

Dealing with missing data in physical activity models

Alex Griffiths University of Bristol

How much data is missing?

- Three time points (~12, 14 and 16 years)
- Up to 7 days accelerometry at each age
 - Weekly average used in analysis
 - ▶ \geq 3 days for reasonable reliability
- Numbers with valid data:

Age	Invited to clinic	≥l day	≥3 days
12	11 952	6 2	5 741
14	11 267	4 423	3 885
16	10 692	2 246	2 099

6268 with valid data at one or more time points

Variables predicting drop-out

- Boys
- Lower birth weight
- Lower social class
- Younger mothers
- Mothers with fewer educational qualifications
- Higher physical activity at earlier ages
- Higher fat mass at earlier ages (girls only)

Complete case analysis

- PA and fat mass at 12 and 14
- Multilevel model allows subjects with data at only one age to be included
- BUT:
- Loss of power (n=4 614 with data at one or more time points plus confounders)
- Bias? Prospective associations between objective measures of physical activity and fat mass in 12-14 year old children: the Avon Longitudinal Study of Parents and Children (ALSPAC)

Chris J Riddoch, professor of sport and exercise science,¹ Sam D Leary, lecturer in statistics,²³ Andy R Ness, professor of epidemiology and codirector of the Avon longitudinal study of parents and children,²³ Steven N Blair, professor of epidemiology,⁴ Kevin Deere, research assistant,³ Calum Mattocks, research fellow,¹ Alex Griffiths, research assistant in statistics,² George Davey Smith, professor of clinical epidemiology,⁵ Kate Tilling, senior lecturer in medical statistics³

Types of missing data

Missing Completely At Random (MCAR)

- Probability that data is missing does not depend on true value of missing data itself or on other variables
- Complete case analysis unbiased

Missing At Random (MAR)

Probability that data is missing does not depend on true value of missing data but may depend on other (observed) variables

Missing Not At Random (MNAR)

 Probability that data is missing depends on true value of missing data

Multiple imputation

Two stages:

- 1. Create $m (\geq 2)$ imputed datasets with each missing value filled in
- 2. Analyse each imputed (complete) dataset using standard methods, and combine the results appropriately
- Multiple Imputation by Chained Equations (MICE)
 - For each variable with missing data, regress observed values on all other variables
 - Draw from predictive distribution to create imputed values
 - Repeat...

Variables to include

- Outcome and exposure of interest
- Possible confounders
- Variables predictive of missingness

Imputing missing PA data: 2-level model

- Multilevel model for PA sum of residuals for each person at each age (MLwiN)
- Impute missing residuals and covariates (Stata ice)
- Regress outcome on PA residuals (Stata mim)

Daily PA data

Age	Invited to clinic	≥l day	≥3 days
12	11 952	6112	5 741
14	11 267	4 423	3 885
16	10 692	2 246	2 099

- ▶ PA data only included if \geq 3 valid days
- Is there a way to use the partial data (I or 2 days) in the imputation model?

Plan A: impute individual days

- Impute missing days if ≥1 valid day calculate weekly average (passive imputation)
- Impute weekly average if no valid days
- Then fit multilevel model in Stata (xtmixed)
 - Too computationally intensive in practice

Plan B: 3-level multilevel model

Fit multilevel model to day-by-day PA data

D

- Calculate sum of residuals from top two levels only
- Impute missing residuals and covariates as before

Results

PA at age 12		% change in fat mass at age 16		
		Boys (n=2988)	Girls (n=3280)	
+100 counts/min total activity	Unimputed	-8.5% (-10.3%, -6.6%)	-4.2% (-5.6%, -2.8%)	
	Imputed	-7.5% (-9.0%, -6.0%)	-3.5% (-4.7%, -2.3%)	
+ 15 mins/day MVPA	Unimputed	-14.7% (-17.6%, -11.7%)	-8.5% (-11.2%, -5.8%)	
	Imputed	-14.3% (-16.7%, -11.7%)	-7.9% (-10.2%, -5.6%)	

95% confidence intervals in brackets

- Associations between PA and fat mass weaker after imputation
- Gain in precision

Hourly PA data?

- Valid day = 10 hours
- "Green sheets"
 - Record activities if accelerometer was taken off
- Possible to incorporate into imputation model?