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Abstract: We propose a general discrete time model for multilevel event history data. The model is
developed for the analysis of longitudinal repeated episodes within individuals where there are multiple
states and multiple types of event (competing risks) which may vary across states. The different transitions
are modelled jointly to allow for correlation across transitions in unobserved individual risk factors.
Implementation of the methodology using existing multilevel models for discrete response data is described.
The model is applied in an analysis of contraceptive use dynamics in Indonesia where transitions from
two states, contraceptive use and nonuse, are of interest. A distinction is made between two ways in
which an episode of contraceptive use may end: a transition to nonuse or a switch to another method.
Before adjusting for covariate effects, there is a strong negative residual correlation between the hazards
of a transition from use to nonuse and from nonuse to use; this correlation is due to a tendency for
short periods of nonuse after a birth to be followed by long periods of using the same contraceptive
method.
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1 Introduction

Event history data are collected in many surveys, providing a longitudinal record of
events such as births, deaths and changes in employment and marital status. These data
are often highly complex, with common features including repeated events, multiple
states and multiple types of event (competing risks). While there are methods for
handling repeated events combined with either multiple states or competing risks,
existing methodology does not allow all three features to be handled simultaneously. In
this paper, we propose a general event history model for the analysis of repeated
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durations where there may be several states and multiple types of event. A key
advantage of our approach is that it may be implemented using any software that
can fit multilevel models to multinomial response data. Practical issues such as data
preparation and model specification are also discussed in the paper, and in further
documentation available from the Statistical Modelling website.

The methodological development is motivated by a study of contraceptive use
dynamics. Monthly data on contraceptive use are now collected retrospectively in a
number of developing countries, as part of the Demographic and Health Survey (DHS)
programme. From these data it is possible to construct a contraceptive use history
consisting of episodes of use and nonuse. An episode of use is typically defined as
a continuous period of using the same method of contraception. Previous studies of
contraceptive use dynamics using these data have focused on contraceptive discon-
tinuation, allowing for repeated episodes of use and different reasons for discontinua-
tion in a competing risks framework (e.g., Steele et al., 1996b). Periods of nonuse have
been ignored. However, the transition from nonuse to use is also important for
evaluation of family planning programmes since women who do not quickly resume
contraceptive use after a birth, or after discontinuing use of a method, are likely to be
at risk of having an unintended pregnancy. In this paper, we consider episodes of
both contraceptive use and nonuse and model transitions between use of different
contraceptive methods and nonuse simultaneously. Use and nonuse of contraception
are examples of non-absorbing states. By jointly modelling transitions from use and
nonuse, it is possible to test explicitly for state-dependent covariate effects. A joint
model also allows for residual correlation in individual transition rates across states,
which might arise because of unobserved factors that affect more than one type of
transition.

We distinguish between two types of transition from use of a given method: a
transition to nonuse or a switch to a different method. These two types of event can be
thought of as competing risks. The only possible type of transition from nonuse is to
use. We therefore have a situation where the number and types of transition that can
occur depend on the current state. The model developed in this paper can handle state
dependent competing risks.

The model we propose is a generalized multilevel discrete time event history model. A
multilevel model is used to allow for the hierarchical structure that arises from having
repeated episodes (of use or nonuse of contraception) nested within individuals. The
model includes separate individual specific random effects for transitions between use
and nonuse, which may be correlated to allow for shared unobserved individual level
factors. One advantage of choosing a discrete time formulation is that it allows the
model to be cast as a multilevel model for multinomial response data, which may be
fitted using existing software.

The remaining sections of the paper are organized as follows. In Section 2, we give a
brief outline of previous work on event history analysis for repeated events, competing
risks and multiple states. We then describe a general multilevel multistate competing
risks model that allows all three of these common features of event history data to be
incorporated simultaneously. The application of this model to a study of contraceptive
use dynamics in Indonesia is presented in Section 3. Finally, in Section 4, further
extensions to the proposed model are discussed.
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2 Methodology

2.1 Terminology: episodes and states

In the general multistate model described below, an episode is defined as a continuous
period of time spent in a state until an event occurs. The occurrence of an event does not
necessarily lead to a change of state. Therefore there may be repeated episodes within
the same state. For example, in the application to contraceptive use dynamics, an
episode of use is defined as a continuous period of using the same contraceptive method.
There are two types of event that may occur within the use state: a transition to nonuse
(referred to as a discontinuation), or a transition to a different method (a method
switch). While the first type of event leads to a change in state, a method switch results
in the start of a new episode in the use state (or a transition within the same state).

This definition of an episode differs from that conventionally used in multistate
models, where an episode is defined as a continuous period spent in the same state and,
therefore, an event always leads to a transition to another state. It is possible to redefine
episodes or states to follow this more usual definition. In our application, one option
would be to redefine a use episode as a continuous period spent in the use state, i.e.
using any contraceptive method. However, this definition does not allow estimation of
switching rates or method specific discontinuation rates – both of which are commonly
used for evaluation purposes. An alternative approach is to treat each contraceptive
method as a separate state, so that a switch from one method to another leads to a
change in state. This approach is problematic from a practical point of view. There are
more than 10 methods available in Indonesia, and some have few users. Thus having a
state for each method would lead to a large transition matrix, with some extremely rare
transitions which are not of substantive interest; of major interest for family planning
programme evaluation are the broader types of transition (discontinuation, switching
and nonuse to use). We therefore follow our original definition of episodes and states,
but consider method specific effects of duration and covariates on discontinuation and
switching rates. Our definition of episodes and states may also be useful in other
applications. For example in studies of employment, one could group different types of
job or employer into a single employment state and treat a continuous period spent with
the same employer as an episode.

2.2 Previous work on repeated events, multiple states and competing risks

When an event may occur more than once over an individual’s lifetime, the durations
between events may be correlated due to the presence of unobserved individual level
factors. Repeated events are usually handled by including individual specific random
effects in an event history model, leading to a multilevel model. Multilevel event history
models have been developed for the analysis of hierarchical duration data, where the
hierarchical structure results from repeated events within individuals or clustering of
individuals within some higher level grouping such as geographical area. Multilevel
extensions of continuous time proportional hazards models include works by Clayton
and Cuzick (1985), Goldstein (2003: Chapter 10), Guo and Rodrı́guez (1992) and
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Sastry (1997), while discrete time approaches include works by Davies et al. (1992) and
Steele et al. (1996a).

Another extension of the basic event history model allows for the possibility of
multiple states. There may be several non-absorbing states between which individuals
move. Several previous studies have considered models for repeated transitions between
multiple states. Enberg et al. (1990) use a random effects model but, since they assume
individual random effects are uncorrelated across states, their approach amounts to
fitting a separate model for each state. In many applications, this assumption of
independence may be invalid since there may be unobserved factors which influence
transitions from more than one state. Goldstein et al. (2004) also use a discrete time
random effects model, but model jointly transitions from two states, allowing
for correlation between the state specific random effects. An alternative approach
is to use a fixed effects model, such as the proportional hazards model proposed by
Lindeboom and Kerkhofs (2001). While existing methods allow for multiple states
and repeated events, it is assumed that only one type of transition can occur from
each state.

Competing risks are another common feature of event history data. In many
situations, there are several possible ways in which an episode may end, or an event
may occur for one of several reasons. To allow for unobserved individual heterogeneity
in the risks of competing events, various models have been proposed. These models
typically include individual level random effects for each alternative destination. Enberg
et al. (1990) consider a discrete time competing risks model with individual and
destination specific random effects, which is essentially a multilevel multinomial logit
model. Their model, however, assumes that the random effects are uncorrelated across
competing risks, an assumption which is likely to be unrealistic since there may be
common unobservables affecting more than one type of transition. Hill et al. (1993)
propose a nested logit model which relaxes this independence assumption. For
alternative destinations which may be regarded as similar with respect to unmeasured
risk factors, the error terms are decomposed into a component which is common to
similar alternatives and a component which is destination specific. A different approach
to relaxing the independence assumption is adopted by Steele et al. (1996b). They
propose a discrete time competing risks model, formulated as a multilevel multinomial
model, which includes individual and destination specific random effects that may be
correlated across destinations. Theirs is a more general model than that of Hill et al.
(1993) and can be extended to several hierarchical levels where the effects of duration
and covariates may vary across higher level units. However, neither approach allows
for the possibility of multiple states.

2.3 Multilevel discrete time competing risks model

In this section we describe the discrete time competing risks model proposed by Steele
et al. (1996b). The more general model proposed in the present paper is an extension
of this model that allows for multiple states. We focus on discrete time models for
several reasons. First, as is common in studies of human populations where event
times are collected retrospectively, durations of use and nonuse of contraception are
measured in months. A second reason for favouring a discrete time approach is that
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existing methodology for multilevel discrete response data may be used to handle
repeated events. Other benefits of discrete time models include straightforward inclusion
of time varying covariates and the possibility to allow for nonproportional hazards.

Suppose that durations of episodes are measured in discrete time intervals indexed by
t (t¼ 0, 1, 2, . . .). An event time is measured from the start of an episode; when an event
occurs a new episode begins and the clock is reset to zero. For each discrete time interval
t of episode j for individual k, we observe a multinomial variable ytjk which denotes
whether an event has occurred during the interval and the type of event. Suppose there
are R end events. The multinomial response is coded so that ytjk¼ r if an event of type r
has occurred in time interval t, r¼ 1, . . . , R, and ytjk¼ 0 if no event has occurred. The
hazard of an event of type r in interval t, denoted by hðrÞtjk, is the probability that an event
of type r occurs in interval t, given that no event of any type has occurred before the
start of interval t.

The log odds of an event of type r versus no event may be modelled as a function of
episode duration and covariates, using methods for unordered multinomial response
data. Using a logit link, the multilevel discrete time competing risks model may be
written

log
h(r)

tjk

h(0)
tjk

 !
¼ a(r)T

z(r)
t þ b(r)T

x(r)
tjk þ u(r)

k , r ¼ 1, . . . , R (2:1)

The effect of duration is represented by aðrÞ
T

z
ðrÞ
t , where z

ðrÞ
t is a vector of functions of t

and aðrÞ is a parameter vector. For example, if a quadratic function of duration is
assumed for each type of event, zðrÞt ¼ ð1; t; t

2Þ Alternatively, if the duration effect
is assumed piecewise constant, z

ðrÞ
t will be a vector of dummy variables for (possibly

grouped) time intervals. The covariates, represented by x
ðrÞ
tjk, may be defined at the level

of the discrete time interval (time dependent), or at the episode or individual level.
Equation (2.1) defines a proportional hazards model where the effects of covariates are
assumed to be constant across time. Nonproportional effects may be accommodated
simply by adding interactions between z

ðrÞ
t and x

ðrÞ
tjk.

In a competing risks model, the effects of duration and covariates may differ for each
event type, as indicated by the r superscript for a and b. It is also possible that the form
of zt and the set of covariates xtjk may vary across event types. Unobserved individual
specific factors may differ for each type of event; these are represented by R random
effects uðrÞk . The random effects are assumed to follow a multivariate normal distribution,
with covariance matrix Ou; nonzero correlation between random effects allows
for shared or correlated unobserved risk factors across competing risks. The model
may be extended further to allow coefficients of zðrÞt and xðrÞtjk to vary randomly across
individuals.

Model (2.1) may be estimated as a multilevel multinomial model (Goldstein, 2003:
Chapter 4). Several software packages may be used, including MLwiN (Rasbash et al.,
2003), PROC NLMIXED in SAS (SAS Institute, 1999) and WinBUGS (Spiegelhalter
et al., 2000). Further details of the multinomial model for competing risks are given in
Steele et al. (1996b).
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2.4 A multilevel discrete time model for competing risks and multiple states

The model we propose is an extension of Equation (2.1) to handle situations where
there are both competing risks and multiple states. The approaches of Steele et al.
(1996b) and Goldstein et al. (2004) are combined in a general framework. In this
general model, the number and type of events may differ for each state. As discussed in
Section 2.1, the end of an episode does not necessarily lead to a change in state, a
situation we refer to as a transition within a state.

Suppose there are Ri ways in which an episode in state i (i¼ 1, . . . , s) can end. Denote
by h

ðriÞ

tijk the hazard of making a transition of type ri (ri¼ 1, . . . , Ri) in state i in time interval
t of episode j for individual k. The hazard of no transition is denoted by hð0Þtijk. A multilevel
model for competing risks and multiple states may be written

log
h

(ri)
tijk

h(0)
tijk

 !
¼ a

(ri)
T

i z
(ri)
ti þ b

(ri)
T

i x
(ri)
tijk þ u

(ri)
ik , ri ¼ 1, . . . , Ri; i ¼ 1, . . . , s (2:2)

In Equation (2.2) duration and covariate effects may depend both on the state i and on
the type of transition ri. Unobserved individual level factors, represented by random
effects u

ðriÞ

ik , may also vary according to state and transition. The
Ps

i¼1 ri random effects
are assumed to follow a multivariate normal distribution.

2.5 Data preparation and estimation

In this section, we give a brief description of the data reconstruction required before
fitting a discrete time model for multiple states and competing risks. Further details are
given in accompanying documentation available from the Statistical Modelling website.

In order to estimate a discrete time event history model, the data must first be
expanded so that there is a record for each discrete time interval of each episode. For
example, an episode which ended during the third time interval would be expanded to
obtain three records, for t¼ 0, t¼ 1 and t¼ 2. Suppose there are competing risks and
the episode ended for reason r¼ 2, then the multinomial response variable for the three
intervals would be (y0jk, y1jk, y2jk)¼ (0, 0, 2). If the individual had been right censored
during the third time interval, their sequence of responses would be (0, 0, 0). After this
data expansion, model (2.1) or (2.2) may be estimated using any software that can
handle multilevel multinomial response data.

One potential disadvantage of a discrete time approach is that the expanded dataset
may be very large, particularly if the width of the discrete time intervals is short relative
to the observation period. One strategy to reduce the number of records generated is to
group discrete time intervals. In our application, contraceptive use and nonuse dura-
tions are grouped into six month intervals. If the hazard function and covariate values
are constant within each six month period, grouping will not lead to loss of information
as long as the grouped intervals are weighted by exposure time; for each six month
interval, a weight is defined as the number of months during that interval for which the
individual was exposed to the risk of an event. For example, suppose that the episode in
the above example ends during month 14. If durations are grouped into six monthly
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intervals, the episode will be expanded to three records (corresponding to intervals 0–5,
6–11 and 12–17 months). The woman was at risk of an event for the full six months of
the first two six-month intervals, but only for three months of the third interval. The
response vector for this episode will be (0, 0, 2) as before, but the weight vector will be (6,
6, 3). These weights form the denominators for the multinomial responses. Provided
weights are used, grouped time intervals need not be of equal width.

In the analysis that follows we have used a hybrid Gibbs–Metropolis sampling
algorithm. Gibbs sampling is used to update the random effects variance matrix, while
single site random walk Metropolis sampling is used for all the other parameters. As we
have no prior information on likely parameter values we have incorporated suitable
‘diffuse’ prior distributions in the model. Details of the Monte Carlo Markov chain
(MCMC) estimation algorithm and the chosen prior distributions are given in the
Appendix. This method has been implemented in MLwiN v2.0. Details of the MLwiN
MCMC estimation engine are given in Browne (2002).

3 Contraceptive use dynamics in Indonesia

We consider an application of the multilevel multistate competing risks model in an analysis
of changes in contraceptive use over time. Two states are considered: contraceptive use
and nonuse. An episode of nonuse always ends in a transition to use, while for an
episode of contraceptive use there are two competing risks: a woman may discontinue
use of all contraception and become a nonuser, or she may switch to a different method.

3.1 Data and sample de¢nition

The data are from the 1997 Indonesia Demographic and Health Survey (IDHS), a
nationally representative survey of ever married women of ages 15–49 (Central Bureau
of Statistics, 1998). Contraceptive histories were collected retrospectively for a six year
period before the survey. The analysis is based on episodes of contraceptive use and
nonuse for 14 677 women who were married throughout the observation period and
who had previously used contraception.

An episode is defined as a continuous period of nonuse or use of the same contra-
ceptive method. Periods of nonuse that are interrupted by pregnancy are treated as two
separate episodes, one ending when the woman becomes pregnant, and the other
starting after the birth. Periods of nonuse while a woman is pregnant are excluded. The
period of nonuse after pregnancy is considered as a new episode since interest is focused
on nonuse while a woman is at risk of conception. Episodes of use or nonuse that were
in progress at the start of the calendar period (i.e., left truncated episodes) were
necessarily excluded since the start date was not asked for these episodes. The final
analysis sample contains 17 843 episodes of use and 21 285 episodes of nonuse.

The IDHS also collected complete birth histories and a large amount of demographic
and socio-economic information from each woman and her household. A number of
covariates were used in the analysis: age at the start of the episode, education level, type
of region of residence, an indicator of socio-economic status based on household
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possessions, contraceptive method (for episodes of contraceptive use) and an indicator
of whether the episode followed a live birth (for episodes of nonuse). The socio-
economic status indicator has been used in previous studies (Curtis and Blanc, 1997;
Steele and Curtis, 2003) and is based on a simple household possessions score.
Households receive one point for having each of the following: piped or bottled
drinking water, flush toilet, vehicle, radio and a floor that is not dirty. The total
score ranges from 0 to 5 and is categorized as low (0–1), medium (2–3), or high (4–5).
Contraceptive method is classified as 1) pills or injectables (short term hormonal
methods), 2) Norplant1 or intrauterine device (IUD) (longer term clinical methods),
3) other modern reversible methods (mainly condoms) and 4) traditional methods.
Descriptive statistics for all covariates are given in Table 1.

3.2 Modeling strategy

As described in Section 2.5, before fitting a discrete time event history model the data
first must be expanded so that there is a response for each time interval in an episode.
The expanded dataset using one month intervals contained 543 737 observations.

Table 1 Distribution of women=episodes by covariates, Indonesia 1997

No. of women % of women

Woman level variables
Education

None 1257 8.6
Primary 7643 52.1
Secondary þ 5777 39.4

Type of region of residence
Rural 10 393 70.8
Urban 4284 29.2

Socio-economic status
0–1 (low) 2418 16.5
2–3 (medium) 7261 49.5
4–5 (high) 4998 34.0

No. of episodes % of episodes
Episode level variables: nonuse
Episode follows a live birth

No 7677 36.1
Yes 13 608 63.9

Age at start if episode (years)
<25 8050 37.8
25–34 10 171 47.8
35–49 3064 14.4

Episode level variables: use
Contraceptive method

Pill=injectable 13 736 77.0
Norplant1=IUD 2740 15.4
Other modern 323 1.8
Traditional 1044 5.9

Age at start of episode (years)
<25 7165 40.2
25–34 8277 46.4
35–49 2401 13.5
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However, as for each transition the hazard is fairly constant within six month intervals
and none of the covariates are time varying, the width of discrete time intervals was
increased to six months. This reduced the size of the dataset to 109 666 observations. In
the analysis, observations were weighted by the number of months for which a woman
was exposed to the risk of an event during that six month interval (see Section 2.5).
Note that aggregation of time intervals does not affect the number of episodes. If there
was more than one episode within a six month interval, all such episodes were retained
in the reduced dataset, with a duration of one six month interval (and appropriate
weight) recorded for each.

Duration effects were modelled in different ways for use and nonuse states. For
transitions from contraceptive use, a piecewise constant formulation was found to be a
good fit to the observed logit hazard. A step function was fitted for duration intervals of
0–5, 6–11, 12–23, 24–35 and �36 months. For transitions from nonuse to use, a
polynomial function of the cumulative duration of nonuse was used. Nonproportional
effects of contraceptive method on discontinuation and switching rates were tested by
including interactions between method and duration in the models for transitions from
use. Interactions between method and background characteristics were also considered.
Since none of these interactions were statistically significant, the selected model includes
only main effects of the method.

3.3 Results

Cumulative transition probabilities were calculated using separate life tables for each
state. Based on a multiple decrement life table, within the first 12 months of use 13% of
women have become nonusers and 13% have switched to a different method of
contraception. After 24 months, 23% have discontinued while 18% have switched
methods. The probability of moving from nonuse to use increases rapidly with duration
of nonuse. Within 12 months of the start of an episode of nonuse, 57% of women have
started to use contraception, while 70% start within 24 months. These high rates are
due largely to women resuming contraceptive use after a brief period of nonuse
following a birth.

3.3.1 Random effects

We began by fitting a model including only duration effects (method specific for
transitions from use), before adding the covariates listed in Table 1. The estimated
random effects covariance matrices from both models are shown in Table 2. There is
evidence of unobserved heterogeneity between women in the hazards of all types of
transition. From the upper panel of Table 2, it can be seen that before including
covariates there is a strong negative residual correlation (estimated as �0.78) between
the logit hazards for the transition from use to nonuse and from nonuse to use. The
negative correlation implies that women with a high (low) hazard of moving from
non-use to use tend to have a low (high) hazard of discontinuation. In other words,
women with short (long) periods of use before a discontinuation generally have long
(short) periods of nonuse. On further examination of the data, we found that the
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shortest periods of nonuse follow a live birth. These short postnatal episodes of non-use
are usually followed by a long period of using the same method of contraception, in
order to space or limit subsequent births. After controlling for covariates, in particular
the indicator of whether a period of nonuse immediately followed a live birth, we
found that the residual correlation became small and non-significant (see the estimate of
�0.05 in the lower panel of Table 2). The correlations between the random effects for
the other pairs of transitions are also small and neither is significant at the 5% level.

3.3.2 Fixed effects

The estimated coefficients and standard errors for the fixed part of the full model are
shown in Table 3. We begin by examining the effect of duration of use and covariates
on transitions from contraceptive use to nonuse (‘discontinuation’) or to use of another
method (‘switching’). The risk of discontinuation is fairly constant over the first three
years of use, but greater for longer durations, while the risk of switching is highest in the
first six months of use, then decreases. Norplant1=IUD users are less likely than users of
any other method to become nonusers or to change to a different method. Users of
traditional methods are also relatively unlikely to switch methods. In contrast, condom
users (the main constituent of the ‘other modern’ group) are the most likely to abandon
contraceptive use or to change to another method. Turning to the effects of demo-
graphic and socio-economic characteristics, we see that age has a negative effect on
both discontinuation and switching; older women are more likely than young women to
continue use of the same method. Education has a positive effect on both discontinua-
tion and switching, but the effect on the risk of switching is stronger. Urban women are
more likely than rural women to discontinue, but the type of region has no effect on the
rate of switching. Socio-economic status has different effects on discontinuation and

Table 2 Random effects covariance matrix from models of transitions from contraceptive use and nonuse,
Indonesia 1992–97

Use!nonuse
(discontinuation)

Use!other method
(method switch)

Nonuse!use

Est.a (95% Interval
estimate)

Est. (95% Interval
estimate)

Est.a (95% Interval
estimate)

Duration effects only
Use!nonuse 0.625 (0.493,0.772)
Use!other method 0.014 (�0.078,0.103) 0.731 (0.639,0.829)

0.020b

Non-use!use �0.369 (�0.436,�0.303) 0.084 (0.013,0.150) 0.355 (0.288,0.422)
�0.783b 0.165b

Duration þ covariates
Use!nonuse 0.272 (0.189,0.380)
Use!other method 0.005 (�0.078,0.079) 0.674 (0.585,0.770)

0.011b

Non-use!use �0.031 (�0.098,0.034) 0.089 (�0.001,0.182) 1.325 (1.199,1.457)
�0.052b 0.095b

aParameter estimates are the modal estimates from 50 000 chains.
bCorrelation between random effects.
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switching; a high level of socio-economic status is associated with low discontinua-
tion rates, but higher switching rates, possibly reflecting access to a wider choice of
methods for better-off women.

Next we turn to the factors associated with transitions from nonuse to use. The
probability that a nonuser becomes a user decreases sharply with the duration of non-use,
but this negative duration effect is weaker for episodes of nonuse following a birth. At all
durations, a woman is considerably more likely to adopt contraception if the period of
nonuse follows a birth rather than an episode of contraceptive use. This effect distin-
guishes between short breaks in contraceptive use after a birth and longer term nonuse,
possibly following a problem with contraception such as side effects. Older, uneducated,
rural or low socio-economic status nonusers are less likely to become contraceptive users
than those who are young, educated, urban or better-off.

Table 3 Estimated coefficients and standard errors from model of transitions from contraceptive use and
nonuse, Indonesia 1992–97

Use!nonuse
(discontinuation)

Use! another
method (method

switch)

Non-use!use

Est.a (SE) Est.a (SE) Est.a (SE)

Constant �4.143 (0.085) �5.275 (0.120) �4.100 (0.113)
Duration (months)

0–5 0 – 0 – – –
6–11 �0.057 (0.046) �0.368 (0.050) – –
12–23 �0.076 (0.045) �0.593 (0.052) – –
24–35 0.059 (0.055) �0.579 (0.066) – –
36þ 0.175 (0.064) �0.423 (0.077) – –

Duration – – – – �0.779 (0.065)
Duration2 – – – – 0.056 (0.008)
Age (years)
<25 0 – 0 – 0 –
25–34 �0.398 (0.036) �0.312 (0.044) �0.209 (0.033)
35–49 �0.680 (0.061) �0.505 (0.072) �0.600 (0.052)

Education
None 0 – 0 – 0 –
Primary 0.036 (0.073) 0.436 (0.112) 0.310 (0.060)
Secondary þ 0.246 (0.075) 0.832 (0.114) 0.708 (0.066)

Region of residence
Rural 0 – 0 – 0 –
Urban 0.126 (0.038) 0.055 (0.048) 0.261 (0.039)

Socio-economic status
0–1 (low) 0 – 0 – 0 –
2–3 (medium) �0.123 (0.048) 0.346 (0.071) 0.240 (0.046)
4–5 (high) �0.197 (0.054) 0.288 (0.077) 0.451 (0.052)

Contraceptive method
Pill=injectable 0 – 0 – – –
Norplant1=IUD �1.226 (0.062) �1.070 (0.070) – –
Other modern 0.525 (0.117) 0.553 (0.130) – –
Traditional 0.036 (0.066) �0.596 (0.100) – –

Episode follows live birth 2.673 (0.087)
Episode after live birth�Duration – – – – 0.184 (0.069)
Episode after live birth�Duration2 – – – – �0.014 (0.009)

aParameter estimates are the modal estimates from 50 000 chains.
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4 Discussion

We have shown how to specify and fit general discrete time event history models with
multiple states and multiple types of transition. We have illustrated this for repeated
episodes within individuals but our models can be extended readily to further levels of
nesting. For example, in the application presented here, community specific random
effects could be added to allow for clustering of contraceptive behaviour within
neighbourhoods or villages.

We have assumed that random effects follow a multivariate normal distribution. This
leads to an extremely flexible model in which there may be several correlated random
effects. As with any statistical analysis, however, it is important to carry out diagnostic
checks for departures from normality and other model assumptions. Langford and
Lewis (1998) propose a range of procedures for multilevel data exploration, including
methods for detecting and adjusting for outliers. It may also be possible to protect
against nonnormality using ‘sandwich’ or robust standard errors (Goldstein, 2003:
80–81). Another approach is to assume a nonnormal random effects distribution,
for example a multivariate t-distribution, which could be implemented in WinBUGS
(Spiegelhalter et al., 2000).

We have ignored the possibility of within-individual between-episode random
variation in durations. In principle we can fit this using episode specific random effects,
but in this case the within-individual variation in episode durations is not significant,
possibly due to a relatively low proportion of women who experience more than one
transition of each type. Furthermore, in general it would seem preferable to model
episode heterogeneity using random coefficients associated with individual level
covariates. Thus, for example, the age relationship within individuals may vary across
individuals and this can be modelled by including random coefficients for the age group
category coefficients.

Where the transition states form an ordered categorisation we can use the corres-
ponding ordered category models, for example by modelling cumulative log odds
(Goldstein, 2003: Chapter 4). This could arise, for example, in the modelling of illness
duration where patients make transitions between clinical states which are ordered by
severity. For such models we can also assume an underlying propensity with a probit
link and this can be fitted via MCMC.

Our models can also be extended to the multivariate case where, for each individual,
we wish to study more than one type of episode at a time; for example, durations of
contraceptive use episodes and intervals between births. For each episode type we form
the same set of discrete time intervals and, for each time interval, the response is
multivariate with dimension p, where p is the number of episode types. A dummy
variable is created to indicate each episode type, and these are interacted with covariates
to allow covariate effects to vary across the different types of episode. For ordered
models and for binary response models, using a probit link, we can directly incorporate
correlations between the underlying normal distributions at the episode level and at
higher levels. This then provides the covariance matrix estimates for the episode types at
all levels of the data hierarchy.
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Appendix: Estimation of a multilevel multistate competing
risks model

All the MCMC results in this paper were obtained using MLwiN v2.0. Here, we
describe an MCMC algorithm for estimation of the multilevel multistate competing
risks model of Equation (2.2).

The algorithm is described in the context of the application to contraceptive use and
nonuse in Indonesia. There are s¼2 states, with R1¼ 2 types of end event in state i¼ 1,
and R2¼ 1 end event in state i¼ 2. There are six sets of fixed effects, which have been
split into duration effects (að1Þ1 , að2Þ1 and a2) and covariate effects (bð1Þ1 ,bð2Þ1 and b2) and
three sets of random effects (uð1Þ1k , uð2Þ1k and u2k). All of these parameters are updated
using single site random walk Metropolis updating steps. We also have a 3� 3 variance
matrix, Ou, for the correlated sets of random effects and for this we use a Gibbs
sampling step. For prior distributions we use ‘improper’ uniform priors for all of the
fixed effects and a diffuse inverse Wishart prior with parameters 3 and S3¼ 3� I (the
identity matrix) for Ou.

We make the following substitutions in Equation (2.2) to simplify writing down the
conditional posterior distributions:

Let m(r)
t1jk ¼ exp (a(r)T

1 zt1 þ b(r)T

1 xt1jk þ u(r)
1k), r ¼ 1,2

and mt2jk ¼ exp (aT
2 zt2 þ bT

2 xt2jk þ u2k):

The joint posterior distribution is proportional to

p(Yjy)1Pjk 1þ
X2

r¼1

m(r)
t1jk)�1

 !yt1jk¼0

m(1)
t1jk(1þ

X2

r¼1

m(r)
t1jk)�1

 !yt1jk¼1

� m(2)
t1jk(1þ

X2

r¼1

m(r)
t1jk)�1

 !yt1jk¼2

�Pjk((1þ mt2jk)�1)yt2jk¼0(mt2jk(1þ mt2jk)�1)yt1jk¼1

�PkjOuj
�1=2 exp

�1

2
uT

kO
�1
u uk

� �
� p(Ou)

where uk ¼ (uð1Þ1k ; u
ð2Þ
1k ;u2k) and Y is the set of all unknown parameters. When we come

to calculate the conditional posterior distributions for the unknown parameters they
generally do not have standard forms and consist of all the terms in the earlier
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mentioned joint posterior that contain the parameter of interest. For example, the
posterior distribution for að1Þ1 has the form:

p(a(2)
1 jy,F) / Pjk (1þ

X2

r¼1

m(r)
t1jk)�1

 !yt1jk¼0

m(1)
t1jk(1þ

X2

r¼1

m(r)
t1jk)�1

 !yt1jk¼1

� m(2)
t1jk(1þ

X2

r¼1

m(r)
t1jk)�1

 !yt1jk¼2

which is the first term in the joint posterior. Here F ¼ Ynfað1Þ1 g:
The MCMC algorithm works by updating each of the unknown parameters in turn

by making a random draw from their conditional posterior distributions. The variance
matrix, Ou, is updated by Gibbs sampling and has an inverse Wishart conditional
distribution:

p(O�1
u jy,Y={Ou}) �W3 nw þ 3,

Xnw

k¼1

ukuT
k þ S3

 !�1
2
4

3
5

where nw is the number of women in the dataset.
All other parameters are updated by random walk Metropolis sampling which we

will illustrate via the step for að1Þ
0

1 At iteration m generate a proposed new value að1Þ
�

1
from the random walk proposal distribution að1Þ

�

1 � Nðað1Þ1 ðm� 1Þ; s2
pÞ where s2

p is the
proposal distribution variance which will be tuned via the adaptive method originally
used in Browne and Draper (2000).

The updating step is then:

að1Þ1 ðmÞ ¼ að1Þ
�

1 with probability min½1; pðað1Þ
�

1 jy;FÞ=pða
ð1Þ
1 ðm� 1Þjy;FÞ�,

að1Þ1 ðmÞ ¼ að1Þ1 ðm� 1Þ otherwise.

Similar steps are performed for each of the other unknown parameters. The procedure
of updating all the unknown parameters is then repeated many times to generate a large
sample of estimates for each parameter. We used a burn-in of 5000 iterations to allow
the chains of parameter estimates to converge and then sampled 50 000 iterations.
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