netherlands.  
c.a.q.coimbra@ppsw.rug.nl
t.a.b.snijders@ppsw.rug.nl
 
The Use of Internal Pilot Studies to 
Derive Powerful and Cost-Efficient 
Designs for Studies with Nested Data 
M. Moerbeek, Department of 
Methodology and Statistics, Utrecht 
University, The Netherlands. 
m.moerbeek@fss.uu.nl
 
Performance of Likelihood-Based 
Estimation Methods for Multilevel 
Binary Regression Models 
Marc Callens and Christophe Croux, 
Katholieke Universiteit Leuven, 
Belgium. 
marc.callens@econ.kuleuven.ac.be
 
 

Outliers and Multilevel Models 
John F. Bell and Eva Malacova, 
University of Cambridge Local 
Examinations Syndicate, UK. 
bell.j@ucles.org.uk
 
On the Relative Efficiency of Unequal 
Cluster Sizes in Multilevel Intervention 
Studies 
L. Kotova, G.J.P. van Breukelen, 
M.J.J.M. Candel and M.P.F. Berger, 
Department of Methodology and 
Statistics, Faculty of Health Sciences, 
University of Maastricht, The 
Netherlands. 
larissa.kotova@stat.unimaas.nl
 
Multilevel Multiprocess Modelling of 
Partnership Transitions and Fertility in 
Britain 
Fiona Steele, Constantinos Kallis, 
Harvey Goldstein and Heather Joshi, 
Bedford Group for Lifecourse and 
Statistical Studies, Institute of 
Education, University of London, 20 
Bedford Way, London WC1H 0AL, 
UK. 
c.kallis@ioe.ac.uk
 
The Concept of ‘Social Level’ and how 
to Assess it 
Pieter van den Eeden, Department of 
Social Research Methodology, Vrije 
Universiteit, Amsterdam, The 
Netherlands. 
pvdeeden@inter.nl.net
 
The Hausman Test of Random Effects 
Specifications 
A. Fielding, University of Birmingham, 
UK. 
a.fielding@bham.ac.uk
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The Problem of Time Dependent 
Explanatory Variables at the Context 
Level in Discrete Time Multilevel 
Event History Analysis. 

Michael Windzio, EMPAS, University 
of Bremen, Germany. 
mwindzio@empas.uni-bremen.de

Multilevel Multiprocess Modelling of Partnership and 
Childbearing Event Histories 

Fiona Steele, Constantinos Kallis and Harvey Goldstein 
Institute of Education, University of London 

f.steele@ioe.ac.uk
 

Introduction 
 
The outcomes of marital and non-
marital partnerships and childbearing 
within those partnerships are two 
related dynamic processes.  The 
decision to end a partnership, or to 
move from cohabitation to marriage, is 
likely to be jointly determined with the 
decision to have a child with that 
partner.  In other words, there may be 
factors, both observed and unobserved, 
which drive both processes.  While 
previous research has examined the 
effects of the presence of children on 
partnership stability, few studies allow 
for the possibility that children are prior 
outcomes of a potentially related 
process.  If decisions about partnerships 
and childbearing are jointly determined, 
the unobserved components of the 
models for each process will be 
correlated.  Therefore indicators of the 
presence of children will not be 
independent of the residuals in the 
model for partnership transitions, and 
estimates of their effects on partnership 
outcomes will be biased. 
 
In this paper, we examine the effect of 
the presence and age of children on 

partnership outcomes using a 
multiprocess model (Lillard, 1993), 
which allows for correlation between 
the unmeasured individual-specific 
determinants of partnership durations 
and fertility.  A multilevel model is 
used to allow for correlation between 
the durations of multiple partnerships, 
and of intervals between children, for 
the same individual.  Repeated events 
lead to a two level hierarchical 
structure, with events nested within 
individuals. 
 
Methodology 
 
The multiprocess model is a system of 
simultaneous equations for partnership 
transitions and childbearing.  
Simultaneity of the two processes 
comes from allowing the hazard of a 
partnership transition at time t to 
depend on prior outcomes of the 
childbearing process (the number and 
age of children born before time t), and 
allowing for correlation between 
unobservables affecting each process.  
We consider a total of three partnership 
transitions: marriage to separation, 
cohabitation to separation, and 
cohabitation to marriage.  The hazards 
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of these transitions are modelled jointly 
with the hazard of a conception, again 
distinguishing between marital and non-
marital partnerships.  Each equation 
defines a discrete-time hazards model.  
A discrete-time formulation has two 
main advantages.  First, as with many 
retrospectively collected event history 
data, the dates of events are reported in 
months.  It is therefore natural to 
specify a model that assumes 
measurement in discrete rather than 
continuous time.  Second, after 
restructuring the data, standard 
multilevel methods for analysing 
discrete response data may be used 
(Steele et al., 1996).  Thus complex 
event history models, such as the one 
described below, may be fitted using 
existing estimation procedures and 
software. 
 
Model for Partnership Transitions 
 
Marriage 
 
A partnership is defined as a continuous 
period of at least one month spent living 
with the same partner.  The unit of 
analysis is a partnership episode, which 
is defined as a continuous period of 
time spent in the same partnership state, 
marriage or (unmarried) cohabitation, 
with the same partner. 
 
We denote by  the hazard of a 
marital separation during time interval t 
of episode i for individual j.  A 
multilevel discrete-time event history 
model for marital separations may be 
written (omitting subscripts) as: 

)(th PM
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)(0 tD PMMα  is the baseline log-hazard 

which is a function of marriage duration 
at time t or, for marriages immediately 
preceded by a period of cohabitation, 
partnership duration.  Possible choices 
for the baseline log-hazard include a 
step function, where the duration is 
treated as a categorical variable, or a 
polynomial function.  The potentially 
endogenous time-varying outcomes of 
the fertility process, which may affect 
both future partnership transitions and 
fertility, are denoted by , with 
coefficient vector .  Other 
covariates which affect marital 
dissolution are represented by .  
Unobserved time-invariant individual-
specific factors are represented by 
normally distributed random effects 

. 

)(tF
M
1α

)(tX PM

PMu
 
In order to estimate (1) each marriage 
duration, , is converted to a 

sequence of  binary responses, 

.  For t=1, . . ., , 

=0; and for t= , =1 

if separation occurs at  and 

=0 otherwise (right-censored 
durations).  As start and end dates of 
episodes were recorded to the nearest 
month, it is possible to have a binary 
response for each month.  However, 
using discrete time intervals of one 
month leads to a very large dataset.  We 
therefore grouped partnership durations 
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(and birth intervals) into six-month 
intervals, with each observation 
weighted by the number of months for 
which an individual was ‘at risk’ of 
having an event. 
 
Cohabitation 
 
We consider two transitions from the 
cohabitation state: separation, and 
marriage to the same partner.  Denote 
by  the hazard of a transition of 
type r from cohabitation, in time 
interval t of episode i for individual j, 
where r=0 (no transition), 1 
(separation), or 2 (marriage).  
Transitions from cohabitation may be 
modelled using a multilevel discrete-
time competing risks model (Steele et 
al., 1996): 
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where is a function of 
cohabitation duration at time t, 

are covariates that affect the 
hazard of a transition of type r from 
cohabitation, and are individual 
and transition-specific random effects. 
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To estimate (2) each cohabitation 
duration, , is converted to a 

sequence of  multinomial 

responses, .  The response at 
time t is coded 0 if still cohabiting, 1 if 

separation occurs, and 2 if marriage to 
the same partner occurs. 
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Equations (1) and (2) define a 
multilevel multistate model (Steele et 
al., 2004), where in the present case the 
states are marriage and cohabitation.  
To allow for unobserved individual-
level characteristics that affect each 
type of transition, the random effects 
may be correlated across transitions 
with covariance   Simultaneous 
estimation of (1) and (2) is achieved by 
pooling all episodes and defining 
indicator variables for marriage and 
cohabitation.  These indicators are 
interacted with the explanatory 
variables to allow for marriage and 
cohabitation specific effects of 
partnership duration, fertility outcomes 
and background characteristics.  The 
coefficients of the indicators themselves 
are allowed to vary randomly across 
women to produce the state-specific 
random effects. 

.P
uΩ

 
Model For Childbearing Within 
Partnerships 
 
Denote by  the hazard of a 
conception leading to a live birth within 
marriage during time interval t in 
partnership episode i for individual j.  
We denote by  the hazard of a 
conception within a cohabiting 
partnership.  The model for 
childbearing consists of separate 
equations for marriage and cohabitation, 
which are estimated simultaneously.  
Both equations include as covariates 
prior outcomes of the childbearing 

)(th FM
ij
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ij
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process, , as well as background 
characteristics. 

)(tF

 
Marriage 
 
A multilevel event history model for the 
waiting time to conception within 
marriage may be written (omitting 
subscripts): 
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where is a function of the 
partnership duration, are 
covariates affecting the fertility process, 
and is an individual-level random 
effect. 
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Cohabitation 
 
The model for conceptions within 
cohabitation is written: 
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where  are covariates and  
is an individual-level random effect, 
which may be correlated with  with 
covariance . 
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Estimation 
 
Equations (1), (2), (3) and (4) define a 
multiprocess model.  These equations 
must be estimated simultaneously as 
there may be non-zero correlations 
between the woman-specific random 

effects across equations.  Specifically 
we assume that 

 
Correlated random effects would arise if 
the unobserved characteristics that 
influence the timing of partnership 
transitions are correlated with those that 
affect childbearing within partnerships.  
Non-zero correlations between elements 
of  and of 

would suggest that 
, the number and/or age of children 

from the current or a previous 
partnership, is endogenous with respect 
to partnership transitions. 

).,(~),,,,( 5
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The discrete-time multiprocess event 
history model can be framed as a 
multilevel bivariate discrete response 
model where for each time interval t of 
a partnership there are two responses: 1) 
a binary or multinomial response for the 
partnership status, and 2) a binary 
response indicating the occurrence of a 
birth.  The model may be estimated 
using existing methods for mixtures of 
binary and multinomial responses 
(Steele et al., 2004) after defining 
indicators for the partnership and 
fertility responses and interacting these 
with the duration variables and 
covariates.  The results presented in this 
paper were obtained using Monte Carlo 
Markov Chain (MCMC) estimation, as 
implemented in MLwiN (Rasbash et al., 
2004). 
 
Data 
 
The analysis uses data from female 
respondents in the National Child 
Development Study (NCDS), a 
longitudinal study of all those living in 
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Great Britain who were born in a single 
week in March 1958 (Shepherd, 1997).  
Retrospective partnership and birth 
histories were collected in 1981, 1991 
and 2000, when the respondents were 
age 23, 33 and 42.  One task of the 
current study was to link data collected 
at each age to form continuous 
partnership and birth histories from ages 
16 to 42. 
 
The explanatory variables of major 
interest are outcomes of the fertility 
process.  Respondents were asked to 
identify the father of each child and for 
the date that each child left home.  Thus 
it was possible to create time-varying 
counts of the number of children living 
with a woman, distinguishing between 
preschool and older children, and 
between children born to the current 
partner at time t and those fathered by a 

previous partner or a non-coresident 
partner.  Other covariates include age at 
the start of the partnership, variables 
relating to previous partnerships, the 
number of years of post-compulsory 
education (time-varying), father’s social 
class and the experience of parental 
separation during childhood. 
 
The analysis sample contains 5142 
women who had partnered before age 
33; these women contribute 7032 
partnerships and 9137 partnership 
episodes. 
 
Results 
 
Correlations between random effects 
 
The estimated random effects 
covariance matrix obtained from the 
multiprocess model is shown in Table 1. 
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Table 1.  Estimated random effects covariance matrix from the multiprocess model 
 
 Conception 

within 
cohabitation 

Conception 
within  
marriage 

Marital 
separation 

Cohabitation 
separation 

Cohabitation 
to  
marriage 

Conception 
within 
cohabitation 

 0.296* 
(0.212, 
0.431) 

    

Conception 
within  
marriage 

-0.018 
(-0.041, 
0.001) 
-0.143 

 0.050* 
(0.041, 
0.062) 

   

Marital 
separation 

 0.246* 
(0.088, 
0.417) 
0.377 

-0.075* 
(-0.130, -
0.030) 
-0.278 

 1.433* 
(0.975, 
1.884) 
 

  

Cohabitation 
separation 
 

 0.081 
(-0.057, 
0.206) 
0.187 

-0.026 
(-0.059, 
0.009) 
-0.145  

 0.497* 
(0.210, 
0.741) 
0.520 

 0.652* 
(0.424, 
0.928) 

 

Cohabitation 
to 
marriage 

 0.214* 
(0.130, 
0.319) 
0.591 

-0.019 
(-0.047, 
0.007) 
-0.129 

 0.237* 
(0.051, 
0.428) 
0.296 

 0.095 
(-0.072, 
0.263) 
0.178 

 0.444* 
(0.301, 
0.602) 

 
Note: The values in each cell are the point estimate (the mean of the MCMC samples) 
and the 95% interval estimate (the 2.5% and 97.5% point of the distribution).  In off-
diagonal cells an estimate of the correlation (the mean of the correlation estimates 
across samples) is shown in bold.  The results are based on 30,000 MCMC samples, 
with a burn-in of 5,000. 
 
*Indicates that the 95% interval estimate does not contain zero 
 
There is substantial unobserved 
heterogeneity in the hazards of all 
partnership transitions and in the 
hazards of conceptions within 
partnerships.  Of most interest, 
however, are the covariance terms, 
several of which differ significantly 
from zero.  Among partnership 
transitions, for example, the random 
effect for marital separation is 
positively correlated with the random 

effect for separation from cohabitation; 
this suggests that women with above 
average propensities of marital 
separation ( >0) will tend also to 
have above average propensities to 
separate from a non-marital partnership 
( >0). 

PMu

)1(PCu
 
Across processes, the random effects for 
marital separation and conception 
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intervals within marriage are negatively 
correlated.  Women with below average 
risks of separation, i.e. long marriages, 
have an above average risk of having a 
child with a husband.  A strong positive 
correlation is found between the 
unobserved woman-specific factors 
affecting the hazard of converting a 
cohabitating partnership into marriage 
and those affecting the hazard of a birth 
within cohabitation.  A possible 
interpretation of this correlation is that 
women who view cohabitation as a 
precursor to a more formal marital 
partnership (and therefore have a high 
probability of marrying) are likely to 
have a child while cohabiting, in 
anticipation of marriage.  However, the 
significant positive correlation between 
the random effects for marital 
separation and births within 
cohabitation suggests that women with 
a high chance of having a child during 
cohabitation tend to have a high risk of 
separation should they marry. 

 
Effects of prior fertility outcomes on 
partnership transitions 
 
Table 2 shows estimates from two 
model specifications, controlling for the 
effects of the other covariates 
mentioned earlier.  The first model is a 
single process model, where the random 
effects across processes are assumed to 
be uncorrelated.  This model assumes 
that prior fertility outcomes are 
exogenous with respect to partnership 
transitions.  The second model 
considered is a multiprocess model in 
which the correlations between  and 

 are estimated freely.  A correlation 
that is significantly different from zero 
provides evidence that prior fertility 
outcomes are endogenous, in which 
case the estimated effects from the 
single process model will be biased. 

Pu
Fu

 

 
Table 2.  Estimated effects of preschool children with the current partner on 
partnership transitions 
 
Variables Single process model  

Coefficient       (SE) 
 Multiprocess model 
Coefficient      ( SE) 

Marital separation 
No. children (ref.=none) 
  1 -0.525* (0.067) -0.510* (0.067) 
  2+ -0.878* (0.103) -0.837* (0.104) 
Separation from cohabitation 
No. children 
  1 -0.280* (0.116) -0.299* (0.119) 
  2+ -0.739* (0.258) -0.792* (0.265) 
Cohabitation to marriage 
No. children 
  1 -0.147 (0.081) -0.230* (0.084) 
  2+ -0.073 (0.158) -0.245 (0.162) 
 
*Indicates that the 95% interval estimate does not contain zero. 
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For illustration, we present only the 
effects of having preschool age children 
fathered by the current partner.  (The 
complete set of results can be found in 
the full version of the paper available on 
request from f.steele@ioe.ac.uk.)  The 
results from both models imply that the 
presence of young children reduces the 
risk of marital separation.  The effects 
are slightly weaker for the multiprocess 
model, which can be explained by the 
negative correlation between the 
random effects for marital separation 
and marital fertility (Table 1).  The 
strong negative effect obtained using a 
single process model is partly due to 
selection; women with a low risk of 
separation are more likely to have 
children within marriage.  These 
women lower the risk of separation for 
women with marital children, leading to 
an overstatement of the negative effect 
of having children. 
 
Having young children also reduces the 
risk of separation for a cohabiting 
couple.  Since the random effect for 
separation from cohabitation is not 
significantly correlated with either of 
the random effects for fertility, we do 
not have sufficient evidence to reject the 
single process model in favour of the 
multiprocess model. 
 
Based on the single process model, we 
would conclude that cohabiting couples 
who have had children together are not 
significantly more or less likely to 
marry than those who have not.  
However, when we move to a 
multiprocess model the negative effect 
of having one child becomes stronger 
and attains significance at the 5% level.  
This change in the estimates is due to 

the positive correlation between the 
random effects for the transition from 
cohabitation to marriage and births 
within cohabitation.  On average, 
women with a high propensity to marry 
a cohabiting partner have a high 
propensity to have a child during 
cohabitation.  If this form of selection is 
ignored, the estimated odds of marriage 
for women who have had children with 
their current (cohabiting) partner will be 
inflated, leading to the erroneous 
conclusion that having young children 
is not associated with marriage. 
 
Conclusion 
 
We have proposed a multiprocess 
model for the analysis of correlated 
event histories.  By modelling jointly 
the processes of marital dissolution, the 
outcomes of cohabitation and 
childbearing we allow for endogeneity 
of the presence of children born within 
partnerships.  While adopting a 
multiprocess approach leads to little 
change in the substantive conclusions 
about the effects of prior fertility 
outcomes on partnership dissolution, a 
negative effect of the presence of young 
children on the transition from 
cohabitation to marriage emerges.  In 
addition, the multiprocess model reveals 
a number of interesting findings 
regarding correlations between the 
unobserved factors influencing the 
different processes.  For example, a 
negative residual correlation between 
the hazards of marital dissolution and of 
a marital birth suggests that women 
with a high risk of dissolution tend to 
delay or limit childbearing within 
marriage. 
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Future research under the current 
project will explore partnership 
transitions and fertility for women from 
the 1970 British Cohort Study (BCS70).  
The experiences of this younger cohort 
will be compared with those of the 1958 
birth cohort for ages 16-30.  Questions 
for further research include whether the 
effects of the presence of children on 
partnership dissolution and the 
movement from cohabitation to 
marriage have changed as single 
parenthood and non-marital births 
become increasingly common. 
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Introduction 
 
In this article we illustrate how the 
performance of MCMC methods can be 
improved by particular 
reparameterisation schemes in the 
MCMC literature.  We use as an 
example a four way crossed 
classification model fitted to the 
Wytham Woods great tit dataset of bird 
nesting attempts recently analysed in 
Browne et al. (2004).  We describe two 
methods, hierarchical centering 
(Gelfand et al., 1995) and parameter 
expansion (Liu et al., 1998) and show 
how they can improve the efficiency of 
a Gibbs sampler algorithm.  We then 
show how the methods can be 
combined to create a more efficient 
MCMC estimation algorithm. 
 
The MLwiN software package (Rasbash 
et al., 2000), based on the IGLS 
algorithm (Goldstein, 1986), has 
introduced random effect modelling to a 
large number of applied researchers in 
many disciplines.  Rasbash and 
Goldstein (1994) developed an 
extension to the IGLS algorithm that 
deals with cross-classified models by 
forming a constrained nested model 
formulation.  This method works well 
with data structures that are 

approximately nested but has 
difficulties with larger datasets with 
many crossed classifications.  Patterson 
and Thompson (1971) derived a 
restricted maximum likelihood (REML) 
approach for cross-classified models 
and an efficient implementation of this 
approach (Gilmour et al., 1995) is 
implemented in the GenStat software 
package. 
 
In recent years a second estimation 
engine has been included in the MLwiN 
software package based on Monte Carlo 
Markov Chain (MCMC) estimation.  
MCMC algorithms are easily extended 
to fit cross-classified random effects 
models as described in Chapter 14 of 
Browne (2002).  The MCMC engine in 
MLwiN is designed with speed in mind 
and uses standard Gibbs sampling and 
Metropolis Hastings algorithms (see 
Browne, 2002 for details).  This 
sometimes leads to poor efficiency of 
the MCMC sampler and bad ‘mixing’ 
of the chains it produces i.e. the chains 
are heavily autocorrelated. 
 
There are many algorithms that fall 
under the MCMC banner and there has 
been a lot of research on developing 
more efficient algorithms for specific 
models.  The WinBUGS (Spiegelhalter 
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et al., 2000) software package is a 
general purpose MCMC estimation 
software package which although 
generally slower than MLwiN for the 
equivalent model, currently has far 
greater flexibility in terms of model 
choice.  In this article we review two 
developments in MCMC algorithm 
construction that can be easily 
implemented in WinBUGS and result in 
great improvements in the efficiency of 
the resulting MCMC sampler.  Before 
describing each of these techniques we 
briefly describe our example dataset and 
model that will be used to compare the 
MCMC algorithms.  We then briefly 
describe the two developments used in 
this article before looking at the effects 
they have on our model.  We finish with 
some brief conclusions and discuss 
extensions to this work. 
 
Wytham Woods great tit dataset 
 
Random effect modelling can be used in 
many application areas and for our 
example we use a dataset from bird 
ecology.  Wytham Woods in 
Oxfordshire is a site where a long-term 
individual based study of great tits has 
been carried out, initiated by David 
Lack in 1947.  We consider a dataset of 
4165 observations taken over a 34-year 
period (1964-1997).  Each observation 
is a breeding attempt for a pair of great 
tits and the dataset contains six response 
variables for each observation.  We also 
have for each attempt the identification 
of the male and female birds involved 
plus the year of the attempt and the 
nestbox.  From a substantive point of 
view interest lies in the relative 
importance of the genetic and 
environmental effects and Browne et al. 

(2004) consider fitting a multivariate 
response cross-classified model to the 
dataset.  
 
For our purposes we will consider just 
one of the response variables - clutch 
size - and examine the univariate 
normal response model fitted to it in 
Browne et al. (2004).  The model can be 
written using the notation of Browne et 
al. (2001) as: 
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where  is the clutch size for 
observation i.  The four sets of u’s are 
random effects with the superscripts 
identifying the respective higher levels.  
The subscripts are functions that for 
each observation identify the 
corresponding higher level unit.  We 
have added diffuse priors for all 
unknown parameters with ε = 10-3. 

iy

 
The dataset structure is described in 
Table 1 and here we see that for many 
of the random effects, in particular the 
male and female bird effects we have 
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very little data to work with.  In fact 
some of these effects are not identifiable 
via the data alone as we have many 
pairs of male and female birds who only 
ever mate with each other and hence 
their relative effects are estimated via 
their prior distributions.  This model 

and dataset was chosen as the efficiency 
of the standard Gibbs sampling 
algorithm as used in Browne et al. 
(2004) is poor (in fact they run this 
model for 250k iterations to get 
‘reasonable’ estimates). 
 

 
Table 1.  Summary of the potential sources of variation in the great tit dataset 
 
Source Number Median observations per id Observations per id 
Year 34 104 19-250 
Nestbox 968 4 1-16 
Male Bird 2986 1 1-6 
Female Bird 2944 1 1-6 
 
Model (1) was run for 50,000 iterations 
following a burn-in of 5,000 iterations 
using both MLwiN (version 2.0) and 
WinBUGS (version 1.4).  Note the 
MLwiN to WinBUGS interface was 
used to generate the WinBUGS code 
(see Browne, 2002, Chapter 8).  The 
point estimates and 95% credible 
intervals for the fixed effect (average 
clutch size) and five variance estimates 

are given in columns 2 and 3 of Table 2.  
As we would expect, given both pieces 
of software are supposed to fit the same 
algorithm, we have very similar 
estimates.  The largest differences are in 
the point and interval estimates of the 
between male variance and these may 
be explained by looking at the 
autocorrelations in the chains.  

 
Table 2.  Point estimates (means) and 95% credible interval estimates for each method 
 
Parameter MLwiN 

Gibbs 
WinBUGS  
Gibbs 

WinBUGS 
Hierarchical 
centering 

WinBUGS 
Parameter 
Expansion 

WinBUGS 
Both methods 

0β  8.805 
(8.589,9.025) 

8.810 
(8.593,9.021) 

8.809 
(8.596,9.023) 

8.806 
(8.582,9.024) 

8.810 
(8.593,9.024) 

2
)5(uσ - Year 0.365 

(0.215,0.611) 
0.365 
(0.216,0.606) 

0.365 
(0.215,0.606) 

0.377 
(0.220,0.630) 

0.365 
(0.215,0.607) 

2
)4(uσ - 

Nestbox 

0.107 
(0.059,0.158) 

0.108 
(0.060,0.161) 

0.108 
(0.060,0.161) 

0.110 
(0.060,0.165) 

0.109 
(0.061,0.162) 

2
)3(uσ - Male 0.045 

(0.001,0.166) 
0.034 
(0.002,0.126) 

0.034 
(0.002,0.126) 

0.064 
(0.001,0.172) 

0.070 
(0.001,0.178) 

2
)2(uσ - Female 0.975 

(0.854,1.101) 
0.976 
(0.858,1.097) 

0.976 
(0.857,1.097) 

0.971 
(0.853,1.094) 

0.968 
(0.848,1.089) 

2
eσ -

Observation 

1.064 
(0.952,1.173) 

1.073 
(0.968,1.175) 

1.073 
(0.968,1.175) 

1.049 
(0.938,1.158) 

1.046 
(0.935,1.157) 
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Table 3 gives effective sample size 
(ESS) estimates for each of the 
parameters for each method with the 
standard Gibbs sampler 
implementations in MLwiN and 
WinBUGS given in columns 2 and 3 
respectively.  The ESS (Kass et al., 
1998) equals the number of iterations 
divided by a measure of the correlation 
of the chain.  For an independent 
sampler the ESS will equal the actual 

number of iterations.  It should be noted 
that the differences in ESS between 
MLwiN and WinBUGS here give an 
indication of the size of Monte Carlo 
errors for this statistic.  We see that the 
between year variance has greatest ESS 
whilst the between male variance has a 
very poor ESS of ~35 for 50,000 actual 
iterations.  This will explain why we are 
observing greater variation between 
estimates for this parameter. 

 
Table 3.  Effective sample sizes resulting from runs of 50,000 iterations following a 
burn-in of 5,000 iterations 
 
Parameter MLwiN 

Gibbs 
WinBUGS  
Gibbs 

WinBUGS 
Hierarchical 
centering 

WinBUGS 
Parameter 
Expansion 

WinBUGS 
Both 
methods 

0β  671 602 35063 635 34296 
2

)5(uσ - Year 30632 29604 34626 29366 34817 
2

)4(uσ - 
Nestbox 

833 788 789 4887 5170 

2
)3(uσ - Male 36 33 33 600 557 

2
)2(uσ - 

Female 

3098 3685 3683 8572 8580 

2
eσ -

Observation 
110 135 135 1677 1431 

Time  519s 2601s 1864s 3662s 2526s 
 
In the final row of Table 3 we see the 
time to run for 55,000 iterations and we 
see that the MLwiN implementation is 
significantly faster taking roughly a 
fifth of the time of WinBUGS.  A fair 

comparison measure for competing 
MCMC algorithms is to calculate how 
quickly they can produce a particular 
ESS or equivalently the ESS per minute 
and these figures are given in Table 4. 
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Table 4.  Effective samples per minute (after burn-in) for each method 
 
Parameter MLwiN 

Gibbs 
WinBUGS  
Gibbs 

WinBUGS 
Hierarchical 
centering 

WinBUGS 
Parameter 
Expansion 

WinBUGS 
Both 
methods 

0β  85.3 15.3 1241.5 11.4 896.1 
2

)5(uσ - Year 3895.4 751.2 1226.0 529.3 909.7 
2

)4(uσ - 
Nestbox 

105.9 20.0 27.9 88.1 135.1 

2
)3(uσ - Male 4.6 0.8 1.2 10.8 14.6 

2
)2(uσ - 

Female 

394.0 93.5 130.4 154.5 224.2 

2
eσ -

Observation 
14.0 3.4 4.8 30.2 37.4 

 
Here as expected we see that MLwiN 
gives roughly five times the number of 
samples per minute as WinBUGS.  We 
will now describe the two techniques 
that we hope will improve the ESS 
figures and explain how they can be 
used in our example. 
 
Hierarchical centering 
 
MCMC algorithms work by aiming to 
create chains of independent draws 
from the joint posterior distribution of 
all unknown parameters in our 
statistical model.  They do this by 
considering in turn groups of 
parameters and sampling from the 
conditional posterior distribution of 
each group.  In the case of our model 
and all algorithms considered in this 
article each group consists of one 
parameter, although there exist block-
updating algorithms, for example 
structured MCMC (Sargent et al., 
2000).  In our example we have many 
random effects at each classification 

each of which is a parameter, which 
combined with the variances and the 
fixed effect results in a total of 6938 
parameters and hence a 6938 
dimensional joint posterior distribution!  
The main reason that we see poor 
effective sample sizes is strong 
correlations within the joint posterior 
distributions of groups of the 
parameters and this is a motivation for 
block updating algorithms.  The first 
alternative is to consider 
reparameterisations of the parameters 
that remove the correlations. 
 
In Table 3 we may expect poor ESS for 
the male variance given that we have 
very little information about each male 
bird effect.  However, it is also 
noticeable that β0, which represents 
average clutch size, has reasonably 
small ESS (~600).  We have far more 
information on this variable so why are 
we getting poor MCMC efficiency?  
The hierarchical centering method 
(Gelfand et al., 1995) was devised for 
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nested random effect models but can 
also be adapted to improve the mixing 
of β0.  
 
If we consider the first line of (1) we 
see that β0 is involved in the mean 
likelihood contribution for each 
observation, which consists of a sum of 
β0 plus 4 random effects.  There is, 
therefore, strong correlation between 
the value of β0 and all the random 
effects.  To remove this correlation we 
can consider centering with respect to 
one of the higher-level classifications: 
moving β0 from the first line of model 1 
and including it instead as the mean of 
one of the set of random effects.  We 
will choose the year level as the 
between year variance has greatest ESS, 
although our choice here is rather 
arbitrary.  The resulting model is: 
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 (2) 

 
Here we have replaced the year level 
residuals  (with mean 0) with the 

year level random effects  (with 
mean β0).  Models (1) and (2) are 

equivalent and are simply different 
parameterisations of the same model.  
The results of fitting (2) in WinBUGS 
are given in the fourth columns of 
Tables 2, 3 and 4.  The conditional 
distribution of β0 in the new 
parameterisation is independent of three 
of the four sets of residuals and is faster 
to compute resulting in a speeding up of 
the MCMC algorithm.  The change in 
ESS for β0 is remarkable, from ~600 to 
~35,000 and the other parameter 
affected by the reparameterisation, 

, also has an increase in ESS from 
~30,000 to ~35,000.  Figures 1 and 2 
show the trace plots and lag-1 
autocorrelation plots for models (1) and 
(2). 

)5(
)(iyearu

)5(
)(iyearβ

2
)5(uσ

 
Figure 1.  β0 trace and autocorrelation 
plot for the basic Gibbs sampler 
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Figure 2.  β0 trace and 
autocorrelation plot after 
hierarchical centering 
 

 
 
In Figure 1 we see the cigar shaped 
autocorrelation plot suggesting high 
autocorrelation.  In Figure 2 we see that 
this plot is now a healthy oval shape 
and that the trace plot shows better 
mixing.  Returning to Table 3 we see 
that none of the ESS for the other 
parameters is affected by hierarchical 
centering.  In particular the ESS for the 
between male variance is still around 30 
and to cure this we turn to our second 
method. 
 
Parameter expansion 
 
In the last section we have shown how 
hierarchical centering can improve the 
ESS for β0 by using a 
reparameterisation that removes the 
correlation between certain parameters.  
Figure 3 shows the trace plots for the 
male bird variance and one of the male 

bird residuals using the standard Gibbs 
sampling algorithm on model (1).  Here 
we see that the variance trace has very 
poor mixing and the variance gets stuck 
for long periods of time close to zero.  
The residual trace is particularly 
interesting as for each bird we do not 
have much information and hence how 
the trace appears is very closely linked 
to the variance trace.  When the 
variance is large the residual trace 
covers the whole of the posterior and 
when the variance is small the residual 
trace is concentrated near zero.  
 
Figure 4 shows lag-1 autocorrelations 
for the variance and residual.  It is 
interesting that here the plot for the 
variance shows clearly the problem of 
high autocorrelation whereas the pattern 
for the residual trace is masked in the 
autocorrelation plot due to the good 
mixing behaviour when the variance is 
large.  The problem we have to contend 
with here is the correlation between the 
variance and the residuals.  In particular 
when the variance parameter becomes 
small, the residuals are also small and 
hence using univariate updating 
methods we struggle to escape this part 
of the posterior.  A solution lies in the 
technique of parameter expansion. 
 
Parameter expansion is a method that 
was originally developed by Liu et al. 
(1998) to speed up the EM algorithm.  
This method was then considered in 
relation to the Gibbs sampler by Liu and 
Wu (1999) and has been considered 
particularly for random effect models 
by Van Dyk and Meng (2001), Gelman 
et al. (2004) and Gelman (2004a).  The 
method consists of augmenting the 
model that we wish to fit with 
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additional parameters to form an 
expanded model.  Some of these 
additional parameters are not 
identifiable but there exists within the 
model an ‘embedded model’ which is 
identifiable and is the original model we 
wished to fit.  This means that the 
original parameters can be constructed 
from the new augmented parameter set.  

In our example we wish to reduce the 
effect of the correlation that exists 
between the male residuals and the 
between males variance.  We will also 
do the same for the other four 
classifications.  This we achieve by in 
our model multiplying each set of 
residuals by an additional parameter αi.  
Our model then becomes:  

 
Figure 3.  Trace plots for the male bird variance σ2

u(3) and one of the male bird 
random effects, u1

(3) for the basic Gibbs sampler formulation 
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Figure 4.  Lag-1 autocorrelations for the male bird variance σ2

u(3)  and one of the 
male bird random effects, u1

(3) for the first 5000 stored iterations for the basic 
Gibbs sampler formulation 
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The original parameters can be found by 

=)(k
iu kα )(k

iv  and = for 
individual i in classification k.  When 
all the α parameters are one we have our 
original model.  As the 

2
)(kuσ 2

kα 2
)(kvσ

kα parameters 
multiply both the variance and all the 
residuals they allow the sampler a quick 
route out of the part of the posterior 
near the origin.  It should be noted that 
this model is not identical to the earlier 
models as the prior distribution for the 
(original) random effect variances is no 
longer the distribution (see 
Gelman, 2004b for details). 

),(1 εε−Γ

 
Model (3) was run in WinBUGS and 
the results are given in the fifth columns 

of Tables 2, 3 and 4.  In Table 3 we see 
that all the variance parameters have 
improved ESS (apart from the between 
year variance which exhibits no 
change).  The ESS improvement is 
(relatively) greatest for the between 
male variance with almost a 20-fold 
improvement.  Figures 5 and 6 show 
trace plots and lag-1 autocorrelation 
plots for the between males variance 
and one residual using (3).  Here we see 
great improvement in the mixing of all 
four parameters and although the 
variance trace is not perfect it is a great 
improvement on the trace in Figure 3. 
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Figure 5.  Trace plots for the male bird variance σ2

u(3) and one of the male bird 
random effects, u1

(3) for the parameter-expanded Gibbs sampler formulation 
 

 
 
 
Figure 6.  Lag-1 autocorrelations for the male bird variance σ2

u(3) and one of the 
male bird random effects, u1

(3) for the first 5000 stored iterations for the 
parameter-expanded Gibbs sampler formulation 
 

 
 
Combining the methods 
 
In the previous section we have 
considered two methods that have 

improved the MCMC efficiency of parts 
of our cross-classified model for the 
great tit dataset.  Hierarchical centering 
improved the ESS for β0 and the 
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between years variance whilst 
parameter expansion improved the 
mixing of all the other variances.  It is 

easy therefore to combine the two 
methods and this results in the 
following model: 
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The results of fitting this final model in 
WinBUGS are given in the last column 
of each of Tables 2, 3 and 4.  In Table 3 
we see that all parameters have 
benefited when compared with our 
original formulation.  Table 4 however 
does show something interesting.  The 
original formulation in MLwiN 
produces larger ESS per minute for both 
the between-year and between-female 
variances than our final model in 
WinBUGS.  This shows that work on 
fast implementations of algorithms is 
also important when aiming to improve 
your MCMC sampler. 
 
Conclusions 
 
In this paper we illustrate the use of two 
techniques that can improve the 
efficiency of MCMC sampling 
algorithms.  Our example from bird 
ecology is a challenging dataset and we 
have shown that both hierarchical 
centering and parameter expansion have 
roles to play in improving MCMC 
efficiency on our example model.  We 
have steered clear of the issue of model 
selection.  However, in Browne et al. 
(2004) the DIC diagnostic of Spiegel 
halter et al. (2002) suggests that the 
model we consider with all four sets of 

random effects is to be preferred over 
any of its sub-models.  
 
We have used WinBUGS to 
demonstrate both hierarchical centering 
and parameter expansion, as it is very 
easy to modify the WinBUGS code to 
implement these features.  As noted 
earlier the standard Gibbs sampler in 
MLwiN still performed better in terms 
of ESS per minute for two of the six 
parameters of interest and so we intend 
to investigate implementing these two 
techniques in MLwiN in future research.  
We are also interested in comparing the 
performances we have achieved here 
with block updating techniques such as 
structured MCMC (Sargent et al., 2000) 
on this and similar examples. 
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Alastair Leyland 
University of Glasgow 

 
This book provides comprehensive 
coverage of small area estimation. It 
covers the theory and methods from the 
most basic estimators to sophisticated 
model-based estimators using a variety 
of estimation techniques.  The term 
“small area” in the title is actually a 
general term for “any sub-population 
for which direct estimates of adequate 
precision cannot be produced”.  This 
means that the book will be of interest 
to a broad spectrum of readers, although 
statisticians working in survey research 
will remain its primary audience. 
 
Following a brief introductory Chapter, 
Chapter 2 provides background material 
on direct domain estimation; that is, it 
uses values of the variable of interest, 

, taken only from sample units in that 
domain or area.  Chapter 3 then covers 
traditional demographic methods for 
population estimation which use 
indirect estimators (estimators that 

“borrow strength” by using values of  
from related areas or time periods). 

y

y

 
Chapter 4 considers indirect domain 
estimation.  Synthetic estimators, 
composite estimators and James-Stein 
estimators are all introduced for use 
with sample survey data, typically in 
conjunction with auxiliary population 
data. 
 
The bulk of the book – the 207 pages of 
Chapters 5 to 10 – covers the use of 
models for small area estimation.  Rao 
lists four advantages that model-based 
estimation provides: the use of model 
diagnostics to find models that fit well; 
the ability to attach measures of 
precision to each small area estimate; 
the extension to include non-normal and 
even complex (e.g. spatially structured) 
data; and the accurate small area 
inferences available through random 
effects models or mixed models. 
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Chapter 5 introduces the basic area level 
model and basic unit level model.  
Some straightforward extensions are 
also given including spatial models, 
multilevel models and generalized 
linear mixed models. 
 
Chapters 6 to 8 then focus on empirical 
best linear unbiased prediction 
(EBLUP) models; Chapter 6 covers the 
theory, Chapter 7 the basic models and 
Chapter 8 extensions to the basic area 
level and unit level models.  Chapter 6 
also describes model estimation and 
selection using two popular software 
packages – SAS PROC MIXED and the 
S-PLUS function lme.  The special case 
of block diagonal covariance structures 
– common in small area estimation – is 
given particular attention, including the 
use of transformation method 
diagnostics and influence diagnostics 
for the linear mixed model.  Chapter 7 
applies the theory relating to block 
diagonal covariance structures from 
Chapter 6 to the basic area level and 
unit level models of Chapter 5.  The 
array of extensions to the EBLUP 
models considered in Chapter 8 include 
time series and cross-sectional models, 
spatial models and two level models. 
 
Chapters 9 and 10 then cover empirical 
Bayes (EB) and hierarchical Bayes 
(HB) estimation methods.  The main 
extensions of Chapter 9 include linear 
mixed models, disease mapping, 
constrained empirical Bayes and 
empirical linear Bayes (ELB) methods. 

There is also detailed coverage of the 
estimation of approximations to the 
posterior variance of the EB estimator 
and EB confidence intervals.  Chapter 
10 provides a brief introduction to 
Markov Chain Monte Carlo (MCMC) 
estimation and then covers its 
application to the basic area level and 
unit level models along with many 
extensions including two level models, 
disease mapping and exponential family 
models. 
 
This largely theoretical book brings 
together three facets.  Firstly, there is 
sufficient detail for anyone to apply any 
of the estimators to their own data. 
Secondly, the book contains the proofs 
of many theorems.  Finally, methods are 
illustrated throughout using many 
varied examples.  This book is not for 
the lazy; the reader is not led gently 
through the analysis of example data 
sets.  In fact, many of the examples 
form a narrative as opposed to being 
quantitative – illustrating the data that 
have given rise to the use of the 
estimators without necessarily 
presenting the results.  However, in the 
331 references provided there are 
examples of applications of all of the 
estimators.  This widens the appeal of 
the book and means that its audience 
will include those interested in the 
application and those interested in 
developing the methodology or the 
theory of small area estimation.  This 
book will be a welcome addition to my 
bookshelf. 
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Please send us your new publications in multilevel modelling 

for inclusion in this section in future issues. 

 
 

 
MLwiN Clinics in London 

 
Wednesday 6 October 2004 

Wednesday 3 November 2004 
Wednesday 1 December 2004 

 
at 
 

Centre for Multilevel Modelling 
11 Woburn Square, London WC1H 0NS 

 
Contact MLwiN Technical Support for appointments 

Tel: +44 (0) 20 7612 6688 
mlwin.support@ioe.ac.uk

 
Future clinic dates will be announced at: 

http://multilevel.ioe.ac.uk/support/clinics.html
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