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Summary. A general latent normal model for multilevel data with mixtures of response types
is extended in the case of ordered responses to deal with variates having a large number of
categories and including count data. An example is analysed by using repeated measures data
on child growth and adult measures of body mass index and glucose. Applications are described
that are concerned with the flexible prediction of adult measurements from collections of growth
measurements and for studying the relationship between the number of measurement occa-
sions and growth trajectories.
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1. Introduction

In studies of childrens’ growth a common objective is to develop procedures that can be used to
predict adult conditions from repeated measurements taken during childhood. Early attempts
to do this for adult variables such as stature essentially consider linear prediction models for the
response regressed on a set of growth measures taken at a predefined set of ages (usually at whole
years of age—see, for example, Tanner et al. (2000)). Such a system, however, lacks flexibility
since in practice individuals will be measured at a set of ages that do not typically correspond to
the predetermined set. A more flexible approach is to model the growth measures as functions
of age, jointly with the adult measurements, by using suitable longitudinal data. The resulting
model parameters can then be used to provide a suitable prediction model that will apply, in
principle, to any set of growth measurements taken on an individual. In the present paper we
consider such a model applied to the prediction of adult glucose levels and body mass index
BMI (measured in kilograms per square metre), using measures of weight taken in children
under the age of 10 years. These predictions, together with suitable prediction intervals, can
then be used as a screening device for the early detection of later problems.

The basic design, therefore, is based on a two-level repeated measures model as described,
for example, in Goldstein (2003), chapter 5. Level 1 is defined by the growth measurement
occasions and these are clustered within each individual, which is the level 2 unit. The idea
is that the growth measurement parameters describing average growth, velocity of growth
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etc. vary at the individual level and covary among themselves and with the adult outcomes.
If we assume multivariate normality, the parameters of the fitted model, notably the ele-
ments of the individual level covariance matrix, then provide sufficient statistics for the linear
prediction of any of the adult measurements from any combination of growth measurements.

One of the problems in repeated measures growth studies is that attrition may be non-random,
leading to parameter estimation bias. A further aim of the present paper is to study whether this
might be so. A standard procedure for dealing with informative dropout is via mixture models
(Hogan and Laird, 1997) where the response vector, i.e. the set of growth measures, and the
dropout distribution are jointly modelled. In the present paper we study the issue of informative
dropout by modelling the actual number of occasions on which each individual was measured,
jointly with the growth parameters and with adult measurements, providing estimates of the
relevant correlations.

In the next section we describe a general procedure for these joint models and show how it
can be specialized to handle our data.

2. Modelling mixed response types at two levels

Goldstein et al. (2009) present a general model (the GCKL model) for multivariate responses
that can occur at several levels of a data hierarchy and where the responses can be continuous or
discrete. The basic methodology is described in a freely downloadable document from the Cen-
tre for Multilevel Modelling Web site (Goldstein et al., 2007): http://www.cmm.bristol.
ac.uk.

This work includes, as special cases, existing literature on the joint modelling of discrete
and continuous responses, and this literature is referenced there. The GCKL model extends
previous work by allowing for a multilevel structure for the data and can also jointly model
ordered, unordered and continuous data. The ability to model ordered responses within the
GCKL framework provides a very general procedure for any kind of discrete data where we
can treat the categories as an ordering, including count data. In the present paper we explore
the case where we have a mixture of normal and count data at two levels of a data hierarchy.
If we treat count data as an ordered classification Goldstein et al. (2009) provide a procedure
to obtain parameter estimates, but this may be inefficient and even numerically unstable, when
the number of categories is very large, since it then involves the estimation of a large number of
‘threshold’ parameters. We therefore propose two extensions to the GCKL model: one involves
using smoothing functions for the large number of threshold parameters that are involved in the
algorithms that were proposed by Goldstein et al. (2009) and the other is based on a latent nor-
mal characterization for the Poisson distribution that can model count data that can be assumed
to follow such a distribution. Since the growth measure in our data is restricted to weight, it
may in practice have limited utility as a sensitive prediction model, but the methodology that
we propose will have general applicability.

We now briefly review the two-level GCKL model as it applies to normal and ordered
responses. Full details are given in Goldstein et al. (2009). We begin by describing the mul-
tivariate normal model and its estimation and in the following section we show how ordered
responses can be dealt with by using a transformation to underlying normality.

2.1. The GCKL latent normal model
Let j =1, . . . , J index level 2 units and i=1, . . . , Ij index level 1 units, nested within the level 2
units. The underlying multivariate normal model is
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y
.1/
ij =X1ijβ

.1/ +Z1iju
.1/
j + e

.1/
ij ,

y
.2/
j =X2jβ

.2/ +Z2ju
.2/
j ,

e
.1/
ij ∼MVN.0, Ω1/, uj = .u

.1/
j , u

.2/
j /T, uj ∼MVN.0, Ω2/:

⎫⎪⎬
⎪⎭ .1/

The superscripts denote the level at which a variable is measured or defined. Here y
.1/
ij is a p1 row

vector containing the normal responses that are defined at level 1 for level 1 unit (observation)
i nested in level 2 unit j. Without loss of generality, we assume the same set of predictors for
each of these level 1 responses. Let X1ij be an f1 row vector that contains observations on these
predictor variables for observation i nested in higher level unit j and β.1/ is an f1 ×p1 matrix
containing their fixed coefficients. The columns of β.1/ correspond to coefficients for each level
1 response variable. Similarly Z1ij is a q1 row vector that contains for observation i nested in
higher level unit j values of q1 predictor variables related to the q1 random effects for the level 1
responses. Quite often they may be a subset of the X1ij. The u

.1/
j is a q1 ×p1 matrix containing

the random effects at level 2 for the level 1 responses, with each column relating to a particular
response variable. The random effects may be correlated with each other both within and across
level 1 responses. Each response has an associated level 1 residual and these are contained in
the p1 row vector e

.1/
ij . Their covariance matrix is Ω1.

Correspondingly, in the second part of the expression y
.2/
j is a p2 row vector containing the

remaining responses that are defined at level 2 and X2j is an f2 row vector that contains predictor
variables for higher level unit j, again assumed to be the same for each level 2 response variable.
The fixed coefficients of these variables are contained in the f2 ×p2 matrix β.2/. The Z2j is a q2
row vector related to the level 2 random effects for the level 2 responses. The u

.2/
j is a q2 × p2

matrix of correlated level 2 residuals which are also correlated with the level 2 residuals for the
level 1 response. The full covariance matrix of all the level 2 residuals is Ω2.

In the examples of this paper we assume that q2 = 1. We shall also assume that the level 1
responses only have simple intercept random effects.

Estimates for the parameters of this model are obtained by using Markov chain Monte Carlo
sampling and details are given in Goldstein et al. (2009). Assuming starting values and a burn-in
period, given current values, the sampling steps are outlined as follows.

Step 1: sample a new set of fixed coefficients at level 1.
Step 2: sample a new set of fixed coefficients at level 2.
Step 3: calculate a new set of level 2 residuals for level 2 responses by subtracting the fixed
predictor X2jβ

.2/ from the associated normal responses.
Step 4: sample a new set of level 2 residuals for level 1 responses.
Step 5: calculate a new set of level 1 residuals by subtracting the prediction using the fixed ef-
fects plus the level 2 random effects, x1ijβ

.1/ +Z1iju
.1/
j , from the associated normal responses.

Step 6: sample a new level 1 covariance matrix.
Step 7: sample a new level 2 covariance matrix.

Missing responses are treated by imputing the corresponding random effect conditional on
current values for all the fixed predictors and correlated random effects (Goldstein et al., 2009).
In the application that we consider there are no missing responses for the level 2 (individual)
unit measurements. We also note that, in the framework of a repeated measures model, there is
no requirement to have the same number of level 1 (measurement occasion) units for each level
2 unit (Goldstein (2003), chapter 5).

There are particular issues about the choice of default diffuse prior distributions for the
covariance matrices. For example, Goldstein et al. (2009) describe the choice of independent
uniform priors for the elements of this matrix, and Browne (2006) suggested that, where max-
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imum likelihood estimates for parameters are readily available from a preliminary fit, it may be
reasonable to use an inverse Wishart prior with covariance parameter equal to the correspond-
ing maximum likelihood (or quasi-likelihood) estimate and with degrees of freedom equal to
the order of the covariance matrix. We could also use an ‘adaptive prior’ whereby a set of iter-
ations during a secondary burn-in period is averaged and this is used as the prior for a further
burn-in period and the final set of iterations. In the examples of the present paper, because we
shall be dealing with constrained covariance matrices, we shall need to update the elements of
these matrices one by one and this leads us to use a set of independent uniform priors for these
elements.

The GCKL model also allows for non-normal responses by formulating a latent normal
model where an extra step is inserted to sample an underlying (latent) normal variable from the
observed response. Goldstein et al. (2009) show how this can be done for ordered and unordered
categorical data. They additionally allow for non-normal continuous data by using a Box–Cox
transformation. When such a latent normal variable is sampled, in addition to conditioning on
the current values of the parameters and the observations it is also necessary to condition on
the correlated responses and this ensures that the latent variables and observed normal variables
have a joint multivariate normal distribution at both level 1 and level 2. In the next two sections
we outline the procedure for general ordered data and then describe the extension to Poisson
data. In all these cases, for ease of exposition, we consider the single-level case. The extension
to two levels follows the description that was given above.

3. Sampling a latent normal variable for an ordered response

3.1. A general procedure
Suppose that we have an ordered p-category response indexed by numbers g = 1, . . . , p. For
simplicity we shall use a single-level index i and denote by πgi the probability that observation
i occurs in category g. The cumulative distribution is defined as

γhi =
h∑

g=1
πgi, h=1, 2, . . . , p−1, with γpi =1:

We consider the probit link model for these as

γhi =
∫ αh−.Xβ/i

−∞
ϕ.t/ dt, .2/

where ϕ.t/ is the density function of the standard normal distribution and .Xβ/i is the value for
i of a linear predictor expressed in matrix terms. The αh are known as threshold parameters. In
general the linear predictor .Xβ/i will contain higher level random effects and also the terms
that arise from conditioning on all correlated random effects from the remaining responses.
Since the joint distribution is multivariate normal, as pointed out above, this conditioning is
linear and is readily derived from the current value of the covariance matrix. Details are given
in Goldstein et al. (2009).

We also note that in equation (2) the linear predictor remains constant over the categories that
are defined by the thresholds. Interactions between the threshold parameters and the predictor
variables are possible and can be included in straightforward ways.

We can also motivate the latent normal model (2) as follows. If yi is the observed category
then yi �h if and only if a latent variable yÅ

i �0 where yÅ
i = .Xβ/i −αh + ei, ei ∼N.0, 1/. Thus,

we have
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pr.yi �h/=pr.yÅ
i �0/=pr{ei �αh − .Xβ/i}=

∫ αh−.Xβ/i

−∞
ϕ.t/dt:

If an intercept term is incorporated in the fixed part predictor then there must be a linear
constraint on the αh and it is convenient to take α1 =0 for this.

We can convert the categorical response to the latent normal model by sampling as follows.

(a) For a category 1 response we sample randomly from the standard normal distribution
restricted to [−∞, −.Xβ/i].

(b) For a category p response we sample from the standard normal distribution restricted to
[αp−1 − .Xβ/i, ∞].

(c) For every other category h we sample from the standard normal distribution restricted
to [αh−1 − .Xβ/i, αh − .Xβ/i].

Sampling for the threshold parameters αh is most efficiently carried out by using a Metropolis
step (Goldstein et al., 2009).

3.2. Smoothing the threshold parameters
As mentioned in Section 1, for many kinds of count data, if we treat every observed count value
as a separate category, we may have a very large number of threshold parameters to estimate,
and furthermore some of the categories may be small and these can cause computational prob-
lems. One solution would be to merge adjacent categories where there are small numbers. This,
however, suffers from several drawbacks.

First, if there are categories with few observations the associated threshold parameters will
not be well estimated and the computational time will be increased. Secondly, although the
merging of adjacent categories will not change the parameters being estimated in an additive
linear model, this is not so if there are interactions between the threshold parameters and the
linear model coefficients. If such interactions exist and are ignored then in general we shall have
different values for these coefficients depending on which categories are merged. Likewise, if
an interactive model is fitted, and categories involved in these interactions are merged, then
different values generally will be estimated. Thirdly, if adjacent categories are merged and this is
felt to be justified in terms of the underlying model, it will not allow us to make inferences about
the proportions that are associated with the original, unmerged, categories. This restriction does
not apply to the smoothing approach that is now described.

In this approach we seek a functional form to describe the threshold values based on a few
parameters and the following describes one such approach.

In equation (2) write

αh =f.h/, h=1, . . . , p−1, .3/

where f can be any suitable function. We shall illustrate by using a simple polynomial as a
regression function of the category sequence number h typically centred at the mean value.
Other choices are possible, including fractional polynomials and regression splines, and we
could also use, for example, a set of starting values computed for the thresholds that are derived
directly from assigning normal equivalent deviates to the cumulative category probabilities, but
we have not investigated these possibilities. A further possibility that is currently being explored
(Goldstein, 2008) is a function that consists of a sum of exponential terms that automatically
satisfies the monotonicity requirement (see below). We have, omitting subscripts,

αh = δ0 + δ1h+ δ2h2 + e: .4/
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We sample each δ in turn by using a Metropolis step with a normal proposal. Using equation
(4), with the αh so determined, we then can compute the set {αh} and thus the likelihoods for
acceptance or rejection as in the standard algorithm for ordered data (Goldstein et al., 2009).
The function f must be strictly increasing over the range of h and this is easily verified at each
step: if the order constraints for the set of thresholds are not obeyed we do not update the value.
We then sample from the latent normal distribution as in the ordered case as detailed above.

To obtain starting values we first obtain starting values for each separate α as described in
Goldstein et al. (2009), and then we fit the regression

αh =
q∑

t=0
δth

t + eh .5/

to determine the order of polynomial to be fitted and starting values for coefficients. The esti-
mated standard errors for the coefficients can be used for the normal proposal distributions.

Finally, it is possible to have a partially smoothed model where the smoothing takes place
only over a contiguous subset of the threshold parameters, e.g. those where numbers are
small.

3.3. Count data
An alternative to the previous section’s treatment of count data is to assume a particular para-
metric distribution for the counts and we shall consider the common one, namely that the counts
follow a Poisson distribution. If a Poisson distribution can be supported by the data then it will
be efficient to model the data explicitly assuming such a distribution, since we shall only need to
estimate a single parameter. As with general ordered data we can then incorporate this distri-
bution within the GCKL framework that underpins the procedures which are developed in this
paper. To do this we need to find a Markov chain Monte Carlo step to sample a latent normal
variable and we now show how this can be done.

Consider the Poisson density function

f.h; θ/= exp.−θ/θh=h!, h=0, . . . , p−1, .6/

for the first p categories that are observed.
As in equation (2) we write the cumulative distribution

F.h; θ/=
h∑

g=0
f.g; θ/:

We choose a reference value h=h0 such that

F.h0; θi/=
∫ −.Xβ/i

−∞
ϕ.t/ dt, .7/

where we use i to index the units.
We note that for a given h0 this is a flexible model relating the Poisson parameter θi for an

individual unit to the covariate values. Thus, given .Xβ/i, θi is determined. It is convenient to
choose h0 =0 so that

F.0; θi/= exp.−θi/=
∫ −.Xβ/i

−∞
ϕ.t/ dt:

We sample from the underlying standard normal distribution interval as follows for an observed
count hÅ, where the interval is indicated by brackets { }.
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For an observed count in the first category we sample a value from the lower tail of the normal
distribution

N{−∞, −.Xβ/i} .8/

and for the remaining categories we sample from

N{a, b}, a=Φ−1{F.hÅ; θi/}, b=Φ−1{F.hÅ −1; θi/}: .9/

The resulting sampled values, just as in the ordered probit model, are thus sampled from the
specified standard normal distribution. Since this a novel characterization of the Poisson distri-
bution there is no standard term for our procedure, and we shall refer to it simply as a Poisson
latent normal transformation.

To impute any missing values on the original scale we use the inverse transformation (Gold-
stein et al., 2009).

We note that our models for ordered categories consider the latent normal distribution to
be defined by the observed categories, whereas the Poisson model is defined on .0, ∞/ and so
assumes that the distribution exists beyond the categories observed. This suggests that we would
expect to obtain different estimates. Since our data counts have a specified minimum count of 1
and a specified maximum possible count, the Poisson assumption may not be reasonable, and
this is confirmed in our example. In the Poisson case, in some circumstances, we might consider
fitting a truncated distribution that covers only the observed categories, or a particular sub-
set of categories specified in advance. One example is the zero-truncated Poisson distribution
where a zero category exists but cannot be observed, but this does not seem to be a reasonable
assumption for our data.

4. A growth data example

Our application uses data that consist of 1000 subjects with serial weight measurements between
birth and age 10 years together with adult body mass index BMI and plasma glucose level (mil-
limoles per litre) measured on individuals at around the age of 30 years. During infancy (0–2
years) the maximum number of measurement occasions observed is 9 and during childhood (2–
10 years) it is 14. There are 7459 repeated measurements over childhood and 1000 adult BMI
and glucose measurements. The data set was made publicly available at the Third International
Congress on Developmental Origins of Health and Disease (Gillman et al., 2007).

As explained in Section 1, the joint modelling of the growth data and the adult measurements
provides a flexible prediction system. This is the part of the model that is of principal interest.
We also include the counts of the number of measurements as a further two, level 2, responses
in infancy and in childhood. The principal purpose of this is to see whether the number of mea-
surement occasions is related to characteristics of growth. Thus, we might suppose that children
with atypical characteristics may also have atypical growth patterns and that this may be asso-
ciated with the propensity to continue participation in the study. A strong relationship between
the count of the number of measurements and such growth parameters may thus be indicative
of non-random dropout. Strictly speaking, a smaller number of measurement occasions is not
always indicative of dropout, although it is associated with it in the present data set. A more
sensitive measure would be to count the number of measurements within more narrowly defined
age groups, but this has not been done for the present data.

The responses in our model for prediction are as follows. At level 1 we have repeated mea-
sures of the log(weight) of children up to 10 years .y1ij/ with birth weight (x) in kilograms as a
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covariate. Growth is modelled by using a basic cubic polynomial in age. At adulthood we have
measures on the same individuals of log(glucose level) .y2j/ and log(BMI) .y3j/. We write the
model as

y1ij =β0j +β1jδij +β2jtijδij +β3t2
ijδij +β4t3

ijδij +β5jtij.1− δij/+β6t2
ij.1− δij/+β8xj + eij,

β0j =β0 +u0j, β1j =β1 +u1j, β2j =β2 +u2j, β5j =β5 +u5j,

eij ∼N.0, σ2
e /,

y2j =γ1 +u6j,

y3j =γ2 +u7j,

.u0j, u1j, u2j, u5j, u6j, u7j/T ∼N.0, Ωu/:

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.10/

Here, in terms of our general notation in equation (1), we have two level 2 response variables
y

.2/
j = .y2j, y3j/ and a single level 1 response variable y

.1/
1ij =y1ij. The term δij, in the child growth

model, is an indicator variable taking the value 1 if the weight measurement is taken in infancy (0–
2 years) and 0 if taken in childhood (2–10 years) so that the first line of model (10) fits two disjoint
polynomial models: one for infancy and one for childhood. The two are linked through the level
2 random effects. This separation was specified by the original investigators who wished to con-
sider the two age ranges separately. An alternative would have been to fit, for example, a regres-
sion spline to allow a smooth relationship across the age range, but we have not pursued this here.
Age (t) in infancy is centred at 1.0 years and in childhood at 5.5 years. Note that Ωu is of order 6
since the quadratic and cubic terms in model (10) are assumed not to have random coefficients.

The count data are introduced as follows. We have two further responses at level 2, namely
a count of the number of measurement occasions in infancy .y4j/ and in childhood .y5j/.
The random (intercept) effects for these (on the latent normal scale) at level 2 are respectively
u8j and u9j. The only covariates are the intercepts for these responses.

For the Poisson model we have

pr.y4j =hÅ/=
∫ b

a

φ.t/ dt

where

pr.y4j =0/=
∫ γ4+u8j

−∞
φ.t/ dt

and

pr.y5j =hÅ/=
∫ b

a

φ.t/ dt

where

pr.y5j =0/=
∫ γ5+u9j

−∞
φ.t/ dt

where a and b are as defined in expressions (8) and (9).
For the ordered model with threshold parameters we have for infancy

pr.y4j =h/=
αh−.γ4+u8j/∫

αh−1−.γ4+u8j/

φ.t/ dt, α0 =−∞, α1 =0, αp4 =∞, h=1, . . . , p4,

.11/
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and for childhood

pr.y5j =h/=
αh−.γ5+u9j/∫

αh−1−.γ5+u9j/

φ.t/ dt, α0 =−∞, α1 =0, αp5 =∞, h=1, . . . , p5,

.12/

where p4 and p5 are the numbers of categories respectively for the numbers of occasions in
infancy and childhood. For the smoothing model, equations (11) and (12) are modified accord-
ingly. Thus the level 2 covariance matrix Ωu has elements σ2

u8 =σ2
u9 = 1 corresponding to the

latent normal variables for the ordered responses. The Markov chain Monte Carlo step that
samples the remaining elements of Ωu first samples the variance terms followed by the correla-
tions, which are then transformed to covariances.

5. Results

5.1. Latent normal models
Table 1 shows the estimates for the fixed parameters for three models. Model A treats the number
of measurement occasions in infancy and childhood as ordered categories where each threshold
parameter is estimated. Model B smooths the threshold parameters during infancy by using
a third-order polynomial and the threshold parameters during childhood by using a fourth-
order polynomial. Fitting a higher order polynomial in both cases does not change the other
parameter estimates and the higher order polynomial coefficient estimates are smaller than their
estimated standard errors. Model C fits a Poisson model. We comment further on these results
below.

The chains for the threshold parameters were the least satisfactory in terms of how
well they mixed. The burn-in period was chosen after observing the behaviour of these chains,
especially for the extreme thresholds, using trial runs with different subsets of parameters. A
value of 500 was found to provide a reasonable period for the chains to become stationary.
Likewise, we found that 5000 iterations provided reasonable mixing and summary statistics
in terms of means and standard deviations that were stable and did not change apprecia-
bly with further iterations, using similar trial runs. Further support for the values that were
chosen is provided by the fact that models A and B, using different parameterizations, do
provide similar estimates for the threshold parameters, albeit with different efficiencies (see
below).

The level 2 covariance and correlation matrices are displayed in Table 2 where the variances
are on the diagonal, and correlations below the diagonal. It will be seen that, whereas there are
moderate correlations between the growth random effects, the correlations of growth random
effects with adult measures are not large, so the usefulness of weight measures for prediction
of the adult measures is limited. To illustrate the prediction procedure we consider predicting
log(BMI) by using two childhood weight measurements, together with birth weight.

We write the ‘raw’ residuals for the two weight measurements at times t1j and t2j and the adult
log(BMI) from model (10) as

z1j =y11j − .β0 +β5t1j +β6t2
1j +β8xj/,

z2j =y12j − .β0 +β5t2j +β6t2
2j +β8xj/,

z3j =y2j −γ1:

⎫⎪⎬
⎪⎭ .13/

This defines a three-variate normal distribution that is given by
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Table 1. Fixed effect and threshold estimates for the model defined by expressions (10)–(12)†

Coefficient Model A Model B Model C

Intercept (β0/ 2.398 (0.013) 2.394 (0.013) 2.396 (0.013)
Infancy indicator (β1/ −0.649 (0.003) −0.649 (0.003) −0.649 (0.003)
Age (infancy) (β2/ 0.027 (0.00051) 0.027 (0.000052) 0.027 (0.00052)
Age (infancy) squared (β3/ −0.0027 (0.000034) −0.0027 (0.000034) −0.0027 (0.000034)
Age (infancy) cubed (β4/ 0.00017 (0.000055) 0.00017 (0.0000054) 0.00017 (0.0000056)
Age (childhood) squared (β5/ 0.010 (0.000060) 0.010 (0.0000062) 0.0100 (0.000060)
Age (childhood) cubed (β6/ −0.000012 (0.0000012) −0.000012 (0.0000012) −0.000012 (0.0000012)
Birth weight (β8/ 0.172 (0.0033) 0.173 (0.0036) 0.172 (0.0035)

Level 2 intercept fixed effects
log(glucose) (γ1/ 1.79 (0.0087) 1.79 (0.0087) 1.79 (0.0088)
log(BMI) (γ2/ 3.21 (0.0042) 3.21 (0.0042) 3.21 (0.0042)
Number of measures in infancy 1.09 (0.052) 1.08 (0.051) 1.62 (0.035)
Number of measures in childhood 2.89 (0.132) 2.76 (0.108) 2.95 (0.038)

Threshold parameters (infancy)
α2 0.93 (0.047) 0.92 (0.048)
α3 1.64 (0.058) 1.63 (0.058)
α4 2.22 (0.065) 2.23 (0.067)
α5 2.77 (0.079) 2.75 (0.076)
α6 3.23 (0.104) 3.20 (0.090)
α7 3.60 (0.143) 3.59 (0.128)
α8 4.11 (0.234) 3.94 (0.220)

Threshold parameters (childhood)
α2 0.70 (0.141) 0.59 (0.123)
α3 1.47 (0.137) 1.28 (0.109)
α4 2.02 (0.135) 1.87 (0.109)
α5 2.56 (0.132) 2.38 (0.107)
α6 3.00 (0.130) 2.84 (0.106)
α7 3.44 (0.130) 3.25 (0.105)
α8 3.81 (0.134) 3.64 (0.105)
α9 4.19 (0.141) 4.01 (0.108)
α10 4.55 (0.145) 4.38 (0.115)
α11 4.90 (0.158) 4.73 (0.125)
α12 5.32 (0.176) 5.09 (0.140)
α13 5.66 (0.222) 5.43 (0.187)

Polynomial smoother coefficients
Infancy intercept 2.75 (0.076)
Infancy linear 0.48 (0.032)
Infancy quadratic −0.035 (0.012)
Infancy cubic 0.003 (0.003)
Childhood intercept 3.45 (0.011)
Childhood linear 0.39 (0.016)
Childhood quadratic −0.011 (0.006)
Childhood cubic 0.002 (0.0008)
Childhood quartic −0.00013 (0.00022)
Level 1 variance 0.0027 (0.000055) 0.0027 (0.000055) 0.0027 (0.000054)

†Burn-in, 500; sample size, 5000; number of level 1 units, 7459; number of level 2 units, 1000. Standard errors are
given in parentheses. For the smoothed model the α-estimates are those derived from the smoothing polynomial
at each iteration and the polynomial terms are centred on the mean category (numbered 1, . . . , 8 and 1, . . . , 13
for infancy and childhood respectively). Model A treats the number of measurement occasions in infancy and
childhood as ordered categories where each threshold parameter is estimated. Model B smooths the threshold
parameters by using a third-order polynomial for infancy and a fourth-order polynomial for childhood, and model
C fits a Poisson model.
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Table 2. Level 2 variances and correlations for model (10)–(12)†

Ordered categories

Ωu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0:0053
−0:74 0:0030

0:05 −0:05 0:000010
0:51 −0:60 −0:43 0:0000028
0:10 −0:15 −0:08 0:21 0:0761
0:09 −0:07 −0:05 0:12 0:11 0:0172
0:008 −0:010 −0:014 0:03 0:05 0:04 1

−0:003 0:004 0:004 −0:008 0:02 −0:02 0:014 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Smoothed thresholds

Ωu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0:0053
−0:74 0:0031

0:08 −0:08 0:000010
0:50 −0:60 −0:41 0:0000028
0:11 −0:17 −0:07 0:22 0:0761
0:09 −0:07 −0:04 0:11 0:11 0:0172
0:004 −0:007 −0:02 0:03 0:04 0:04 1

−0:006 0:009 0:006 −0:014 0:02 −0:02 0:016 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Poisson

Ωu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0:0053
−0:74 0:0031

0:10 −0:10 0:000012
0:50 −0:59 −0:39 0:0000028
0:10 −0:16 −0:07 0:21 0:0762
0:08 −0:06 −0:04 0:11 0:10 0:0172
0:0001 −0:003 −0:02 0:03 0:04 0:04 1
0:002 0:0004 0:010 −0:009 0:02 −0:02 0:027 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

†The response variables are in the following order: overall intercept; infancy indicator; infancy slope;
childhood slope; log(glucose); log(BMI); infancy count; childhood count.

(
z1j

z2j

z3j

)
∼N.0, Ωz/,

Ωz =
⎛
⎝ σ2

u0 +2t1jσu05 + t2
1jσ

2
u5 +σ2

e

σ2
u0 + .t1j + t2j/σu05 + t1jt2jσ

2
u5 σ2

u0 +2t2jσu05 + t2
2jσ

2
u5 +σ2

e

σu06 + t1jσu56 σu06 + t2jσu56 σ2
u6

⎞
⎠:

From this normal distribution we can derive the expected value of any of the responses given
the other two, which is just a linear (regression) predictor, which for z3j has the form

ẑ3j =α1z1j +α2z2j:

And the regression coefficients are derived from the above expression, namely

(
α1

α2

)
=
(

σ2
u0 +2t1jσu05 + t2

1jσ
2
u5 +σ2

e

σ2
u0 + .t1j + t2j/σu05 + t1jt2jσ

2
u5 σ2

u0 +2t2jσu05 + t2
2jσ

2
u5 +σ2

e

)−1(
σu06 + t1jσu56
σu06 + t2jσu56

)

where sample estimates, such as those given in Table 2, are substituted. The estimated covariance
matrix of the coefficients is obtained from the inverse matrix given in the expression above and
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Fig. 1. Observed probability distributions for infancy and childhood number of measurement occasions
(categories coded starting from 1; Poisson models were fitted): (a) infancy (χ2 D6:85 (8 degrees of freedom),
P >0:05); (b) childhood (χ2 D39:1 (13 degrees of freedom), P <0:001)

this then enables us to place confidence intervals around the predicted values ẑ3j. The predicted
value of log(BMI) is given by combining ẑ3j with γ̂1 so that the predicted value of BMI becomes

exp.ẑ3j + γ̂1/

The count responses do not follow a Poisson distribution very closely, as is shown in Fig. 1;
there is a non-significant χ2 goodness-of-fit statistic for infancy with a significant value for child-
hood. This is also reflected in some of the estimates in Table 1 (see below) and the differences
in the correlations in the last two rows of the correlation matrices in Table 2.

For all three models we obtain very similar estimates for the fixed effects, since the data are
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Table 3. Fixed effect and threshold estimates for the model defined by expressions (10)–(13) with square-
root transformations of the count responses†

Coefficient Estimate

Intercept 2.396 (0.012)
Infancy indicator −0.649 (0.003)
Age (infancy) 0.027 (0.00051)
Age (infancy) squared −0.0027 (0.000032)
Age (infancy) cubed 0.00017 (0.0000054)
Age (childhood) squared 0.010 (0.000062)
Age (childhood) cubed −0.000012 (0.0000012)
Birth weight 0.172 (0.0032)

Level 2 intercept fixed effects
log(glucose) 1.79 (0.0087)
log(BMI) 3.21 (0.0041)
Square root of infancy count 1.24 (0.020)
Square root of childhood count 2.30 (0.016)
Level 1 variance 0.0027 (0.000056)
Level 2 covariance–

correlation matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0:0053
−0:75 0:0030

0:11 −0:13 0:0000081
0:52 −0:63 −0:48 0:0000027
0:11 −0:17 −0:09 0:22 0:075
0:09 −0:07 −0:06 0:12 0:11 0:017
0:012 −0:014 −0:014 0:03 0:03 0:04 0:391

−0:006 0:009 0:005 −0:013 0:019 −0:024 0:005 0:247

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

†Burn-in, 500; sample size, 5000; number of level 1 units, 7459; number of level 2 units, 1000. Standard errors are
given in parentheses. The ordering of the random effects is as for Table 2.

complete with no missing values. An exception is for the Poisson model C for the level 2 infancy
count and to a lesser extent for the childhood count. These estimates are larger since the Poisson
distribution is defined for all non-negative values rather than being constrained by the range of
observed values. For all the models we obtain reasonable Markov chain Monte Carlo chains for
the parameters of interest. For the ordered unsmoothed model, however, some of the threshold
parameter chains do not mix well. We also note, particularly, the smaller standard errors for
the smoothing model compared with the unsmoothed ordered category model, especially for
the childhood threshold parameters and the childhood count intercept at level 2. This illus-
trates the gain in efficiency from reducing the effective number of threshold parameters. Incre-
asing the order of the polynomials leaves the estimates unchanged but tends to decrease precision
so that care is needed to avoid oversmoothing since this will tend to decrease precision for other
parameters that are associated with the variable being smoothed.

5.2. A square-root transformation model
We now compare these models with a model where we use a square-root transformation for
the two count variables and then treat them as normal variables and fit a multivariate normal
model. The results of this are displayed in Table 3.

We see that the fixed coefficient estimates and the level 2 intercept estimates for log(glucose)
and log(BMI) are very close to those in Table 1 whereas the level 2 intercept estimates for the
infancy and childhood count coefficients are somewhat different as a result of the square-root
transformation.
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6. Discussion

We have described the use of three different latent normal model formulations for count data.
The simplest model, assuming a Poisson distribution, is straightforward to implement and can
be combined with other normal or discrete responses in a multivariate model. The approach that
we have adopted for a Poisson distribution is analogous to that used for a probit model for binary
data and can be further extended to other discrete distributions. Where data do not follow, at
least approximately, a Poisson distribution, we can treat the counts as an ordered classification,
as we have done in the present application. In particular, we note that treating the counts as
an ordered classification effectively conditions the latent normal distribution to be defined with
respect to the actual range of observed counts. Where there are many categories we have shown
how a smoothing formulation provides a good approximation with more efficient estimates.

The algorithm can be extended readily to further levels of nesting and cross-classifications. It is
also relatively straightforward to incorporate linear constraints on sets of parameters (Goldstein
et al., 2009).

The data set that we have used has no missing values for the level 2 responses so the option
that is chosen to model the count data will not affect the fixed parameter estimates for the
remaining responses, as illustrated in Tables 1–3. Where data are missing and where, for exam-
ple, the count responses are used in any kind of imputation procedure, particular assumptions,
e.g. that the counts follow a Poisson distribution, will lead in general to somewhat different fixed
and random-part estimates. The same will be true with the use of a square-root transformation
where this does not lead to (approximate) normality.

The joint modelling of growth data and data on adults allows for the development of an
efficient prediction system of adult values given a collection of growth measurements, and in
principle this can be extended to several growth measures and further adult measures. We have
also suggested that a model where the number of measurement occasions for different age ranges
is jointly modelled with growth parameters may be useful for studying possible informative non-
response patterns.

In the present example we only have birth weight as a covariate. In practice we may have
other useful covariates such as social class and gender that can improve the prediction and can
in principle be incorporated either as predictors or responses. In particular we may wish to use
height as a ‘covariate’ since BMI is one of the adult measurements of interest, although it is not
available in the present data set. In the case where height is not measured at the same times as
weight, we may treat it as a further response that is modelled jointly with the other responses.
When estimating the prediction we would then additionally condition on the observed height
measurements.

The experimental software for fitting these models is written in MATLAB (Mathworks, 2007).
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