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Multilevel modelling of survey data* 

HARVEY GOLDSTEIN 

Institute of Education, University of London, 20 Bedford Way, London WClH OAL, UK 

1 Introduction 

Real populations have hierarchical structures. Thus, student populations are grouped 
within schools or other institutions which themselves may be further grouped, for example 
within education authorities. Offspring are grouped within families and families or 
households are grouped geographically. 

Procedures for the analysis of data from complex sample surveys recognise such 
groupings or clusterings and a large literature exists which shows how to obtain valid 
inferences from such data. Most of this literature (see, for example, Kish, 1965) is 
concerned with the statistical properties of simple summary statistics-such as means and 
proportions, although there has also been interest in drawing inferences using more 
complex models such as regression (Kish & Frankel, 1974). The need to acknowledge the 
data structure stems from a recognition that the clustering generally induces non- 
independence between population units so that statistical models based upon inde- 
pendence assumptions become invalid. What matters here is the population structure 
rather than the sample structure. For example, if we were to draw a simple random sample 
from a clustered population the non independence of units would remain and affect any 
inferences based uDon statistical models. 

A major potential advantage of a model-based approach to survey data analysis is that 
the hierarchical population structure itself can be modelled and is often of intrinsic 
interest. Likewise, stratification factors can be incorporated directly into a model as group 
effects. Previous attempts to apply models such as regression to clustered data have 
calculated the usual coefficient estimates, for example using ordinary least squares (OLS), 
and then computed unbiased estimates of standard errors, etc. under appropriate 
assumptions about the clustering structure. This is the approach taken by Kish & Frankel 
(1974) and Fuller (1984). 

There are two principal drawbacks to such an approach. First, it is inefficient because 
OLS parameter estimates are less efficient than generalised least squares (GLS) estimates 
based upon the true structure of the residual covariance matrix. Secondly, this approach 
does not allow us to explore the clustering structure itself. More recently (Skinner et al., 
1990), new kinds of models have been employed to overcome these drawbacks and in the 
next section I shall develop such an approach based upon multilevel modelling. Following 
this I will give some examples to show how new kinds of insights can be obtained using 
these models. 

2. The basic multilevel model 

To introduce a simple multilevel model I shall use a data set which consists of public 
examination results for some 31000 16 year olds in what was formerly the Inner London 
Education Authority (ILEA). 
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The data were collected over three years-1985, 1986 and 1987-and to start with I 
consider one year's data. Prior to entry to secondary school, each child in the ILEA was 
assigned to one of three academic achievement bands, largely on the basis of a verbal 
reasoning (VR) test. Band 1 contains the highest 25%, band 2 the next 50% and band 3 the 
bottom 25%. In addition, each child was assigned to an ethnic group by their secondary 
school. School level variables such as the school denomination, gender composition, etc. 
are available. A full description of the data is given by Nuttall et  al. (1989). The response 
variable is a score derived from '0' level and CSE grades whereby an '0' level A grade is 
given a score of 7, a B grade a score of 6, etc. These scores are then summed over all exams 
for each student. 

In the basic model the exam score is regressed on explanatory variables such as ethnic 
group and the VR test (using two dummy variables) so as to make adjustment for selective 
intake differences between schools. We can write such a model as 

Here x refers to ethnic group and z to VR band. We assume that each school has an 'effect' 
uj  and ei j  is the residual for the ith student in the jth school. 

We could view equation (1) as a standard linear model in which a dummy variable is 
defined for each school and estimates obtained for the up In some situations this may be 
appropriate, for example where there are only a few schools and we are interested in those 
schools only. More generally, however, we would choose to regard the sample schools as 
representative of the population of all schools and make inferences about that population. 
This immediately leads us to regard the u j  as random rather than fixed variables. In 
particular we suppose that they have a common distribution, most conveniently a normal 
one characterised by a variance, a: and with a zero mean. In general this variance is 
unknown and one of the aims of the analysis is to estimate it. 

With this assumption equation (1) is no longer a standard regression or any ordinary 
generalised linear model since it contains two random variables rather than a single 
random 'residual'. Efficient estimates, for example maximum likelihood or generalised 
least squares ones, can be obtained by using one of a number of recently developed 
algorithms and corresponding software packages. The present analyses are carried out 
using a software system for three-level analysis, ML3, developed as part of a research 
project supported by the Economic and Social Research Council at the Institute of 
Education (Prosser et  al., 1990). A general introduction to specifying and analysing such 
multilevel models is given by Goldstein (1987). The term 'multilevel' refers to the random 
variables in the model which are defined as varying between units at different levels of the 
hierarchy. Thus equation (1) is a two-level model because there is random variation 
between students (level 1) and between schools (level 2). To illustrate this further consider 
the following cases. 

3 Levels of variation 

Figure 1 is a representation of a simple relationship between a continuous test score 
obtained at intake when children enter a school and an output exam score at some 
appropriate end point. The straight line represents the average relationship and would be 
used to predict the output score for a given input score. The term 'level 1 variation' refers to 
variation in children's output scores. The educational system forms a hierarchy of levels 
where children (level 1) are grouped within schools (level 2) which are grouped with LEA'S 
(level 3) etc. 



237 Multilevel modelling of survey data 

Output 

score 

Intake Score 
Fig. 1. Level 1 variation. 

In Fig. 2 the individual points representing students have been omitted and just the 
average relationship retained. This is given for each of three schools. The inference which 
can be drawn from this diagram is that for any given intake score the predicted output 
scores differ between the schools (level 2 variation). It is in this sense that those researchers 
concerned with 'school effectiveness' talk of school differences. This 'intercept' variation is 
assumed to be random and is that described by the uj in equation (1). 
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Fig. 3. Complex level 2 variation. 
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Fig. 4. Complex level 2 variation. 

In Fig. 3 the lines are no longer parallel, so that the rank ordei of the predicted values 
depends on the actual value of the intake score. This is the pattern which tends to occur in 
real life and leads to some complexity in describing school differences. In this case the 
school slopes are assumed to vary randomly in addition to the intercepts. 

Figure 4 is similar to Fig. 3 except that the students are now grouped into three ordered 
categories on intake, for example VR bands, rather than using a continuously distributed 
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test score. Again, the rank ordering of the three schools depends on the intake category. In 
the analysis to be described in the next section we will allow school differences to vary by 
such intake categories. 

4 A three-level analysis 

Returning to the full data set covering three year cohorts of students we can define a three- 
level model as follows. Level 1 is that of the student, level 2 is that of cohort or year and 
level 3 is that of school. Thus the total variation in exam scores can be decomposed into 
that between students within each cohort, that between cohorts within schools and that 
between schools. Our new model can therefore be written as 

In this model the subscript i refers to the student, as before, the subscript j refers to the year 
or cohort and the subscript k refers to the school. To complete the specification we define 
the random variable distributions 

We also assume that the random variables are independent across levels. 
A further elaboration is desirable. According to model (2) the ethnic group effects or 

differences and those between students from different VR groups are constant, that is the 
same for every school and for each cohort. In reality, however, we might expect that, say, 
the average difference in exam scores between those in VR group 1and VR group 3 varied 
across schools perhaps because of curriculum policies, organisation, etc. To accommodate 
such possibilities we need to make y 1  which estimates the VR1 -VR3 difference, random 
at level 3, so we denote it by y ,,.This leads to two further 'random' parameters, namely the 
variance of this difference and its covariance with v,. 

4.1 Results 

We look first at the 'fixed' coefficient estimates for the elaborated version of model (2) with 
further fixed explanatory variables and random coefficients added. 

When the analysis is carried out a whole series of interesting findings emerge. First, the 
progress of many of the ethnic minority groups such as Pakistanis, Indians, Greeks, South 
East Asians and Bangladeshis is high compared with pupils of English, Scottish, Welsh or 
Irish (ESWI) background. Those from ethnic minority groups are up to a whole 'A' grade 
better on average than those in the ESWI grouping. Secondly, as would be expected, there 
is a very large difference associated with the pupils' VR band on entry to school. Those in 
the top band are, on average, nearly 3 'A' grades ahead of those in the bottom band. 

Table 1 shows a selection of the average group differences estimated in the analysis. 
The 'unadjusted' differences are simply the 'raw' mean group differences before any 
modelling is done, while the 'adjusted' ones are those when account has been taken of the 
intake VR band and other explanatory variables in the model. Thus, whereas the 
Bangladeshi children actually have a lower mean exam score than the ESWI children, 
after adjustment they are much higher than the ESWI children. In other words they make 
more progress. It is this measure of progress which is the basis for comparisons between 
schools. 

The most interesting findings, however, relate to the way in which differences vary 
across schools. Gender differences, ethnic group differences and verbal reasoning band 
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Table 1. ILEA exam results 1985-1987: three-level analysis 

Selected mean differences: (s.e.) 
(a) Unadjusted 


Girls -Boys 2.5 

Bangladesh -ESWI -0.2 


(b)Adjusted 

Girls -Boys 2.5(0.2) 

VR1 band -VR3 band 19.q0.3) 

Bangladesh -ESWI 4.7(0.7) 

Roman Catholic-maintained 2.q0.3) 


Covariance matrix (correlation) 

Intercept VR1- VR3 Carribean -ESWI 

Intercept 2.9 
VR1 -VR3 -1.9(0.0) 17.4 
Carribean-ESWI -0 . q-0.2) -1.8(-0.4) 1.1 

Mean exam score= 19. S.D. = 10. 

differences themselves vary from school to school and from a study of these we can gain 
insights into school differences. 

As can be seen from Table 1 the between-school variance of the VR1- VR3 difference is 
17.4, that is a standard deviation of just over 4 points. Given that the mean difference for 
all students is 18 points, this implies that there are some schools with an estimate of y ,,that 
is a difference of as much as 27 points and others with a difference as low as about 11 (using 
+2 s.d.). For the kth school the model can be made to provide an estimate y",, of its own 
'effect' or 'residual' together with an estimated standard error for this residual. These 
estimates are often known as 'shrunken' estimates (Goldstein, 1987 provides a description 
and rationale). Thus a school with a large estimated difference might be said to have 
'reduced' the initial difference and one with a small difference to have increased it. This 
raises the interesting speculation that certain school curriculum or staffing policies have a 
'homogenising' effect while others have the effect of emphasising initial differences. Since 
the intercept variance is small, the VR band 3 mean does not vary greatly across schools. 
This implies that school differences arise from differences in the means for the VR band 1 
students. 

Table 1 also shows that the gender difference on average is the equivalent of about a 
CSE grade 3 (2.5 points) in favour of girls, but there are schools where the difference is 
negligible and other where it is nearly an 'A' grade. 

4.2 Implications 

By modelling the hierarchical data structure we not only obtain valid inferences for the 
coefficient means in the model, we also uncover interesting variation among schools in the 
values of these coefficients. This particular analysis demonstrates that the average effects 
can provide quite misleading inferences given the large amounts of interschool variation. 

The next stage in such an analysis would be to explore reasons for such interschool 
differences. This might be done by carrying out new studies which measured further 
factors such as curriculum policy or school organisation, and perhaps the social 
background of the students. We could then see whether including such factors in the 
model reduced the between-school variation. Another possibility would be to identify 
those schools with extremely large or small 'effects' and to carry out case-studies of those 
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schools to look for possible explanatory factors. Following the demise of the ILEA such 
studies will be more difficult but other Local Education Authorities have shown interest. 

5 Discrete response data 

In many surveys the response variable is a count or a proportion rather than a continuous 
variable, and analogous multilevel models can be formulated. I shall consider the case of 
proportions as responses where for each level 2 unit or cluster there is a set of level 1 units 
or categories each of which has an associated response proportion. An example is where 
the cluster is a school; the level 1 unit is a classification of students by social class, and the 
response proportion is the number of students with high achievement scores divided by 
the total number of students in each social class category. A simple model can be written as 

nij= a + xIBIxlij+ Uij  (3) 

Here 'nij is the mean proportion for the ith category (level 1 unit) for the jth cluster (level 2 
unit). The xlij are dummy variables describing the structure of the level 1 units or 
categories. A specific example is given in the next section. The uij are random variables at 
level 2, one for each category, with associated variances and covariances. In practice we 
would normally wish to summarise these and in the extreme case simply consider a single 
term uj for each cluster. The observed proportion can now be modelled, for example as a 
binomial variable with mean nij and variance ni,jl -nij)/nij where nij is the number in that 
category. The aim of the analysis, as before, is to estimate the fixed and random 
parameters. 

The above model will often be satisfactory for values of nij which are not extreme, but in 
accordance with standard statistical practice a more realistic model for many data sets is 
that which uses a logit link, namely 

Full details of how to set up and analyse such models are given in Goldstein (1991), and an 
example of the ML3 commands is given in Prosser et al. (1990). 

5.1 A survey of unemployment 

This example is concerned with the analysis of youth unemployment data in Scotland. The 
response variable is the proportion of individuals employed and is categorised by gender 
and qualification level (unqualified, qualified). A total of 122 geographical areas were 
sampled and so we have a two-level model with four (2 x 2) level 1units per level 2 unit (but 
often with some level 1 units missing). The number of cells (mj) per level 2 unit has a 
maximum value of four. 

We write a 'main effects' model, in the exponential form 

'nij=exp(a+Blxijl +B2xij2+uj){l +exp(a+Blxijl + / 3 2 ~ i j 2 + ~ j ) ) - 1  i=  1,. . . , 4  (5) 

where xijl is a dummy variable for gender, xij2 is a dummy variable for qualification level 
and nij is the expected proportion in the ith cell of the (2 x 2) classification for the jth area. 
We use a single random 'intercept' term for each cluster uj. 

Table 2 shows the results of fitting equation (5) together with an explanatory variable 
defined at level 2, the proportion of one-parent families in the area. 

Looking first at the fixed coefficients we see that the proportion employed is higher for 
men and for those with a qualification. Based on the quadratic relationship with the 
percentage of one-parent families, the highest percentage employment occurs in areas with 
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Table 2. Proportion employed by gender, qualification 
and percentage of one-parent families (logit model) 

Parameter Estimate S.E. 

Fixed 
Intercept 
Gender 
Qualification 
Percent 1-parent -
(Percent 1-parent)' 

Random 

Level 2 

0: 


Level I 

The level 1 parameters are ordered by gender within 
qualification. Gender is coded O=female, 1 =male. 
Qualification is coded 0 =unqualified, 1 =qualified. Per- 
centage 1-parent is the percentage of one-parent families 
in the area. This percentage varies from 1.4% to 16.2%. 
Number of level 1 units (cells)=401. Number of level 2 
units (areas) =122. 

about 10% one-parent families, although it is not clear why areas with both high and low 
percentages of one-parent families should have relatively low percentages in employment. 

The between-area variance of 0.21 is fairly substantial in comparison with the effects of 
the fixed explanatory variables. Further analysis of these data would look at other 
explanatory variables, especially those measured at the area level, to see how much of this 
between-area variability could be explained. As in the examination data we can also 
estimate an 'effect' for each area and study the characteristics of the areas with extreme 
estimates. 

The assumption of a single common level 2 variance is made in this model, but we could 
allow any of the fixed coefficients to be random also. In the present case, for example, if we 
allow the gender coefficient to vary across areas we obtain a positive estimate of the 
variance, but with a relatively large standard error. It does indicate, however, that the 
between-area variance for males is larger than that for females. We could make further 
coefficients random, allowing different variances for the chosen categories. 

At level 1, rather than assume binomial variation, a 'scale factor' has been estimated 
which will be 1.0 when the variation is binomial. The scale factors are obtained by defining 
dummy level 1 explanatory variables 

zij={fii(l-ki)/n; I} ' I 2  

which are uncorrelated. The fiij are the predicted means for the categories, and are 
reestimated at each iteration. The scale factors are then the estimated level 1 variance 
estimates of these explanatory variables, as shown in Table 2. As can be seen from the 
estimates these scale factors are fairly close to unity, although this will not always be so. A 
particular case would be where there are substantial clustering effects within the 
designated level 2 units, and departures from unity will indicate that these may be present. 
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6 Discussion 

The advantages of a model based approach to survey data analysis can be realised by the 
application of multilevel models. These models not only provide more efficient estimates 
than traditional approaches, they also allow the exploration of variation between clusters 
which may be of interest in its own right. This is especially so in the analysis of educational 
data, but will also be so in other fields, for example epidemiology, where the clusters are 
institutions or operational units. Likewise stratification factors can also be incorporated 
into the model, as fixed explanatory variables, and their additive and interactive effects 
studied. 

While just two relatively straightforward analyses have been described in this paper, 
more complex models can be constructed readily. Thus, multivariate responses can be 
modelled, and for discrete data this allows us to handle multinomial responses as well as 
binomial responses. It is also worth mentioning that a binary (0,l) response variable 
creates no difficulties. This situation is simply the extreme case of modelling proportions in 
which each level 1 record consists of a single individual. 

An important issue with some kinds of data is that of measurement error. In the first 
example there may be misclassification probabilities associated with assignment to verbal 
reasoning bands, and if these are substantial they can affect our inferences about both 
fixed and random parameters. Likewise at level 2 we can have measurement errors where 
we only have estimates of a level 2 explanatory variable rather than the true values. This 
would occur, for example, where instead of the known proportion of one-parent families 
we only had an estimate based upon a sample survey. In such a case we would normally 
have an estimate also of the measurement error variance and this information allows us to 
construct a modified analysis. Further work is currently being undertaken on this and 
procedures for handling measurement errors will be incorporated in future versions of the 
software. 

The software which has been developed for these analyses, ML3, is a complete data 
analysis package, with general data editing and display facilities together with specially 
tailored data manipulation and plotting for multilevel data structures. It is designed for 
286- or 386-based PC machine, and for the latter is able to utilise extended memory where 
present so that very large data sets can be analysed. A-VAX version is also available. 

7 Summarising remarks 

Real populations have hierarchical structures. Measurements on population units 
typically reflect these structures. Recent developments in multilevel modelling can 
produce analyses which are more efficient and flexible than traditional techniques for 
survey data analysis. This paper give examples from the area of educational achievement 
and surveys of employment. 
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