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1 Introduction

Over the past two decades or so there has been a great interest in fitting realistically complex
statistical models to the large datasets that occur in the social sciences and other application
areas. These complex models account for the underlying structure in such datasets through
the use of random effects. Historically some of the first random effects models fitted to large
datasets were in the field of education and here the structures of interest were generally
pupils within classes within schools and other nested or hierarchical structures. The fitting of
these multilevel or hierarchical models (e.g., Goldstein, 1995; Bryk and Raudenbush, 1992
and Draper, 2001) is now commonplace in many application areas and several special
purpose software packages have been developed to fit such models (Rasbash et al., 2000b;
Bryk et al., 1988).

To fit these models it is necessary to use either iterative procedures, e.g., iterative
generalized least squares (IGLS (Goldstein, 1986)) or simulation based methods, e.g., Gibbs
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sampling (Gelfand and Smith, 1990). Due to the computational intensity of the Monte Carlo
Markov chain (MCMC) simulation based methods and the speed of computers at the time,
the iterative maximum likelihood (ML) procedures were implemented in software packages
(ML2 (Rasbash, 1989), HLM (Bryk et al., 1988)) several years prior to the MCMC methods.

Those who used these early statistical modelling packages then discovered datasets whose
structures did not fit into the standard multilevel framework. Two such structures are cross-
classified models and multiple membership models. Methods like IGLS exploit the nested
structure of the data in multilevel (hierarchical) models. As these two types of structures are
not strictly nested the initial solution was to convert these structures into nested models with
constraints (Rasbash and Goldstein, 1994). This approach along with its problems will be
discussed further in a later section.

In fact such models are part of a larger family of models known as generalized linear
mixed models (GLMMs). These models are a combination of the linear mixed model
(Harville, 1977) and the generalized linear model framework (Nelder and Wedderburn,
1972). The (normal) linear mixed model can be written

y ¼ X� þ Zuþ e

u �MVNð0,��Þ e � Nð0,�2
eÞ ð1Þ

Here the formulation of �� will control the type of mixed model produced. For
multilevel modelling u will contain the random effects and �� is block diagonal, i.e., the u
are split into independent subsets, one subset for each level. Clayton and Rasbash
(1999) also consider cross-classified models as a special case of the GLMM and use a
technique they call the ‘alternating imputation posterior (AIP) algorithm’ which we will
describe later.

From a Bayesian viewpoint, Clayton (1996) shows the flexibility of different specifications
of the random effects precision matrix, ��1

� . In this paper the models that we consider will all
have block diagonal �� and we will actually split u into its independent subsets in the
equations that follow. Additional complexity, in the form of cross-classified models and
multiple membership models will then be achieved by modifications to the Z matrix. We will
also later deal with the non-normal GLMM case.

A serious problem with the increase in complexity of the models is to establish a notation,
particularly for the indices, that captures the structure of the models (see Rasbash and
Browne, 2001 for more details and for a notation that extends the standard multilevel
notation). Nevertheless we will see that the MCMC methods that we use in this paper do not
require the exact nesting structures in the model for estimation purposes. In this paper we
develop some new terminology and notation that hopefully will make the equations and
estimation algorithms for these complex models simpler.

In Section 2 we introduce these new definitions and notation and demonstrate how they
work for a simple two level model. Then in Sections 3 and 4 we consider the two advances to
the basic structure of the multilevel model, namely cross-classified effects and multiple
membership models with examples. We then describe our general framework of MMMC
models that encompasses these two advances. We finally demonstrate through three actual
data examples the kinds of models that can be fitted in this framework.
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2 Classifications

Consider a problem that has one response variable (multivariate responses are a simple
extension) and assume that there is a unique response in our dataset for each of N lowest
level units. Here the lowest level units could be individuals, time points or even areas.

We now define a classification as a function, c, that maps from the set � of N lowest level
units to a set � of size M where M � N, and we define the resulting set � of M objects as the
classification units. So we have cðniÞ ¼ �i, where the lowest level unit ni 2 � and �i 	 �.

We will consider two types of classifications. A single membership classification is a
function c from � to � that maps each ni 2 � to a unique mj 2 �. A multiple membership
classification is a map c from � to � that maps each ni 2 � to a subset (possibly of size 1) �i

of �. Note that we will still maintain that M � N to avoid identifiability problems in the
estimation that follows.

A special classification is the identity classification that maps every ni 2 � to ni 2 �
where � ¼ �. Given these definitions we will now see that all the sets of random effects that
feature in multilevel models, cross-classified models and multiple membership models will
each have an associated classification. Note that different classifications may share the same
set � of classification units, for example, the areas and neighbours classifications in the lip
cancer example in Section 8.

2.1 The importance of unique identifiers in nested models

One potential problem in fitting multilevel (hierarchical) models in the framework that we
are introducing is the problem of unique identifiers. For example, in education, a very
common structure is to have pupils within classes within schools. Here we could have class 1
in school 1 and class 1 in school 2. Hierarchical data structures are in fact a special case of
the cross-classified data structures that we study next that have no crossings. Therefore we
could fit a hierarchical model as a cross-classified model, however in this case we would need
to differentiate between the two class 1s as they are not the same classification unit. We shall
therefore assume that all classification unit identifiers are unique across a dataset.

2.2 Classification diagrams

Assuming that we have unique identifiers in nested models we do not need to know the
nesting structure to fit a model with several groups of random effects. The equations that
will follow use the classification notation and consequently also do not show the nestings. It
is however useful to display the structure of the classifications involved in a model and for
this we advocate the use of a classification diagram. The classification diagrams for the
simple two level model, a cross-classified model and a multiple membership model are
shown in Figure 1. Here each set of classification units (including the lowest level units
themselves) is represented by a box and the classifications themselves are represented by
arrows from the lowest level units to the classification units. A single membership classi-
fication is represented by a single arrow whilst a multiple membership classification is
represented by a pair of arrows. If there is nesting between classifications then this can be
represented by the arrow that represents the ‘higher level’ classification being drawn from
the ‘lower level’ classification rather than from the lowest level units.
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2.3 Multilevel/hierarchical models

For illustration we will consider a simple two level normal multilevel model from the field of
education that has been analysed in Rasbash et al. (2000a). Here we have 4059 pupils who
are each classified as belonging to one of 65 schools. We will consider a simple two level
variance components model with no predictors, except for an intercept, that is analysed in
Browne and Draper (2001) where the response of interest is a (normalized) exam score. This
model can be written in standard multilevel notation as follows:

yij ¼ �0 þ uj þ eij i ¼ 1, . . . , nj j ¼ 1, . . . , JXJ
j¼1

nj ¼ N uj � Nð0,�2
uÞ eij � Nð0,�2

eÞ ð2Þ

The model can then be rewritten in the classification notation as follows:

yi ¼ �0 þ u
ð2Þ
SchoolðiÞ þ ei i ¼ 1, . . . ,N SchoolðiÞ 2 ð1, . . . , J Þ

u
ð2Þ
SchoolðiÞ � Nð0,�2

uð2ÞÞ ei � Nð0,�2
eÞ ð3Þ

Note that we start numbering classifications from 2 upwards as classification 1 is the ‘identity’
classification that applies to the lowest level. Note also that in this case we could simplify the
notation by writing uð2Þ as u and �2

uð2Þ as �2
u as we have only one higher classification.

3 Cross-classified models

When the classifications in a model are not completely nested this is known as a cross-
classified model. We will now describe the various existing methodologies for fitting cross-
classified models before considering an example.

Pupil

School

(i)

Pupil

Primary
School

Secondary
School

(ii)

Pupil

School

(iii)

Figure 1 Classification diagrams for (i) simple two level nested model (model 3) (ii) cross-classified model (model 4)
and (iii) multiple membership model (model 5)
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3.1 Alternative methodology

There are several frequentist approaches that have been considered for fitting cross-classified
models. In the examples that follow we will only compare the approach of Rasbash and
Goldstein (1994) with a corresponding Bayesian model fit accomplished via MCMC, but will
list the other approaches for completeness.

Rasbash and Goldstein (1994) describe a likelihood-based approach that involves
transforming the cross-classified model into a constrained nested model. Then the standard
IGLS algorithm can be used to fit the resulting constrained model. For datasets with large
numbers of units in each classification this approach requires large amounts of memory to
cope with the constraints. Also for examples that deviate away from a close to nested design
there can be numerical instabilities in the method.

Clayton and Rasbash (1999) introduced a technique that uses a data augmentation
approach (Tanner and Wong, 1987; Schafer, 1997). Their alternating imputation posterior
(AIP) method consists of treating the various nested hierarchies (‘wings’ in their termin-
ology) in turn whilst including terms from the other ‘wings’ as offset terms. For each ‘wing’ a
maximum likelihood or quasi-likelihood method is used and then a stochastic draw of the
residuals is taken. Although this method works reasonably well, if the response is a binary
variable and quasi-likelihood methods need to be used then this method is still affected by
the bias that is inherent in quasi-likelihood methods for binary response multilevel models
(see Goldstein and Rasbash, 1996).

Raudenbush (1993) considers an empirical Bayes approach to fitting cross-classified
models based on the EM algorithm. He considers the specific case of two classifications
where one of the classifications has many units whilst the other has far fewer and shows two
educational examples to illustrate the method.

Two other recent approaches that can be used for fitting cross-classified models, in par-
ticular with non-normal responses are Gauss–Hermite quadrature within PQL estimation
(Pan and Thompson, 2000) and the hierarchical generalized linear model (HGLM) frame-
work as described in Lee and Nelder (2001). Neither of these approaches has been designed
with speed of estimation in mind and so they are currently not feasible for the size of some of
the problems that we will consider in this paper.

The MCMC algorithms for cross-classified models using the classification notation above
are essentially identical to the algorithms for a nested model, as the MCMC method treats
each classification as a random additive term and does not need to construct the global
block-diagonal V matrix used in the IGLS algorithm. We are implementing the MCMC
approach as a Bayesian method and consequently in the models that follow we will need to
add prior distributions for unknown parameters. In order to compare with the ML based
IGLS method (and because we have no additional prior information) we will use ‘diffuse’
prior distributions in all the examples that follow. Note that unless otherwise stated in all the
models that follow we use normal(0, 106) priors for all fixed effects and ��1ð�, �Þ priors for all
variance components, where �¼ 10�3.

3.2 An example

The data that we will consider come from Fife in Scotland. As a response variable we have
the exam results at age 16 of 3435 schoolchildren who attended 19 secondary schools and
148 primary schools. Here there is a cross-classification of primary schools and secondary
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schools since not every child who went to a particular primary school then proceeded to the
same secondary school. Often in education particular primary schools are feeder schools to a
particular secondary school. In our example 89 out of 148 primary schools had children who
went to different secondary schools. If we define the main secondary school for primary
school i as the secondary school which the largest number of pupils in school i attended, then
we find that only 288 out of 3435 children went to a secondary other than their main
secondary. So although we have a cross-classified design, the distribution of pupils is close to
nested.

We will fit the following simple cross-classified variance components model to the dataset

yi ¼ �0 þ u
ð2Þ
SECðiÞ þ u

ð3Þ
PRIMðiÞ þ ei

u
ð2Þ
SECðiÞ � Nð0,�2

uð2ÞÞ u
ð3Þ
PRIMðiÞ � Nð0,�2

uð3ÞÞ ei � Nð0,�2
eÞ ð4Þ

where yi is the exam score for the ith pupil in the dataset, SEC(i ) is the secondary school
they attended and PRIM(i ) the primary school they attended. u

ð2Þ
SECðiÞ is the random effect for

secondary school SEC(i), u
ð3Þ
PRIMðiÞ is the random effect for primary school PRIM(i) and ei is a

level 1 residual for the ith pupil in the dataset. This model is illustrated in the second
classification diagram in Figure 1. To complete the Bayesian specification of this model for
the MCMC method we include ‘diffuse’ priors as described earlier.

We see in Table 1 that in this example there is more variation between primary schools
than between secondary schools. The MCMC (posterior mean) estimates (based on a
main run of 50 000 iterations after a burn-in of 500 iterations from a simple special case of
the algorithm in Appendix A) replicate the IGLS estimates from the Rasbash and Goldstein
(1994) method with slightly greater higher level variances due to the skewness of the
posterior distribution. A further discussion of this dataset is given in Goldstein (1995).

4 Multiple membership models

Our second extension to the standard multilevel framework considers the case when a lowest
level unit is a member of more than one higher classification unit. These models are
commonly known as multiple membership models (Hill and Goldstein, 1998; Rasbash and
Browne, 2001). For example, in medical studies a hospital patient may be treated by several
nurses and each nurse will then have an effect on the patient’s progress. Of course different
nurses will spend different amounts of time with each patient and so we would also like to
incorporate this information in our model. To do this we use a weighting scheme so that for

Table 1 Point estimates for the Fife educational dataset

Parameter IGLS (s.e.) MCMC (s.e.)

Mean achievement (�0) 5.50 (0.17) 5.51 (0.18)
Between secondary school variance (�2

uð2Þ) 0.35 (0.16) 0.41 (0.21)

Between primary school variance (�2
uð3Þ) 1.12 (0.20) 1.15 (0.21)

Between individual variance (�2
e) 8.10 (0.20) 8.12 (0.20)
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the nurse classification each patient will have weights for all the nurses that treated them that
typically sum to 1. One obvious way of choosing weights would be to make them
proportional to the length of time each nurse spends with a patient.

Other examples where we may have a multiple membership model are in education with
children being taught by several teachers in the process of their schooling, and in demo-
graphy where individuals will belong to several different households over a period of time.

4.1 A simulated example

Here we will consider a simulation of a realistic educational example based on the educa-
tional hierarchical dataset (Rasbash et al., 2000a) described earlier. We will assume that 90%
of children stayed in the same school throughout their schooling and that the other 10%
changed school (to another school chosen at random) at some point during this period. For
the purposes of this simulation we will assume that a child only changes school at most
once and that both schools they are members of are given equal weighting (0.5 each).
Neither of these restrictions are necessary as will become clear in the real data examples in a
later section.

The model is then as follows:

yi ¼ �0 þ
X

j2SchoolðiÞ
w
ð2Þ
i; j u

ð2Þ
j þ ei

i ¼ 1, . . . ,N SchoolðiÞ 	 ð1, . . . , J Þ

u
ð2Þ
j � Nð0,�2

uð2ÞÞ ei � Nð0,�2
eÞ

ð5Þ

and is shown in the third classification diagram in Figure 1. Again, for the MCMC method,
we will use diffuse prior distributions. As the multiple membership model is a special case of
the family of models introduced in the next section, the MCMC algorithm here is a Gibbs
sampler that is a special case of the algorithm given in Appendix A.

One thousand sets of response variables were generated with known parameters and the
results obtained from the Rasbash and Goldstein IGLS method and MCMC with the above
priors are shown in Table 2. Here the estimates given by the two methods are the average
values over the 1000 simulated datasets. The 90% interval estimates for the MCMC method
were constructed from the 5th and 95th percentiles of the chains, whilst for IGLS we used

Table 2 Summary of simulations for a simple multiple membership model

Parameter True IGLS est. (MCSE) MCMC est. (MCSE)

Mean achievement (�0) 0 �0.0019 (0.0014) �0.0014 (0.0013)
School variance (�2

uð2Þ) 0.1 0.097 (0.0006) 0.102 (0.0006)

Individual variance (�2
e) 0.6 0.600 (0.004) 0.600 (0.0004)

Actual coverage of nominal 90% / 95% intervals
Mean achievement (�0) � 83.9% / 89.6% 89.9%/ 94.7%
School variance (�2

uð2Þ) � 88.0%/ 92.0% 90.3%/ 94.4%

Individual variance (�2
e) � 93.9%/ 96.4% 90.0%/ 94.3%
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symmetric point estimate 
1:645 estimated standard deviation intervals (see Browne and
Draper, 2001 for similar simulations on a variance components model). In Table 2 we see
that our MCMC method gives both very little bias and far better coverage properties than
the IGLS method for this model.

5 Multiple membership multiple classification (MMMC) models

5.1 A general three classification normal model with one
multiple membership classification

As mentioned earlier the MCMC algorithm, unlike the IGLS algorithm, does not require
details of the nestings in the classification structure (assuming unique identifiers) when fitting
complex random effects models. Consequently, there is no unique ordering for the sets of
random effects which are additive terms in the model. This means that we only need consider
a three classification model that includes the ‘identity’ classification for the lowest level, a
single member classification and a multiple member classification since further classifications
will involve similar steps. In this section we will define this general model for a normal
response. Two of our three later examples actually have binomial and Poisson responses so
the extension to these responses is also described. The general normal response model can be
written as

yi ¼ Xi� þ Z
ð2Þ
i u

ð2Þ
C2ðiÞ þ

X
j2C3ðiÞ

w
ð3Þ
i; j Z

ð3Þ
i u

ð3Þ
j þ ei

u
ð2Þ
C2ðiÞ � Nð0,�uð2ÞÞ u

ð3Þ
j � Nð0,�uð3ÞÞ ei � Nð0,�2

eÞ
ð6Þ

Here y is an N vector, � is a vector of pf fixed effect parameters, and u
ð2Þ
i , u

ð3Þ
i are the vectors

of residuals for the p2 and p3 random effects for classifications 2 and 3 respectively. The ei
are scalar lowest level unit residuals. Xi,Z

ð2Þ
i and Z

ð3Þ
i are vectors of predictor values and

w
ð3Þ
i; j is a scalar weight for the classification 3 unit j for lowest level unit i.

Observation

C2 C3

Figure 2 Classification diagram for the general 3 classification model (model 6)
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For prior distributions we use a multivariate normal prior for the fixed effect parameters,
� � Npfð�p,SpÞ, for the classification 3 variance matrix an inverse Wishart prior �uð3Þ �
W�1

p3
ð�3,S3Þ, for the classification 2 variance matrix an inverse Wishart prior �uð2Þ �

W�1
p2
ð�2,S2Þ and for the lowest level unit variance a scaled inverse 	2 prior �2

e � SI	2ð�e, s2eÞ.
Note that a ��1ð�, �Þ prior as used in the examples is a special case of this prior where �e ¼ 2�
and s2e ¼ 1.

This model can then be fitted using six Gibbs sampling steps as shown in Appendix A.

5.2 Extensions to other response types

An MCMC algorithm is given in Appendix B for fitting the corresponding binomial and
Poisson MMMC models

yi � Binomialðmi, 
iÞ

logitð
iÞ ¼ Xi� þ Z
ð2Þ
i u

ð2Þ
C2ðiÞ þ

X
j2C3ðiÞ

w
ð3Þ
i; j Z

ð3Þ
i u

ð3Þ
j

u
ð2Þ
C2ðiÞ � Nð0,�uð2ÞÞ u

ð3Þ
j � Nð0,�uð3ÞÞ

ð7Þ

yi � Poissonð�iÞ
logð�iÞ ¼ Xi� þ Z

ð2Þ
i u

ð2Þ
C2ðiÞ þ

X
j2C3ðiÞ

w
ð3Þ
i; j Z

ð3Þ
i u

ð3Þ
j

u
ð2Þ
C2ðiÞ � Nð0,�uð2ÞÞ u

ð3Þ
j � Nð0,�uð3ÞÞ

ð8Þ

The same generic prior distributions used for model (6) are used for both these models. This
algorithm is based on a combination of univariate Metropolis Hastings (MH) steps and
Gibbs steps and has been implemented in a development version of the MLwiN software
package (Rasbash et al., 2000b) that will be available publicly in late 2001. Note that the
purely multilevel (nested) MCMC algorithm for binary and Poisson response models is
implemented in the current version of MLwiN. These models can also be fitted using the
Adaptive Rejection (AR) algorithm (Gilks and Wild, 1992) in the software package
WinBUGS (Spiegelhalter et al., 2000). Choosing between these two approaches will be
discussed in Example 1.

6 Example 1: Danish poultry salmonella outbreaks

Rasbash and Browne (2001) consider an example from veterinary epidemiology concerning
the outbreaks of Salmonella typhimurium in flocks of chickens in poultry farms in Denmark
between 1995 and 1997. The response here is whether S. typhimurium is present in a flock,
and in the data collected 6.3% of flocks had the disease. At the lowest level, each unit
represents a flock of chickens. The basic data have a simple hierarchical structure as each
flock is kept in a house on a farm until slaughter. As flocks live for a short time before they
are slaughtered several flocks will stay in the same house each year. The hierarchy is as
follows 10 127 child flocks within 725 houses on 304 farms.
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Each flock is created from a mixture of parent flocks (up to 6) of which there are 200 in
Denmark and so we have a crossing between the child flock hierarchy and the multiple
membership parent flock classification. The classification diagram is shown in Figure 3. We
also know the exact makeup of each child flock (in terms of parent flocks) and so can use
these as weights for each of the parent flocks. We are interested in assessing how much of the
variability in salmonella incidence can be attributed to houses, farms and parent flocks.

There are also four hatcheries in which all the eggs from the parent flocks are hatched. We
will therefore fit a variance components model that allows for different average rates of
Salmonella for each year with hatchery included in the fixed part as follows:

salmonellai � Bernouillið
iÞ
logitð
iÞ ¼ �0 þ Y96i � �1 þ Y97i � �2 þ hatch2i � �3 þ hatch3i � �4

þ hatch4i � �5 þ u
ð2Þ
HouseðiÞ þ u

ð3Þ
FarmðiÞ þ

X
j2P:flockðiÞ

w
ð4Þ
i; j u

ð4Þ
j

u
ð2Þ
HouseðiÞ � Nð0,�2

uð2ÞÞ u
ð3Þ
FarmðiÞ � Nð0,�2

uð3ÞÞ u
ð4Þ
j � Nð0,�2

uð4ÞÞ

ð9Þ

Rasbash and Browne (2001) considered a frequentist analysis for this problem and used
quasi-likelihood methods. They found them to be numerically very unstable for this problem.
Here we will instead concentrate on a Bayesian analysis and compare the MH-Gibbs hybrid
algorithm from this paper (programmed in MLwiN) with the adaptive rejection (AR)
method (Gilks and Wild, 1992) used in the WinBUGS package. To fit this model in a
Bayesian framework we need to include priors for the three variance parameters and the
fixed effects. As we have no prior information we will use ‘diffuse’ priors as defined earlier.

The results of fitting model 9 using both these MCMC methods can be seen in Table 3.
The MCMC results for both methods were based on a run of 50 000 iterations after a

Child Flock

House

Farm

Parent Flock

Figure 3 Classification diagram for the Danish poultry model
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burn-in of 20 000, as we used arbitrary starting values and so the chain took some time to
converge.

From Table 3 we can see close agreement between the two methods, which is to be
expected as they are fitting exactly the same model. As reported in Browne and Draper
(2000) for other logistic regression problems, which method is preferable is a balance
between the speed of the MH–Gibbs method and the reduced Markov chain autocorrelation
of the AR method. Here the MH method took 2 h 2 min whilst WinBUGS took 8 h 48 min.
Although for the fixed effects the expected required run lengths based on the Raftery–Lewis
diagnostic (Raftery–Lewis, 1992) were 2–3 times longer for the MH method, the worst
mixing parameter was the between house variance. This parameter is updated via a Gibbs
sampling step in each method and therefore has similar expected run lengths.

Examining the model estimates we can see here that there are large effects for the year the
chickens were born and for hatchery. There is also a large variability for both the parent
flock effects and the farm effects, which are of similar magnitude. There is less variability
between houses within farms.

6.1 Co-linearity of random effects

In this example we have fitted two nested classifications (houses within farms) that are
crossed with a multiple membership classification (parent flocks). When we consider two
fixed effects that are highly correlated then we generally discard one of the two from the
model as there is confounding of the effects. The same can be true of sets of random effects
particularly in nested models. An extreme case is the often complete confounding between
teachers and classes in education. If each teacher teaches one class then we cannot dif-
ferentiate the variation in the dataset that is due to the teacher from the variation that is due
to the class. Even when a few teachers teach two classes or some classes have two teachers it
would be overly ambitious to try and fit both sets of random effects. Even when situations
are less extreme, for example two classes in every school, then there may still be problems,
particularly if the lower (nested) level does not have significant variation. This is often true in
binary response models where the response has a limited (two) number of values.

MCMC methods will quickly identify this as the variance chains will show poor mixing
properties and high negative cross-chain correlations. In our example 39.4% of farms have
only one house (and a further 27% of farms have only two houses) but there appears to be
enough information in the dataset to separate the effects of the houses and the farms (the

Table 3 Results for the Danish poultry example

Parameter MH estimates AR estimates

Intercept (�0) �2.329 (0.216) �2.331 (0.208)
1996 effect (�1) �1.238 (0.165) �1.242 (0.164)
1997 effect (�2) �1.159 (0.194) �1.163 (0.193)
Hatchery 2 effect (�3) �1.730 (0.259) �1.733 (0.255)
Hatchery 3 effect (�4) �0.201 (0.247) �0.200 (0.252)
Hatchery 4 effect (�5) �1.056 (0.381) �1.054 (0.380)
Parent flock variance (�2

uð4Þ) 0.884 (0.182) 0.890 (0.181)
Farm variance (�2

uð3Þ) 0.922 (0.203) 0.924 (0.193)

House variance (�2
uð2Þ) 0.199 (0.112) 0.202 (0.113)
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cross chain correlation between �2
uð2Þ and �2

uð3Þ is only �0.19) although the house variance
does show worse mixing than the other parameters.

6.2 Complex random effects

The model described by (9) is essentially a variance components model but we could fit a
model that has complex variation at one of the higher classifications. To illustrate this we
will modify the farm classification variance to account for different variability between years
at the farm classification, that is we replace the simple farm classification random effects,
u
ð3Þ
FarmðiÞ with 3 sets of effects one for each year. Our expanded model is then as follows:

salmonellai � Bernouillið
iÞ
logitð
iÞ ¼ �0 þ Y 96i � �1 þ Y 97i � �2 þ hatch2i � �3

þ hatch3i � �4 þ hatch4i � �5 þ u
ð2Þ
HouseðiÞ þ Y 95i � uð3ÞFarmðiÞ;0

þ Y 96i � uð3ÞFarmðiÞ;1 þ Y 97i � uð3ÞFarmðiÞ;2 þ
X

j2P:flockðiÞ
w
ð4Þ
i; j u

ð4Þ
j

u
ð2Þ
HouseðiÞ � Nð0,�2

uð2ÞÞ, u
ð3Þ
FarmðiÞ � N3ð0,�uð3ÞÞ, u

ð4Þ
j � Nð0,�2

uð4ÞÞ

ð10Þ

The farm classification variance is now a matrix and so in a Bayesian formulation we need to
set a prior for this matrix. Following the example of Spiegelhalter et al. (2000) in their birats
example we use a vaguely informative Wishart prior with parameters, S ¼ I3 (the 3 � 3
identity matrix) and � ¼ 3. For the fixed effects and other variances we use the same priors
as in model (9).

The parameter estimates for this extended model for both the MH and AR methods are
given in Table 4. Again both methods give similar estimates as would be expected and this
time the MH method takes 2 h 16 min as opposed to 10 h 54min for the AR method. The
mixing properties of the Markov chain were similar to the last model; the MH method giving
expected run lengths generally 2–3 times greater for fixed effects but again the worst mixing

Table 4 Estimates for the parameters in model 10

Parameter MH estimates (s.e.) AR estimates (s.e.)

Intercept (�0) �2.560 (0.234) �2.573 (0.237)
1996 effect (�1) �1.188 (0.272) �1.158 (0.270)
1997 effect (�2) �1.122 (0.292) �1.120 (0.286)
Hatchery 2 effect (�3) �1.806 (0.270) �1.801 (0.270)
Hatchery 3 effect (�4) �0.146 (0.248) �0.145 (0.254)
Hatchery 4 effect (�5) �1.053 (0.393) �1.059 (0.394)

Parent flock variance (�2
uð4Þ) 0.890 (0.184) 0.892 (0.188)

Farm year 95 variance (�uð3Þ½0, 0�) 1.447 (0.329) 1.476 (0.327)
Farm 95/96 covariance (�uð3Þ½0, 1�) 0.439 (0.276) 0.435 (0.265)
Farm 95/97 covariance (�uð3Þ½0, 2�) 0.479 (0.270) 0.478 (0.274)
Farm year 96 variance (�uð3Þ½1, 1�) 1.427 (0.535) 1.368 (0.516)
Farm 96/97 covariance (�uð3Þ½1, 2�) 0.664 (0.368) 0.661 (0.356)
Farm year 97 variance (�uð3Þ½2, 2�) 1.353 (0.498) 1.370 (0.490)
House variance (�2

uð2Þ) 0.290 (0.124) 0.281 (0.129)
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parameter was the house classification variance with longer expected run length for the AR
method.

It can be seen that the fixed effects estimates for this model are fairly similar to model 9. It
is interesting to see that all the covariances in the farm level variance matrix are positive.
This suggests that after adjusting for other factors, if a farm has an incidence of salmonella
in 1995 then it is more likely to have an incidence again in 1996 and in 1997. In fact the
corresponding correlation estimates are 0.30, 0.34 and 0.48 respectively, showing that, in
particular, there is a fairly strong correlation between salmonella infection in farms in 1996
and 1997.

7 Example 2: Belgium household migration

Goldstein et al. (2000) consider the problem of assessing the propensity of individuals to
move household by considering a longitudinal dataset. This dataset contains the addresses of
all inhabitants, over a 5 year period, in the town of Charleroi, recorded every 6 months. The
response is the average duration that an individual has stayed in a household based on all
the households they have been members of up to and including the current household. We
consider at each occasion the individual to be a multiple member of all the previous
households including the current household, as their membership of previous households
could influence their current household. Each of the multiple membership units are weighted
equally, as in Goldstein et al. (2000), although other weightings may be valid, for example
the current household may be given larger weight.

A household is here defined as a group of people sharing a dwelling for a period of time.
Anybody leaving or entering a household at a particular time constitutes a change of
household and the current household ceases to exist, being replaced by one or more new
households (see Goldstein et al. (2000) for more details). We do not include in the dataset
the household that the individuals belong to at the end of the 5 year period as the full length
of stay in this household is not known. Further research could consider fitting the dataset
with these terms included as censored observations. The classification diagram for this
dataset can be seen in Figure 4.

The model we will fit is a variance components model with several individual level
covariates as follows:

durationi ¼ �0 þ genderi � �1 þ householdsizei � �2 þ ðagei � 30Þ � �3

þ spousei � �4 þ childi � �5 þ marriedi � �6 þ Belgiani � �7

þ u
ð2Þ
individualðiÞ þ

X
j2householdðiÞ

w
ð3Þ
i; j u

ð3Þ
j þ ei

u
ð2Þ
individualðiÞ � Nð0,�2

uð2ÞÞ, u
ð3Þ
j � Nð0,�2

uð3ÞÞ, ei � Nð0,�2
eÞ

ð11Þ

There are 66 624 occasions measured within 37 759 individuals and in total 26 852
households with each individual being a member of up to 10 households.

To fit this model in a Bayesian framework we need to include priors for the three variance
parameters and the fixed effects. As we have no prior information we will use ‘diffuse’ priors
as defined earlier.
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The results for fitting this model using a special case of the MCMC algorithm in
Appendix A can be seen in Table 5. Goldstein et al. (2000) used the method of Rasbash and
Goldstein (1994) with the IGLS algorithm to fit this dataset. This was possible because
although the dataset is very large, the data can be split into disjoint non-intersecting subsets
and so the memory required is substantially reduced. We reproduce these estimates for
comparison with the MCMC method in Table 5.

The MCMC algorithm (in MLwiN) takes a long time initially calculating the indexing
arrays (13 min on a 733MHz PC), due to the huge numbers of random effects, but this then
enables the sampler to run faster (70 iterations a minute). The IGLS algorithm in this
example takes about 3 minutes per iteration and needs five iterations to converge.

Table 5 shows that the results for the two methods are almost identical. This is to be
expected as the variance estimates are based on large numbers of higher level units and so
their distributions are fairly symmetric. From the estimates we can see that people stay
longer in the same household if they are older, if they are children or spouses rather than
heads of household, if they are married or if they are Belgian nationals.

Observation

Individual Household

Figure 4 Classification diagram for the Belgium household model

Table 5 Results for the Charleroi population dataset

Parameter IGLS estimate (s.e.) MCMC estimate (s.e.)

Intercept (�0) 1.4780 (0.0101) 1.4790 (0.0093)
Gender (�1) �0.0055 (0.0050) �0.0059 (0.0050)
Size of household (�2) �0.0575 (0.0010) �0.0577 (0.0010)
Age–30 years (�3) 0.0055 (0.0002) 0.0055 (0.0002)
Spouse (�4) 0.0418 (0.0031) 0.0417 (0.0032)
Child (�5) 0.0467 (0.0036) 0.0463 (0.0035)
Is Married (�6) 0.0472 (0.0039) 0.0468 (0.0038)
Is Belgian national (�7) 0.0148 (0.0054) 0.0147 (0.0052)
Between household variance (�2

uð3Þ) 1.3340 (0.0122) 1.3340 (0.0126)

Between individual variance (�2
uð2Þ) 0.1520 (0.0015) 0.1520 (0.0015)

Residual variance (�2
e) 0.0028 (0.00003) 0.0027 (0.00003)
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8 Example 3: Scottish lip cancer data

The Scottish lip cancer dataset (Clayton and Kaldor, 1987) has been analysed many times
using many different models that attempt to account for spatial random variation. The
response variable is the observed count of male lip cancer in the period 1975–80, by region,
for the 56 regions of Scotland. Research has focused on the effect of sun exposure using the
surrogate measure percentage of the workforce working in outdoor occupations. We can fit
a spatial model into the MMMC framework by considering the areas as one classification
and the neighbours as another multiple membership classification. The model is then as
follows:

obsi � Poissonð�iÞ

logeð�iÞ ¼ logeðexpiÞ þ �0 þ Xi�1 þ u
ð2Þ
AreaðiÞ þ

X
j2NeighbourðiÞ

w
ð3Þ
i; j u

ð3Þ
j

u
ð2Þ
AreaðiÞ � Nð0,�2

uð2ÞÞ u
ð3Þ
j � Nð0,�2

uð3ÞÞ

ð12Þ

Here the weights w
ð3Þ
i; j ¼ 1=ri where ri is the number of neighbouring regions for region i. The

one predictor variable Xi is the percentage of the workforce involved in agriculture, fishing
or forestry (divided by 10). This model can be represented in a classification diagram as
shown below.

The model as it stands can be fitted using either quasi-likelihood methods in a frequentist
setting (which we do not consider here) or MCMC in a Bayesian framework. Again to
complete a Bayesian formulation of this model we require the addition of prior distributions.
In the comparison experiment that follows in the next section we will again use ‘diffuse’
priors as described earlier.

Langford et al. (1999) use quasi-likelihood methods and extend this model by incorp-
orating a covariance between the two sets of random effects, uð2Þ and uð3Þ. This is possible for
certain random effects models where the two classifications use the same set of classification
units, so the concept of a correlation between the random effects has a meaning. This model
is however not part of the general MMMC framework which assumes conditional

Observation

Area Neighbours

Figure 5 Classification diagram for the lip cancer model
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independence between the random effects in different classifications and so will not be
considered here.

8.1 Alternative spatial models to MMMC

The standard Bayesian spatial Poisson models are based on the conditional autoregressive
(CAR) prior (Besag et al., 1991) that was originally used in image analysis. These priors were
used on the Scottish lip cancer dataset (Breslow and Clayton, 1993) and the model can be
written as follows:

obsi � Poissonð�iÞ
logeð�iÞ ¼ logeðexpiÞ þ �0 þ Xi�1 þ ui þ vi

ui � Nð0,�2
uÞ vi � Nð�vvi,�2

v=riÞ
where �vvi ¼

X
j2NeighbourðiÞ

vj=ri

ð13Þ

Here ri is the number of neighbouring regions for region i. To fit a CAR model using
MCMC methods, again prior distributions are required and we use the same ‘diffuse priors’
as in the MMMC model. This model is in fact similar to the MMMC model with two sets of
random effects, except that spatial correlation is achieved through the variance structure
rather than through the multiple membership relationship and so the neighbourhood
random effects are not independent. It is also possible given additional data, such as the
distances between neighbours, to incorporate this information either in the weight matrix, as
in the MMMC model, or in the CAR model framework, although this is not considered in
this example.

8.2 Comparison of models

To compare the MMMC and CAR models we performed a cross validation study of the lip
cancer dataset. For each region in turn we set its actual deaths to be a missing value and
fitted both the MMMC and CAR models to the data. At each iteration the missing value
was imputed and consequently we obtained an estimate of the posterior distribution of the
(unknown) observed number of cases for the region. As an MCMC method for the CAR
model is not available currently in the MLwiN package we instead used the AR algorithm in
the WinBUGS package for both models.

Both methods appeared to give reasonable interval estimates and Table 6 gives the results
for regions where the interval estimates from one of the methods did not contain the actual
number of deaths. The MMMC method gave 95% intervals that contained the true value 53
out of 56 times and the CAR method 54 out of 56 times, but further work involving cross
validation needs to be done here.

In terms of point estimates, Table 7 contains some additional information about the two
methods. Both the mean and median estimates were (on average) closer using the CAR
model and this method also had smaller average intervals. However, the MMMC models
mean squared difference (MSD) estimates were inflated by one or two poor estimates.
Considering the 56 regions individually we find that the MMMC mean estimate is closer
nearly 50% of the time. We will consider a more extensive cross-validation study and

118 WJ Browne et al.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at University of Bristol Information Services on February 19, 2007 http://smj.sagepub.comDownloaded from 

http://smj.sagepub.com


compare results with the Langford model in a further paper, along with comparisons using
the DIC (Spiegelhalter et al., 2001) criterion.

9 Conclusions

In this paper we have extended the now standard multilevel modelling framework to
encompass both crossed random effects and multiple membership random effects. We have
developed notation based on mappings that allows these models to be easily specified, and
have given several examples that show the power and scope of this extended family of
models. We have shown how a Bayesian analysis can be easily implemented using MCMC
based algorithms, and how these algorithms do not have the disadvantage of frequentist
maximum likelihood based methods that need large amounts of memory when the model
structure becomes complex, and the datasets become large. However it is also important to
note that in some examples (like the Belgian population example studied here) that are
almost nested, through clever partitioning of the data the maximum likelihood based
methods can still be applied and may be faster. The models were all programmed in a
development version of the MLwiN package (Rasbash et al., 2000b) which will be available
to the user community in 2002. More information on MLwiN is available at the multilevel
modelling project website (http://multilevel.ioe.ac.uk/).

10 Extensions

In the models in this paper we consider a simple variance at the lowest level of the model.
Browne et al. (2001) show how to incorporate complex level 1 variation within the MCMC
algorithm to allow for heteroscedasticity in normal response models. This extension to the

Table 6 A list of regions whose intervals do not contain the actual number of deaths for the lip cancer dataset

Area Actual Expected MMMC interval CAR interval

Moray 26 8.11 (3,24) (6,40)
Kirkcaldy 19 15.47 (1,18) (5,41)
Dundee 6 19.62 (6,57) (8,59)
Annandale 0 4.16 (1,19) (1,15)

Table 7 Some further comparisons between the two models fit to the lip cancer dataset

MMMC model CAR model

Mean squared difference (means) 155.86 57.21
Mean squared difference (medians) 114.07 45.17
Mean interval width 26.00 22.50
Closer estimate (mean) 27/56 29/56
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simple multilevel modelling framework can easily be combined with the cross-classified and
multiple membership models that are covered in this paper.

In the Belgian example we have omitted the censored data of the last household that
individuals belong to. The data are also all left censored as it is assumed that every
individual starts in their first household 6 months before the first data collection point. It
would be useful to reanalyse this example while also modelling the censored data using a
survival type model. This could easily be implemented in an MCMC framework by imputing
the true data based on the censored data and a known prior distribution.

In the lip cancer example we performed some initial comparisons between an MMMC
model that can be applied to spatial data and the standard CAR spatial models. We intend
to extend this comparison work while considering Bayesian formulations for the MMMC
model with correlated random effects as described in Langford et al. (1999).
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Step 1: Update the fixed effects parameter vector � from its full conditional distribution
which is multivariate normal with dimension pf

pð� j y, uð2Þ, uð3Þ,�uð2Þ,�uð3Þ, �
2
eÞ � Npfðb��, bDDÞ

where bDD ¼
XN
i¼1

ðXiÞTXi

�2
e

þ S�1
p

" #�1

and b�� ¼ bDD X
i

ðXiÞTdi
�2
e

þ S�1
p �p

" #
where di ¼ yi � Z

ð2Þ
i u

ð2Þ
C2ðiÞ �

X
j2C3ðiÞ

w
ð3Þ
i; j Z

ð3Þ
i u

ð3Þ
j ð14Þ

Step 2: Update the ‘simple’ classification 2 units, u
ð2Þ
k , from their multivariate normal full

conditional distribution with dimension p2

pðuð2Þk j y,�, uð3Þ,�uð2Þ,�uð3Þ, �
2
eÞ � Np2

ðbuu ð2Þ
k , bDDð2Þ

k Þ

where bDDð2Þ
k ¼

X
i;C2ðiÞ¼k

ðZð2Þ
i ÞTZð2Þ

i

�2
e

þ ��1
uð2Þ

24 35�1

and buuð2Þk ¼ bDDð2Þ
k

X
i;C2ðiÞ¼k

ðZð2Þ
i ÞTd ð2Þ

i

�2
e

24 35
where d

ð2Þ
i ¼ yi � Xi� �

X
j2C3ðiÞ

w
ð3Þ
i; j Z

ð3Þ
i u

ð3Þ
j ð15Þ

Step 3: Update the ‘multiple membership’ classification 3 units, u
ð3Þ
k , from their multi-

variate normal full conditional distribution with dimension p3

pðuð3Þk j y, �, uð2Þ,�uð2Þ,�uð3Þ, �
2
eÞ � Np2

ðbuu ð3Þ
k , bDDð3Þ

k Þ

where bDDð3Þ
k ¼

X
i;k2C3ðiÞ

ðwð3Þ
i;k Þ

2ðZð3Þ
i ÞTZð3Þ

i

�2
e

þ ��1
uð3Þ

24 35�1

and buu ð3Þ
k ¼ bDDð3Þ

k

X
i;k2C3ðiÞ

w
ð3Þ
i;k ðZ

ð3Þ
i ÞTd ð3Þ

i;k

�2
e

24 35
where d

ð3Þ
i;k ¼ yi � Xi� � Z

ð2Þ
i u

ð2Þ
C2ðiÞ ð16Þ

Step 4: Update the lowest level variance �2
e by drawing from the Gamma full conditional

distribution for 1=�2
e

pð1=�2
e j y, �, uð2Þ, u

ð3Þ
k ,�uð2Þ,�uð3ÞÞ � Gamma

Nþ �e
2

,
1

2

X
i

e2i þ �es
2
e

" #
ð17Þ

Step 5: Update the classification 2 variance matrix, �uð2Þ. Expressed as a Wishart draw of
��1
uð2Þ the full conditional is

pð��1
uð2Þ j y,�, uð2Þ, u

ð3Þ
k ,�uð3Þ, �

2
eÞ � Wp2

n2 þ �2,
Xn2

j¼1

u
ð2Þ
j ðuð2Þj ÞT þ S2

 !�1
24 35 ð18Þ
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where n2 is the number of classification 2 units and p2 is the number of rows or columns in
�uð2Þ. An improper uniform prior on �uð2Þ corresponds to the choice ð�2,S2Þ ¼ ð�p2 � 1, 0Þ.
Step 6: Update the classification 3 variance matrix, �uð3Þ. Expressed as a Wishart draw of

��1
uð3Þ the full conditional is

pð��1
uð3Þ j y,�, uð2Þ, u

ð3Þ
k ,�uð2Þ, �

2
eÞ � Wp3

n3 þ �3,
Xn3

j¼1

u
ð3Þ
j ðuð3Þj ÞT þ S3

 !�1
24 35 ð19Þ

where n3 is the number of classification 3 units and p3 is the number of rows or columns in
�uð3Þ. An improper uniform prior on �uð3Þ corresponds to the choice ð�3,S3Þ ¼ ð�p3 � 1, 0Þ.

Appendix B: details of MCMC algorithm for binomial and
Poisson models in Section 5.2

The above algorithm for the general three classification normal response model can be easily
adapted to both binomial and Poisson response models. Here we will use univariate
Metropolis updates for the fixed effects and sets of classification 2 and 3 residuals as the full
conditionals do not have standard forms. For ease of notation in the full conditionals that
follow we define 
i ¼ Xi� þ Z

ð2Þ
i u

ð2Þ
C2ðiÞ þ

P
j2C3ðiÞ w

ð3Þ
i; j Z

ð3Þ
i u

ð3Þ
j .

Step 1: Update � using univariate random walk Metropolis at time t as follows: for
l ¼ 1, . . . , pf and with �ð�lÞ signifying the beta vector without component l

�lðtÞ ¼ ��
l with probability min 1,

pð��
l j y, uð2Þ, uð3Þ,�ð�lÞÞ

pð�lðt� 1Þ j y, uð2Þ, uð3Þ, �ð�lÞÞ

" #
¼ �lðt� 1Þ otherwise ð20Þ

where ��
l � Nð�lðt� 1Þ,�2

1lÞ and

pð�l j y, uð2Þ, uð3Þ, �ð�lÞÞ /
Y
i

½1 þ e�
i ��yi ½1 þ e
i �yi�mi

ð21Þ

for the logistic binomial and

pð�l j y, uð2Þ, uð3Þ, �ð�lÞÞ /
Y
i

½e
i �yie�e
i ð22Þ

for the Poisson regression.
Step 2: Update the ‘simple’ classification 2 units, u

ð2Þ
k , using univariate random walk

Metropolis at time t as follows: for k ¼ 1, . . . , n2 and l ¼ 1, . . . , p2 and with u
ð2Þ
kð�lÞ signifying

the u
ð2Þ
k vector without component l

u
ð2Þ
kðlÞðtÞ ¼ u

ð2Þ�
kðlÞ with probability min 1,

pðuð2Þ�kðlÞ j y, uð2�Þkð�lÞ, u
ð3Þ,�,�uð2ÞÞ

pðuð2ÞkðlÞðt� 1Þ j y, uð2Þkð�lÞðt� 1Þ, uð3Þ,�,�uð2ÞÞ

24 35
¼ u

ð2Þ
kðlÞðt� 1Þ otherwise ð23Þ
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where u
ð2Þ�
kðlÞ � Nðuð2ÞkðlÞðt� 1Þ, �2

2klÞ and

pðuð2ÞkðlÞ j y; u
ð2Þ
kð�lÞ; u

ð3Þ, �,�uð2ÞÞ / expð� 1

2
ðuð2Þk ÞT��1

uð2Þu
ð2Þ
k Þ

Y
i;k¼C2ðiÞ

½1 þ e�
i ��yi ½1 þ e
i �yi�mi

ð24Þ

for the logistic binomial and

pðuð2ÞkðlÞ j y, u
ð2Þ
kð�lÞ, u

ð3Þ,�,�uð2ÞÞ / expð� 1

2
ðuð2Þk ÞT��1

uð2Þu
ð2Þ
k Þ

Y
i;k¼C2ðiÞ

½e
i �yie�e
i ð25Þ

for the Poisson regression.
Step 3: Update the ‘multiple membership’ classification 3 units, u

ð3Þ
k , using univariate

random walk Metropolis at time t as follows: for k ¼ 1, . . . , n3 and l ¼ 1, . . . , p3 and with
u
ð3Þ
kð�lÞ signifying the u

ð3Þ
k vector without component l

u
ð3Þ
kðlÞðtÞ ¼ u

ð3Þ�
kðlÞ with probability min 1,

pðuð3Þ�kðlÞ j y, uð3�Þkð�lÞ, u
ð2Þ, �,�uð3ÞÞ

pðuð3ÞkðlÞðt� 1Þ j y, uð3Þkð�lÞðt� 1Þ, uð2Þ, �,�uð3ÞÞ

24 35
¼ u

ð3Þ
kðlÞðt� 1Þ otherwise

ð26Þ

where u
ð3Þ�
kðlÞ � Nðuð3ÞkðlÞðt� 1Þ, �2

3klÞ and

pðuð3ÞkðlÞ j y, u
ð3Þ
kð�lÞ, u

ð2Þ,�,�uð3ÞÞ

/ exp � 1

2
ðuð3Þk ÞT��1

uð3Þu
ð3Þ
k

 � Y
i;k2C3ðiÞ

½1 þ e�
i ��yi ½1 þ e
i �yi�mi ð27Þ

for the logistic binomial and

pðuð3ÞkðlÞ j y, u
ð3Þ
kð�lÞ, u

ð2Þ, �,�uð3ÞÞ / exp � 1

2
ðuð3Þk ÞT��1

uð3Þu
ð3Þ
k

 � Y
i;k2C3ðiÞ

½e
i �yie�e
i ð28Þ

for the Poisson regression.
Step 4 of the previous algorithm is redundant as the lowest level variance is defined by the

response type and is not estimated. Steps 5 and 6 of the algorithm are the same as in the
algorithm in Appendix A.
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