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1 Introduction 

 

1.1 Motivation 

 

In many of the variables used in the social and medical sciences measurement errors are found. 

These can arise from unreliable measuring instruments, problems with variable definitions or simply 

reflect temporal fluctuations, for example within individual units. Thus, in educational testing, 

repeated test measures on a pupil can be affected by the environment in which the test is 

administered, the process of test administration and the coding and scoring of the data as well as 

day-to-day variation in individual test performance. The errors we are concerned with are essentially 

considered as random and distinct from systematic errors which can lead to biases. We will be 

concerned with measurement errors of two types. The first are those that apply to continuously 

measured variables where the errors have a continuous distribution. The second are more 

appropriately referred to as ‘missclassification errors’ where an individual is classified into one of 

several categories and where there are non-zero probabilities associated with the assigned category 

being correct or incorrect. 

 

The problem of measurement error in single level linear models has a large literature (Plewis, 1985; 

Degracie and Fuller, 1972, Joreskog, 1970) and a growing literature in generalized linear models 

(Clayton, 1992; Carroll et. al., 2006; Skrondal and Rabe-Hesketh, 2004), particularly Bayesian ones 

(Richardson and Gilks, 1993; Gustafson, 2004). Fuller (1987) provides a comprehensive treatment 

and review of the field up to the mid 1980s.  

 

Generally, the literature distinguishes between functional modelling, in which no distribution is 

assumed for the unobserved ‘true values’, and structural modelling, in which assumptions are made 

about their distributions. Despite the growing literature, methods for measurement error adjustment 

are not frequently used in practice. For example, in most applications in the social and medical 
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sciences, a validation subsample is rarely available so that imputation based methods are 

inapplicable (see below). With the exception of Browne et al. (2001), the existing literature deals 

with measurement error in predictor variables only and does not address random coefficient models.  

 

Methods for estimating the parameters of  measurement error models, in particular where the 

variances and covariances of the measurement errors are required, suffer serious drawbacks, and 

have been discussed by Ecob and Goldstein (1983) and Goldstein (1980) and these relate to the very 

nature of such data. Moreover, the assumption that the measurement error covariance matrix is 

independent of the true values is often difficult to verify. Use of other approaches such as the 

SIMEX procedure, which involve both distributions and covariances of latent variables (Wang et al., 

1998) can lead to considerable loss of efficiency for estimating parameters. Moreover, in such 

complex approaches, ensuring identifiability of the measurement error structure typically involves 

imposing further constraints on model parameters.  

 

The consequences of ignoring measurement errors for single level models with independent 

observations are well understood.  Social research data, however, often have a hierarchical structure, 

entailing non-independent observations, and are most efficiently estimated by means of multilelevel 

models (Goldstein, 2003). The behaviour of biases associated with measurement error in covariates 

or the response for such hierarchically clustered data, is not well known and can be complex.  

 

A more recent extension to the case of multilevel models is described by Woodhouse et al. (1996). 

This approach, however, which is based upon moment type estimators, does not apply to the case 

where an explanatory variable containing measurement error has a random coefficient. Partly to deal 

with this case Browne at el., (2001) developed an algorithm using Markov Chain Monte Carlo 

(MCMC) estimation and this has been incorporated into the MLwiN software (Browne, 2004).  

The assumptions underlying this model include: 

1. Measurement errors are independent across explanatory variables 
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2. The measurement error variances are assumed known 

3. The unknown true values are assumed to have Normal distributions 

 

In the present paper we extend this work by allowing for covariances between measurement errors 

and for misclassification errors for categorical predictors. We deal with the 2-level case in detail 

with extensions to three levels being relatively straightforward. Extensions to handle cross classified 

and multiple membership models (Goldstein, 2003, Chapters 11 &12) also involve just the addition 

of appropriate sampling steps within the MCMC algorithm. Our algorithms are implemented in 

MATLAB (Mathworks, 2004) and a compiled version of the software that does not require the use 

of MATLAB, is freely available (Goldstein et al., 2007). We adopt a structural model and 

emphasize the need to specify the behaviour of prior assumptions about the measurement error 

variation via sensitivity analysis. 

 

The article is organised as follows. We begin with a description of the measurement error models 

used for the continuous and the categorical case and the associated assumptions. For completeness 

we also review the salient features of measurement error models for the single level case. We then 

describe an MCMC algorithm for adjusting for these measurement errors. The model is then applied 

in the analysis of pupil’s progress in Mathematics (Blatchford et al., 2002) allowing for 

measurement error in the response and a subset of continuous and binary predictors. We discuss how 

inferences about both fixed and random effects are changed when we allow for measurement error.  

 

1.2 The model of inferential interest 

 

The multilevel model of interest is assumed to be the Normal 2-level model including random 

coefficients, given by 



1 2 1 2 1 2

2

( , ,.... ),    Z ( , ,.... ),    ( , ,.... )

~ (0, ),     ~ (0, )

ij ij ij j ij

T
ij ij ij pij ij ij ij qij j j j qj

j u ij e

y X Z u e

X x x x z z z u u u u

u MVN e N

β

σ

= + +

= = =

Ω

    (1.1) 

where ijX β  is the fixed part of the model involving p regression coefficients β  (including the 

intercept) and p explanatory variables that may be continuous or dichotomous or ordinal, and ij jZ u  

describes the contribution from q random effects at level 2, with a simple level 1 residual term . 

Details of the estimation of the parameters of this model, using maximum likelihood or Bayesian 

MCMC procedures can be found, for example, in Goldstein (2003, Chapter 2).  

ije

 

2 The measurement error model 

 

2.1 The continuous variable case 

 

The first kind of measurement error occurs with continuously distributed variables where the 

observed value for an individual can be written in the form, omitting subscripts, as 0x x m= + , 

where 0x  is the observed value, x the true value and m the measurement error. The context for our 

analysis is that we would like to be able to estimate the parameters of the model (1.1) where the 

predictor and response variables are assumed to have no measurement errors, but in practice we can 

only observe values for some of these variables that contain errors of measurement in the form given 

above. Such errors can arise in a number of ways. For example a measuring instrument may have an 

inherent unreliability, or there may be environmental, social or psychological factors that induce 

random variation over the course of a short time period that we wish to discount. We consider here 

the situation where, for any particular variable with measurement error, we can only observe values 

containing such errors. Thus, we do not, for example, consider the case where the ‘true values’ are 

available for a subset of the data and where methods based upon multiple imputation have been 

developed (Cole et al., 2006). 
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We shall develop our exposition first by considering the simple single-level linear model given by  

 0 1iy xβ β= + +           (2.1) 

where measurement error may occur in the explanatory variable x. We assume that the model of 

interest, that is (2.1), is that which uses the true variable values rather than those observed with 

error. That is, we wish to make inferences about the regression relationship between the true values 

y and x. It should be noted that in some cases, we may wish to use the variables as observed with 

error, for example if we were interested solely in prediction based on these, in which case the 

procedures of this paper do not apply.  

 

In order to enable us to identify model parameters we must make the following assumptions (or 

equivalent ones). First, the true values and the measurement errors are assumed to be uncorrelated, 

and the mean value of m is zero. Secondly, we need to specify a distribution for m, typically Normal 

so that we have 2~ (0, mm N )σ  

 

Finally, for our model, we need to consider the distribution of the true values Fuller (1987) 

distinguishes between ‘structural’ and ‘functional’ models. In the former a probability distribution is 

assumed for x and in the latter case the set of x values is assumed to be fixed. If the set x is fixed the 

estimation uses a known value of the measurement error variance, and as we show in the next 

section, this case can be viewed as a special instance of the former case during the estimation 

process. In our example, and in many, if not most, applications in the social and medical sciences we 

will have information about the relationship between observed and true values as we now explain.  

 

Suppose that we were able to obtain independent replications of 0x , say 0
1 ,.... k

0x x . We could then 

write a simple model  

0 ,      1,....i ix x m i k= + =          (2.2) 



A simple analysis will likewise allow us to estimate 2,  mx σ  as part of a larger model. In a more 

complex model involving x, the existence of replications will likewise generally allow us implicitly 

to incorporate the estimation of 2,  mx σ  into the model.  

 

However, in most practical applications we do not have the possibility of independent replications. 

For example, in administrating an educational test, a residual memory effect will preclude this. 

Hence the following exposition does not assume the existence of such replications. Instead we 

assume: 

1. An independent value of 2
mσ  is available, recognising that this is typically a sample estimate, so 

that we may wish to incorporate uncertainty about 2
mσ  into our analysis, either by supplying a 

prior distribution, as we will see later, or by carrying out a sensitivity analysis over the likely 

range of values for 2
mσ . This value for 2

mσ  is typically obtained via an estimate of the 

‘reliability’ (see below). 

 
2. A distribution for x. This is required because we cannot condition on x in (2.1) (as we can do in 

the replicated situation) and we can only directly observe the distribution of 0x . If we have a 

value for 2
mσ  and assume a joint distribution for the measurement error and 0x , and thus a joint 

distribution for the true and the observed values, we are able to condition on the observed values 

to obtain information about the true values. We shall assume that these distributions are bivariate 

Normal. Thus we have 2~ ( , )x xx N μ σ . We can extend this to the multivariate case in a 

straightforward way by replacing the variance by a covariance matrix. 

 

In the ‘classical’ measurement error model we typically define the reliability of  0x  by 

0 0
0 2 2 2 2( ) / ,    2

x xx x
R R x mσ σ σ σ σ= = = +         (2.3) 
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Thus, given a sample of values 0{ }ix  we can estimate 0
2
x

σ , and hence 2
xσ  if 2

mσ  is assumed known. 

This step effectively becomes incorporated into the estimation process via an MCMC algorithm. 

 

There is, of course, the problem of obtaining a suitable estimate of 2
mσ  and possibly a prior 

distribution for it. We shall not get involved in any debate about how suitable estimates may be 

obtained; see Hand (2004) for a discussion. We do, however, consider the case where measurement 

error variances may vary with the values of explanatory variables. 

 

2.1.1 The effect of adjusting for measurement errors 

 

Consider the simple single level linear model (2) that was introduced earlier. 

0 1i iy x ieβ β= + +  

where we have measurement error in the single explanatory ‘true’ variable, x. As above we have the 

adjusted variances and covariances for the ‘true’ model 

2 0var( ) var( ),    cov( ) cov( )o
x xyx R x xy x y cσ = = = =  

Thus an estimate of the ‘true’ regression coefficient is given by 

 /
var( )

xy
obso

c
b R

R x
=  

where  is the coefficient for the regression based on the observed values, and since the reliability 

is always less than or equal to 1.0, the ‘true’ regression coefficient is greater in absolute value. The 

estimate of the residual variance is given by 

obsb

2

0var( )
var( )

xyc
y

R x
−  

compared with  

 
2

0var( )
var( )

xyc
y

x
−  

for the regression using the observed values, and hence smaller than the latter. 
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Before we go on to an analysis of a data set we will note some restrictions that our models impose. 

Consider the case of two explanatory variables with measurement error, and suppose for simplicity 

that they have the same observed variance equal to 1 and the same reliability, R. Let us also suppose 

that their measurement errors have a correlation of mρ  and that the correlation between the observed 

variables is oρ . 

 

Now, we require that the correlation between the true values lies between -1 and 1 and this implies 

1 1
o

m
oR R

R R
ρ ρρ+

> >
− −

−           (2.4)  

Thus, say, if R=0.7 and 0.8oρ =  then we require 0.33mρ > . A corresponding condition can be 

derived for categorical variables. In our example we shall explore correlated measurement errors 

further, but note that these can easily arise in practice when a set of variables such as obtained from 

ratings or educational tests are carried out under the same conditions or at the same time and where 

random variation over conditions or times is present.  

 

2.2 The categorical variable case 

 

The second type of error is a misclassification error where the observed category of a discrete 

response variable is not necessarily the true category. Suppose we have a binary (0,1) variable, for 

example whether or not a school pupil is eligible for free school meals (yes=1). We assume that the 

allocation to a category is not perfect and we denote the probability of observing a zero (no 

eligibility), given that the true value is zero, by , the specificity, and the probability of 

observing a one given that the true value is zero by . Similarly we have  and 

, the sensitivity. In section 3 we show that knowledge of these misclassification 

probabilities allows us to compute the true probabilities of a zero and a one and how these are used 

in the estimation. 

(0 | 0)obsP

(1| 0)obsP (0 |1)obsP

(1|1)obsP
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We shall only consider, for simplicity, misclassification error for a binary variable; the extension to 

multicategory variables raises no fundamentally new issues.  

 

Gustafson and Le (2002) and Gustafson (2004) study the extent of bias introduced as a result of 

missclassification errors in single level models where binary variables are formed from underlying 

continuous variables. Fox and Glas (2003) model the misclassification of binary variables in a 2-

level model by considering an underlying latent variable structure for the set of binary variables. 

Neither of these approaches directly utilises external values for the misclassification probabilities. 

 

3 Models and Estimation 

 

The general model allows for the possibility that the measurement error covariance matrix can differ 

from individual (level 1 unit) to individual thus allowing for different groups, for example males and 

females to have different measurement error distributions. In particular we can allow different 

measurement error covariance matrices for individuals according to the category observed for a 

categorical variable where this is assumed to have misclassification errors.  

 

3.1 Extension 1: Correlated measurement errors 

 

Suppose we have p explanatory variables containing measurement error and q that do not. The 

model is: 

1 1 1 1 2 2 2 2

1 2 1 2 1 2

[ ( )] [ ( )]

{ , },    { , },     { , }
ij ij ij j ij ij j ij

T T T T T T

y X Z U X Z U

Z Z Z U U U

eβ β

β β β

= + ⋅ + + ⋅

= = =

+
     (3.1) 

where the explanatory variable matrix of true values for those with measurement error is (N x p) 

and  that for those without error is (N x q). For the random part explanatory variables  are 

1X

2X 21, ZZ
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indicator vectors of dimensions (p x 1) and (q x 1), with ones or zeros, so that the dot (Hadamard) 

product with the level 2 residuals selects the explanatory variables for the random part of the model 

– assuming that these are a subset of the fixed part explanatory variables. Using the notation of 

Browne et al., we have  

),(~    ),,(~ 111 φθ ΩΩ MVNXXMVNX m
O        (3.2) 

where  is the matrix of observed values and OX1 mΩ  is the covariance matrix of measurement errors, 

initially assumed to be common to all level 1 units, θ  is the mean vector and  is the, assumed 

known, covariance matrix of the true values of . MCMC estimation is used to obtain the 

following posterior distributions. 

φΩ

1X

     ))]ˆ()ˆ[(,3(~),|(

/ˆ    ,ˆ    ),ˆ,ˆ(~),|(
1

111
1

0
11

−− −−−Ω

Ω==Ω

θθθ

θθθ

φ

φθθφ

XXNWishartXp

NVXVMVNXp
T

     (3.3) 

where N is the number of level 1 units. Since θ  is a row vector of means we assume a uniform prior 

for θ . We can also choose, and then sample from, a prior distribution for the measurement error 

covariance matrix. An obvious choice is  and we might wish to assume 

a minimally informative choice where the degrees of freedom 

1( ) ~ ( , )     m p pp Wishart Sδ δ−Ω m

pδ  is equal to the order of the matrix 

and  is a covariance matrix chosen on the basis of existing evidence or on theoretical grounds.  mS

 

An alternative approach is to employ a scaled inverse-Wishart for mΩ , which specifies a vector of 

scale parameters ξ  chosen to allow less restrictions on the variances. In particular we can set 

=mΩ )()( ξξ DiagDiag Ψ , with the unscaled covariance matrix Ψ being given the inverse-Wishart 

model: Ψ ~ Inv-Wishartp+1(I). The variances then correspond to the diagonal elements of the 

unscaled covariance Ψ, multiplied by the appropriate elements of ξ : 

  
kkkmkkmk Ψ=Ω= 22 ξσ , where k = 1,…,p, 

and the covariances are kllkmkl ΨΩ ξξ  where k, l =1,…,p 
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This latter approach allows more freedom in the variances whilst still implying uniform prior 

distributions in the interval (-1, 1) on the correlation parameters if the degrees of freedom are chosen 

as above (Gelman and Hill, 2007). This may also be more appealing if we have little prior 

information on the correlations.  

 

However, in practice, there is so much uncertainty about mΩ that it may be more illuminating to 

select a range of values for  and examine the effects conditional on these choices, in the spirit of 

sensitivity analysis. For each choice we may also choose a prior distribution for . 

mS

mΩ

 

For  we could also assume a general inverse Wishart prior, but it is not clear what parameters we 

should use, so we have assumed a uniform prior here by setting the ‘degrees of freedom’ parameter 

of the Wishart distribution in (3.3) to N-3.  

φΩ

 

The sampling for the fixed parameters, β , the residuals, measurement error covariance matrix 

(conditional on measurement error estimates), level 2 covariance matrix and level 1 variance, 

conditional on the  and given priors, is as in the standard case.  21, XX

 

For sampling the  we write 1X

)|(),|(),,;|(),,,,;,|( 111
2

1
2

11 φφ σβσβ ΩΩ=ΩΩ XpXXpUXypUXyXp m
O

eme
O     (3.4) 

which leads to the following sampling for each row of . 1X

1 1

1

1 1 1 1 1 1 1 1
2

1 1 1 2 2 2 2 1 1
1 12

ˆ ˆ~ ( , )     where

( )( )ˆ

( )( ( ))ˆ ˆ

ij ij ij

T
j j

ij m
e

j ij ij j O
ij ij ij m

e

X MVN X V

Z U Z U
V

Z U y X Z U
X V X

φ

φ

β β
σ

β β
θ

σ

−

− −

− −

⎡ ⎤+ ⋅ + ⋅
= +Ω +Ω⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤+ ⋅ − + ⋅
= +⎢ ⎥

⎢ ⎥⎣ ⎦
Ω + Ω

   (3.5) 
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2
y

where denotes the Hadamard vector product. The level 1 residuals are obtained by subtraction. 

Note that in the ‘functional’ model  is zero, and this term is omitted from the expressions in 

(3.5). 

UZ ⋅

φΩ

In some applications the measurement error covariance matrix may vary across level 1 (or level 2) 

units, for example as a known function of predictor variables. In this case we simply replace 

 in (3.5).  11 by    −− ΩΩ mijm

 

If we have measurement error in the response 

),0(~    , 2
yeyy

O Neeyy σ+=         (3.6) 

in order to ensure identification we must have known variance . We apply this to the residuals 

using the adjusted value 

2
yeσ

2* 2 2 /
y ye e eσ σ σ σ=  and we insert the extra step to sample  from  ijy

22 * 2 2 * 2 *ˆ[( ) , ( ) ]
ye e e ij ij e e e eN y y

2 2

y y
σ σ σ σ σ σ σ−− + − −        (3.7) 

where is the predicted value and ijŷ ij
O
ijij yyy ˆ~ −= . 

As pointed out in Section 2.1.1, we require that the covariance matrix of the true explanatory 

variables is positive definite so that having sampled the , if this is not the case, then we retain the 

existing values. 

1X

 

3.2 Extension 2: Binary and ordered category explanatory variables 

 

Suppose we write the probability of observing a zero given that the true value is zero as  

and the probability of observing a one given that the true value is a zero as , etc. Then the 

probability of observing a zero is 

(0 | 0)obsP

(1| 0)obsP

(0) (0) (0 | 0) (1)( (0 |1))obs true obs true obsP P P P P= +  and the probability of 

observing a one is  where  are 

the true probabilities of a zero and one. 

(1) (1)(1 (0 |1)) (0)(1 (0 | 0))obs true obs true obsP P P P P= − + − (0),   (1)true trueP P

 



This gives the following values for the true (prior) probabilities 

(1|1) (1)(0) ,    (1) 1 (0)
(1|1) (0 | 0) 1
obs obs

true true true
obs obs

P PP P
P P

−
= =

+ −
P−  

 

Consider a Normal response model. The probability for an observation that has true value zero 

where we observe a zero for the binary variable  with coefficient 1x 1β  which is assumed to have a 

uniform prior, is proportional to 

2

00 2

( )exp (0 | 0)
2 obs

e

yL P
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

and for an observed zero where the true value is one we have the probability proportional to 

2
1

01 2

( )exp (1| 0)
2 obs

e

yL Pβ
σ

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
 

where   is the observed response minus predicted value of the response given the remaining 

parameters.  

y~

 

When a zero is observed, combining these probabilities with the priors, we select a new true value to 

be zero with probability 

00

00 01

(0)
(0) (1)

true

true true

L P
L P L P+

 

We have corresponding results when a one is observed, namely 
2

10 2

( )exp (1| 0)
2 obs

e

yL P
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

2
1

11 2

( )exp (1|1)
2 obs

e

yL Pβ
σ

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
 

and we select a new true value of one with probability 

11

11 10

(1)
(1) (0)

true

true true

L P
L P L P+

 

 

Having sampled a new set of true values we then apply the standard steps in the MCMC algorithm 

for the remaining parameters. For generalised linear models the only change is in the expressions for 
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the likelihoods and if we use, e.g. a probit link with binary data then there is no change except for 

the extra step generating a Normally distributed response from the binary response. 

 

3.3 Further Extensions 

 

We may also consider models where the measurement error variances or misclassification 

probabilities are a function of further variables where the function parameters are to be estimated. 

Further work on this is planned. Missing responses can be handled by adding an imputation step for 

the missing data based on current parameter estimates. 

We have assumed so far that there is no association between the Normal variable measurement 

errors and the misclassifications. One way to introduce an association is to allow the Normal 

measurement error covariance matrix to depend on the observed category, as discussed in Section 

3.1, so that for each such category, or combination of categories, we assume a known where c 

denotes the category or category combination. In practice this is achieved by choosing 

corresponding  in (3.5). As before we can also introduce a prior distribution for these matrices. 

 c
mΩ

1
mij
−Ω

 

The extension to the multicategory, ordered or unordered, case requires us to evaluate the true priors 

for each category and then evaluating the corresponding probabilities. This, therefore, requires a 

misclassification matrix to be known, or a good estimate available. 

 

 

4 An example data set 

 

The data we use come from a study of the relationship between class size and pupil progress 

(Blatchford et al., 2002). Starting in 1996, a cohort of pupils was followed from entry to reception 

class until the end of the school year, with assessments at the start and end. The response variable is 
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a normalised maths score (end of reception year) postmaths. The five explanatory variables are: 

constant (=1), regcls-30 (regular class size centered at 30), normalised pretest maths pre-maths, 

normalised pre test literacy prelit, free school meals eligibility fsmn. The original sample size is 

4691 pupils in 248 classes. For the present analysis we use a subset of the original data consisting of 

4625 pupils in 248 classes with complete data records. The population of interest is pupils and 

classes in the English school reception year. 

 

In the original analysis (Blatchford et al., 2002) a ‘regression spline’ smoothed relationship with 

class size was fitted rather than the linear relationship examined here4. For simplicity here we 

incorporate just a linear term for the relationship with class size. The model is thus 

0 1 1 2 2 3 3 4 4ij j ij ij ij j ijy x x x x u eβ β β β β= + + + + + +  

for the intercept and four predictor variables. We first show the MCMC estimates assuming no 

errors of measurement. 

 

5 Results 

 

5.1 No measurement error 

 

It is clear (Table 1) that there is a significant effect of being eligible for free school meals equivalent 

to a decrease in the adjusted maths score of 0.12 of the pupil level residual standard deviation. 

Likewise, the greater the class size the smaller the post-test mathematics score. 

 

                                                 

i

4 A single level cubic regression with a spline term is defined as follows: 

2 3 3
0 1 2 3 4

0 if 
 if 

i i i i i

i
i

i i

y x x x z
x k

z
x k x k

β β β β β= + + + + +

<⎧
= ⎨ − ≥⎩

e
 

This provides a smooth join at the value k, the knot, and allows us better to calibrate the curve for high values of x.   
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Kounali et al (2007) have analysed the stability of free school meals data at Key Stage 2 and their 

data suggest that approximately 2% of those not eligible for free school meals at any one time may 

be classified as eligible.  Likewise they suggest that as many as 60% of those eligible may be 

classified as not eligible. We shall use the illustrative values 2% and 60% respectively in our 

example. The pretest scores are based upon teacher assessments and can be expected to have 

relatively low reliability: we can assume a range of values from 0.6 to 0.9 for these reliabilities.  

 

In the following analyses, for illustration, in the spirit of a sensitivity analysis, we shall assume a 

range of values for these reliabilities. It is also reasonable to assume that misclassification errors in 

FSM are independent of measurement errors in the test scores since the former are ascertained from 

the school records. 

All the following analyses use a burn in of 5000 with a sample of 5000 iterations, rsulting in Monte 

Carlo standard errors that are all less than 5% of the posterior distribution standard deviations. 

 

5.2 Allowing for measurement errors in the analysis 

 

We begin by studying the effect of allowing for measurement errors in the prior test scores, 

Mathematics and Literacy and we shall assume that both of these have the same reliability. In Table 

1 we have summarised the results from all the separate models fitted. We start with the results that 

show the parameter estimates where the reliability is assumed to be 0.9 and the measurement errors 

independent. The next model assumes the lowest value of 0.6 for the reliability. We cannot now, 

however, assume a zero correlation between the measurement errors, as pointed out above, since the 

correlation between the observed values is greater than the reliability, being 0.75. We have assumed 

a moderate correlation between the measurement errors of 0.5.  Note that the pretest coefficients are 

greatly increased when we assume the lowest reliability with also a very large increase in standard 

error, and the level 1 variance is reduced as expected. We have also fitted the first model assuming 

two quite different prior distributions for the measurement error covariance matrix, one with the 
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number of degrees of freedom set to 100, and the other with degrees of freedom set to 2 in order to 

be minimally informative. In both cases the point estimates are little changed from the results in 

Table 1, but in the latter case the posterior standard deviation for the two explanatory variables with 

measurement error are increased from 0.026 to 0.048 and from 0.025 to 0.049 respectively. 

 

We then introduce non zero misclassification probabilities for free school meals. In Table 1 we note 

that the only real change in effect estimates from the model assuming the highest reliability for the 

pre-test scores with measurement error correlation, is that the free school meal coefficient standard 

error has increased. In our example we have a high probability of observing no FSM eligibility when 

there is true eligibility. Since, however, the proportion of truly eligible pupils is small this will not 

result in the reclassification of many pupils and so can be expected to have little effect on the 

estimates. Likewise, since the probability of being incorrectly classified as eligible when not eligible 

is very small this will also involve few pupils being reclassified. 

 

Finally in the last model we allow for measurement error in the response variable, post test 

mathematics. Now, in addition to a rather smaller increase in standard error of the free school meal 

coefficient the coefficient itself has decreased in absolute value as expected. Also, as expected, the 

level 1 variance estimate is reduced.  

 

Substantively, we can conclude that moderate amounts of measurement error and small 

misclassification probabilities only result in small changes to parameter estimates. With large errors 

the effects are noticeable, but are confined in the fixed part of the model to those predictors with 

error. The level 1 variance estimate, however, is sensitive to the reliability assumed. In particular, 

the coefficient estimate for free school meals is changed noticeably for a small measurement error 

variance and the given misclassification probabilities. 
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6 Conclusions 

 

We have seen how inferences about both fixed and random effects are changed when we allow for 

measurement error and misclassification probabilities. An important issue remains that of obtaining 

suitable estimates for the measurement error variance and misclassification probabilities. Where 

there is considerable uncertainty in the value of the measurement error covariance matrix as 

expressed in the prior, we note an increase in the standard errors associated with the variables 

containing measurement error. In general a range of values should be used in the spirit of a 

sensitivity analysis since typically these estimates, and especially of measurement error correlations, 

will at best be approximate. We also note a further limitation of the current models which assume 

that measurement errors are limited to variables defined at level 1. However, as shown in the 

Appendix, at least for level 2 variables that are aggregates of a level 1 variable, we can often ignore 

such level 2 measurement errors.  

In the case of categorical predictors, adjusting for misclassifications, as we show in our example, 

will often have little effect on the size of the coefficient but may be expected to increase its standard 

error. Thus, for example, for a binary predictor the coefficient of the dummy (0,1) variable estimates 

the adjusted difference in the mean of the response variable between the two categories. If there is a 

weak relationship with the other variables in the model then the process of (randomly) reassigning 

values from one category to the other will have little effect on the estimated difference but will add 

random variation to the chain estimates resulting in a larger value for the variability estimate. We 

now look at this model in more detail. 

 

Since the MCMC algorithm is modular the steps involved in the measurement error model can be 

combined with sampling steps for more complex models involving, for example, cross 

classifications, structural models etc. Further work that facilitates such integration is under way. 
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Table 1. Post-test Mathematics related to prior achievements under different assumptions with 
regards to measurement error. Posterior means are given, with posterior standard deviations in 
brackets in the first line and the associated Monte Carlo standard errors in the second line. 
Burn in of 5000, sample of 5000.  

Parameter 

 

Model 1 

No Measurement 
Error 

Model 2 Model 3 Model 4 Model 5 

 R=1.0 
0.0ρ =  

P(0|1)=0 
P(1|0)=0 

 1yR =

R=0.9
0.0ρ =

P(0|1)=0
P(1|0)=0

1yR =  

R=0.6
0.5ρ =

P(0|1)=0
P(1|0)=0

1yR =  

R=0.9 
0.0ρ =  

P(0|1)=0.60 
P(1|0)=0.02 

 1yR =

R=0.9
0.0ρ =

P(0|1)=0.60
P(1|0)=0.02

0.9yR =

Intercept   -0.232 (0.045) 

(0.001764) 

 -0.236 (0.044)

(0.001709)

 -0.225 (0.047)

(0.001948) 

-0.207 (0.049) 

(0.001903)  

-0.223 (0.046)

(0.001771)  

Class size -0.066 (0.008) 

(0.000286) 

-0.066 (0.008)

(0.000280)

-0.065 (0.008)

(0.000310)  

-0.066 (0.008) 

(0.000311) 

-0.065 (0.007)

(0.000274)

Pre-test 
Maths 

 0.309 (0.013) 

(0.000222)  

 0.321 (0.020)

(0.000393)

 0.456 (0.028)

(0.000969)

0.321 (0.018) 

(0.000392) 

 0.320 (0.017)

(0.000364)

Pre-test 
literacy 

 0.357 (0.013) 

(0.000224) 

 0.383 (0.019)

(0.000413)

 0.531 (0.028)

(0.000963)

0.385 (0.017) 

(0.000360) 

 0.381 (0.017)

(0.000366)

FSM -0.085 (0.029) 

(0.000485) 

-0.084 (0.029)

(0.000520)

-0.084 (0.030)

(0.000774)

-0.085 (0.037) 

(0.001121) 

-0.062 (0.032)

(0.000844)

Level 2 
variance 

 0.246 (0.026) 

(0.000505) 

 0.246 (0.026)

(0.000548)

 0.246 (0.026)

(0.000585)

 0.245 (0.026) 

(0.000569) 

 0.244 (0.026)

(0.000513)

Level 1 
variance 

 0.414 (0.009) 

(0.000136) 

 0.390 (0.001)

(0.000158)

 0.216 (0.012)

(0.000414)

 0.389 (0.009) 

(0.000155) 

 0.352 (0.009)

(0.000157)
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Appendix: Aggregating level 1 variables with measurement errors 

 

Inferences from aggregated data 

 

In a multilevel model where there is a level 2 (or higher level) predictor that is defined as an 

aggregation from the level 1 units within the cluster, we can distinguish two kinds of inferences. In 

the first we wish to condition on the underlying, but unknown, ‘true’ value of the variable. Thus, in 

educational data we may suppose that the average prior attainment of a school influences the 

subsequent attainment of individuals within it, where this average attainment is used as a proxy for 

the long-term intake characteristics of the school. It can then be argued that the observed attainment 

should be regarded as a variable measured with error where the analysis will attempt to correct for 

the measurement error. Alternatively, we may regard the actual average score itself as the influential 

variable so that, if it is measured accurately, there is no measurement error. We postpone a 

discussion of the role of level 1 measurement error until later. We shall also introduce below the 

common situation when the average is not available, but only an estimate of it. 

In the first case above, for simplicity assume that the variable is Normally distributed, and that we 

have fitted a simple variance components (VC) model so that the total variance is  
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2
e

2 2
T uσ σ σ= +            (A.1) 

Thus the variance of the mean of the N level 1 units in a level 2 unit is 

2 2 /u e Nσ σ+            (A.2) 

Since inference is with respect to the ‘true’ mean the measurement error variance is simply  

2

2 2 2
T

/   
with corresponding reliability 

/( )

e

u u e

N

N N

σ

ρ σ σ σ= +

        (A.3) 



Which is just the ‘shrinkage’ factor. In many applications where N is very large, measurement error 

can be ignored, although attention needs to be paid to the value of the Variance Partition Coefficient 

(VPC) (Goldstein et al., 2002) equal to ( 2 2 2/( )u u eσ σ σ+ ). 

In the second case, where inference is with respect to the observed mean then the reliability is 1.0.  

 

Sampling level 1 units 

 

In the common situation where we only have a sample of n out of N level 1 units (A.2) becomes 

2 2 /u e nσ σ+            (A.4) 

And the reliability becomes 

1

2 2/( )T u un n 2
eρ σ σ σ= +           (A.5) 

 

Thus, for example with a Variance Partition Coefficient of 0.1 and n=20 we have 
1

0.69Tρ = . This 

essentially is the ‘true value’ definition adopted by Sampson et al. (Sampson et al., 1997). In fact 

these authors fit a 3-level model where level 1 is the item level for the scale components. Level 2 is 

individual and level 3 is area. Their model can be formulated as a single factor model with scale 

item loadings equal to 1 (Rasch model). This formulation enables them to estimate individual level 

reliabilities also which can be incorporated if required. In practice n is typically large enough to 

ignore these when estimating the level 2 reliability (but see below). 

 

Where inference is with respect to the observed mean the reliability is 

2 2 2 2 1 2 2 2 2
0 [ ( / )] ( ) /( )n

u e u e u e u eN
N n n nρ σ σ σ σ σ σ σ σ⎛ ⎞−

⎜ ⎟
⎝ ⎠

= + + = + +     (A.6) 

which becomes 1.0 if the mean is computed from all the level 1 units with a cluster. If we write v for 

the VPC we have 

1( ) /(n v v
O N v v

n nρ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + + 1 )−          (A.7) 
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As v tends to zero this tends to ( /  as does (A.5). Now, the level 2 variance will often be 

sensitive to the population considered, or alternatively, the estimate of the VPC will depend on 

which other variables we adjust for in its estimation, especially if these are level 2 variables. In 

general the appropriate population will be the one that we intend to use in subsequent models where 

we adjust for the measurement error. 

)n N

 

In the above example with a VPC of 0.1, N=30 and n=5, as we might have for educational data on 

classes we have 0.46Oρ = . For survey data on small areas say with N=200, n=20 we have 

0.72Oρ = , which is not very different from the ‘true’ definition value given above. 

 

If we now consider the (independent) measurement error reliability at level 1, say 1ρ . Expression 

(A.7) becomes 

1
21 1 1

11 1 1 1 1( ) /(n v n v v v
O N v v v n vN

n nρ
ρ

ρ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−− − − −⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= + + 11 )ρ

ρ
−      (A.8) 

So that this aggregated level 1 error term can typically be ignored.  

 

Further considerations 

 

The distinction between the ‘true’ and ‘observed’ definitions for reliability becomes important only 

when the actual cluster (level 2 unit) size is relatively small. This will usually be the case with 

certain kinds of data such as in education, but may also hold for certain kinds of survey data, 

especially in small area analysis.  

 

For categorical variables, we are dealing with misclassification probabilities at level 1 but to a first 

approximation can assume Normality at level 2. Thus, for binary responses, we would substitute in 

the above formulae (A.5) and (A.7) corresponding terms based on the variance of a proportion. For 

ordered responses we can approximate by treating as a continuous variable and for multicategory 
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responses we would use the corresponding multinomial variances and covariances – allowing for 

correlated measurement errors. A further possibility is to assume a threshold model, but this adds 

further numerical complications concerned with estimating a measurement error variance given just 

misclassification probabilities (see section 3.2). 
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