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Aims of Talk

Overview of the application of multilevel (random effects)
models in longitudinal research, with examples from social
research

Particular focus on joint modelling of correlated processes
using multilevel multivariate models, e.g. to adjust for
selection bias in estimating effect of parental divorce on
children’s education



Longitudinal Research Questions and Models

Consider multilevel models for:

Change over time

Growth curve (latent trajectory) models
E.g. Do child developmental processes (academic ability,
behaviour etc.) differ for boys and girls, or by parental
characteristics?
Dynamic (autoregressive) models
E.g. Is there a causal effect of test score at time t on the score
at t + 1?

Time to event occurrence

Event history analysis
E.g. What are risk factors of divorce? What is the impact of
divorce on children’s educational careers?



Modelling Change



Repeated Measures Data

Denote by yti the response at occasion t (t = 1, . . . ,Ti ) for
individual i (i = 1, . . . , n).

Occasions need not be equally spaced

In many applications time ≡ age (e.g. developmental
processes) and, at a given t, individuals vary in age

Individuals may have missing data

Can view data as having a 2-level hierarchical structure: responses
(level 1) within individuals (level 2).



Examples of Growth Curves

Growth curve models posit the existence of individual underlying
trajectories. The pattern of y over time provides information on
these trajectories.

Individuals may vary in their initial level of y and their growth rate.



Linear Growth Model

Denote by zti the timing of occasion t for individual i . Suppose yti

is a linear function of zti and covariates xti .

yti = α0i + α1izti + βxti + eti

α0i = α0 + u0i (individual variation in level of y)

α1i = α1 + u1i (individual variation in growth rate)

where u0i and u1i are individual-level residuals ∼ bivariate normal
and eti are i.i.d. normally distributed occasion-level residuals.
Residuals at both levels assumed uncorrelated with xti .

Frame as a multilevel ‘random slopes’ model or a SEM (Curran
2003).
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Advantages of Multilevel Approach

No need to have balanced design or equally spaced
measurements

Individuals may vary in their number of measurements by
design or due to attrition
Individuals with missing y included under a missing at
random assumption

Straightforward to allow for between-individual variation in
the timing of measurement t

Flexibility in specification of dependency of y on z , e.g.
polynomial, spline, step function

Can allow for clustering at higher levels, e.g. geography
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Example: Development in Reading Ability

Reading scores for 221 children on four occasions (only
complete cases considered)∗

Occasions spaced two years apart (1986, 1988, 1990 and
1992); children aged 6-8 in 1986

Model children’s reading trajectories over the four occasions
as a linear function of time (zti = zt), with origin at 1986

Allow initial reading score (intercept) and progress (slope) to
vary across individuals

∗Dataset from http://www.duke.edu/∼curran/
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Predicted Trajectories Between-Child Variance



Multivariate Growth Curve Models

Suppose xti and yti are outcomes of correlated processes, e.g.
reading and maths ability.

Unmeasured influences on yti (represented by u0i and u1i ) might
also affect xti . We can model changes in yti and xti jointly:

yti = α
(y)
0i + α
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ki , k = 0, 1.

Equations linked via cross-process correlations among residuals
defined at the same level.
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Joint Model of Reading (R) & Antisocial Behaviour (B)

Correlations between child-specific random effects:

R intercept B intercept R slope B slope

R intercept 1

B intercept −0.08 1

R slope 0.12 −0.44 1

B slope −0.06 0.42 0.30 1

Only the correlation between the behaviour intercept and the reading
slope is significant at 5%. Worse-than-average behaviour at year 1

(u
(B)
0i > 0) associated with below-average reading progress (u

(R)
1i < 0).

Note that we cannot infer that behaviour at t = 1 predicts future reading
in any causal sense.



Dynamic (Autoregressive) Models

1st order autoregressive, AR(1), model:

yti = α0 + α1yt−1,i + βxti + ui + eti , t = 2, 3, . . . ,T

where ui ∼ N(0, σ2
u), cov(xti , ui ) = 0 and eti ∼ N(0, σ2

e )

α1 is assumed the same for all individuals (and often for all t)

Effect of y1 on a subsequent yt is αt−1
1 , so diminishes with t

for |α1| < 1

Residual correlation between yti and yt−1,i is
ρ = σ2

u/(σ2
u + σ2

e )



Dynamic (Autoregressive) Models

1st order autoregressive, AR(1), model:

yti = α0 + α1yt−1,i + βxti + ui + eti , t = 2, 3, . . . ,T

where ui ∼ N(0, σ2
u), cov(xti , ui ) = 0 and eti ∼ N(0, σ2

e )

α1 is assumed the same for all individuals (and often for all t)

Effect of y1 on a subsequent yt is αt−1
1 , so diminishes with t

for |α1| < 1

Residual correlation between yti and yt−1,i is
ρ = σ2

u/(σ2
u + σ2

e )



State Dependence vs. Unobserved Heterogeneity

Is correlation between yt and yt−1 due to:

Causal effect of yt−1 on yt?
⇒ |α1| close to 1 and ρ close to 0 (state dependence)

Mutual dependence on time-invariant omitted variables?
⇒ |α1| close to 0 and ρ close to 1 (unobserved heterogeneity)

E.g. Explanations for persistently high/low crime rates in areas:

Current crime rate determined by past crime rate

Dependence of crime rate at all t on unmeasured area-specific
characteristics (unemployment, social cohesion etc)
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Example: Dynamic Analysis of Reading Ability

Effects on standardised reading score at year t

Variable Estimate SE

Reading at t − 1 0.34 0.07

Year 1990 (vs 1988) 0.28 0.07

Year 1992 (vs 1988) 0.56 0.11

Cognitive support at home 0.10 0.03

Male -0.05 0.06

α̂1=0.34 (se=0.07) and ρ̂ = 0.60

No clear pattern: evidence of state dependence and substantial
unobserved heterogeneity



The Initial Conditions Problem

y1 may not be measured at the start of the process

Can view as a missing data problem:

Observed (y1, . . . , yT )

Actual (y−k , . . . , y0,y1, . . . , yT )

where first k + 1 measures are missing.

We need to specify a model for y1 (not just condition on y1).



Modelling the Initial Condition

Common assumptions:

Short-run Treat t = 1 as the start of the process, but need to
allow for time-invariant unobservables affecting y1i and
(y2i , . . . , yTi )

Long-run Allow for possibility that process is already
underway by t = 1, and regard y1i as informative (about past
and future y)

In a random effects framework, specify a model for y1i and
estimate jointly with the model for (y2i , . . . , yTi ).

A widely used alternative approach (without parametric
assumptions) is Generalised Method of Moments.†

†e.g. Arellano and Honoré (2001) Handbook of Econometrics, vol. 5.



Dynamic Model with Endogenous xti

xti may be jointly determined with yti (subject to shared or
correlated time-invariant unobserved influences), i.e.
cov(xti , ui ) 6= 0

In addition, the relationship between x and y may be bi-directional.

⇒ Fully simultaneous bivariate model (cross-lagged SEM):

yti = α
(y)
0 + α

(y)
1 yt−1,i + β(y)xt−1,i + u

(y)
i + e

(y)
ti

xti = α
(x)
0 + α

(x)
1 xt−1,i + β(x)yt−1,i + u

(x)
i + e

(x)
ti

where cov
(
u

(y)
i , u

(x)
i

)
is freely estimated.



Cross-lagged Structural Equation Model for T=4

y1 y2 y3 y4

x1 x2 x3 x4
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Cross-lagged Structural Equation Model for T=4

y1 y2 y3 y4

x1 x2 x3 x4

u(x)

u(y)



Modelling Event Occurrence



Multilevel Event History Analysis

Multilevel event history data arise when events are repeatable (e.g.
births, partnership dissolution) or where individuals are organised in
groups.

Suppose events are repeatable, and define an episode as a
continuous period for which an individual is at risk of experiencing
an event.

Denote by yij the duration of episode j of individual i , which is
fully observed if an event occurs (δij = 1) and right-censored if not
(δij = 0).



Discrete-Time Data

In social research, event history data are usually collected in one of
two ways:

retrospectively in a cross-sectional survey, where dates are
recorded to the nearest month or year

prospectively in irregularly-spaced waves of a panel study (e.g.
annually)

Both give rise to discretely-measured durations.

We can convert the observed data (yij , δij) to a sequence of binary
responses {ytij} where ytij indicates whether an event has occurred
in time interval [t, t + 1).



Discrete-Time Data Structure

individual i episode j yij δij

1 1 2 1

1 2 3 0

↓
individual i episode j t ytij

1 1 1 0

1 1 2 1

1 2 1 0

1 2 2 0

1 2 3 0
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Multilevel Discrete-time Event History Model

Hazard function

htij(t) = Pr [ytij = 1|yt−1,ij = 0]

Logit model

logit(htij) = αt + βxtij + ui

αt is a function of cumulative duration t

ui ∼ N(0, σ2
u) allows for unobserved heterogeneity (‘shared frailty’)

between individuals due to time-invariant omitted variables



Multilevel Event History Analysis: Extensions

Competing risks More than one type of transition or event
may lead to the end of an episode, e.g. different reasons for
leaving a job → multinomial event occurrence indicator ytij

Multiple states Individuals may pass through different ‘states’
(e.g. employed, unemployed). Allow for residual correlation
among transitions in a joint model (negative correlation
between transitions in and out of unemployment?)

Multiple processes Time-varying covariates are often outcomes
of a correlated process, and can be modelled jointly with
process of interest. E.g. employment, childbearing and
partnership transitions all co-determined
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†Aassve et al. (2006) J. Roy. Stat. Sci. A, 169: 781-804.



Correlated Event Processes

Example: Marital and birth histories†

yij is duration of marriage j of person i

ztij is number of children from marriage j at start of interval
[t, t + 1), an outcome of a birth history

Unobserved individual characteristics affecting risk of marital
dissolution may be correlated with those affecting probability of a
birth (or conception) during marriage, i.e. ztij may be endogenous
w.r.t. yij

†Lillard and Waite (1993) Demography, 30: 653-681.
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Simultaneous Equations Model for Multiple Event

Processes

hD
tij Hazard of marital dissolution in interval [t, t + 1)

hC
tij Hazard of a conception (leading to live birth) in [t, t + 1)

Bivariate hazards model:

logit(hD
tij) = αD

t + βDxD
tij + γztij + uD

i

logit(hC
tij) = αC

t + βCxC
tij + uC

i

where cov(uD
i , u

C
i ) is freely estimated



Simultaneous Equations Model: Identification

Two approaches:

Covariate exclusion restrictions Find at least one variable
that affects hazard of conception but not hazard of dissolution
(an instrument). Often difficult to find in practice.

Replication Use fact that some individuals have more than
one marriage and more than one birth, allowing estimation of
within-person effect of number of children. Assume residual
correlation is between time-invariant characteristics.



Effect of Children on Log-hazard of Marital Dissolution

No. kids Model A Model B

(ref=0) Est (SE) Est (SE)

1 −0.56 (0.10) −0.33 (0.11)

2+ −0.01 (0.05) 0.27 (0.07)

corr(uD
i , u

F
i ) 0 − −0.75 (0.20)

Negative residual correlation implies women with low risk of
dissolution tend to have high hazard of a conception

⇒ selection of low dissolution risk women into categories 1 and 2+
⇒ downward bias in estimated dissolution risk among women with
children
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Example with Multiple Processes, Multiple States and

Competing Risks

Extend Lillard & Waite model to include cohabiting unions. In
modelling partnership transitions we have to consider:

Multiple states (unpartnered, married, cohabiting)

Competing risks (cohabitation can be converted to marriage
or be dissolved)

Partnership transition response is therefore binary for marriage,
and multinomial for cohabitation.



Joint Modelling of Partnership Transitions and Fertility†

5 equations:

Partnership process

3 transitions: marriage → single (dissolution), cohabitation →
single, cohabitation → marriage

Birth process

2 equations distinguishing births in marriage and cohabitation

Equations include woman-specific random effects ∼ multivariate
normal to allow correlation across transitions.

A discrete-time model can be fitted as a multilevel bivariate model
for mixtures of binary and multinomial responses.

†Steele, Kallis, Goldstein and Joshi (2005) Demography, 42: 647-673.



Effect of Family Disruption on Children’s Educational

Outcomes in Norway†

Previous research suggests that children whose parents divorce fare
poorly on a range of adolescent and adult outcomes.

To what extent is association between parental divorce and
children’s education due to selection on unobserved characteristics
of the mother?

Outcome is educational attainment (5 categories from ‘compulsory
only’ to ‘postgraduate’).

Explanatory variables: indicator of divorce and child’s age at
divorce.

†Steele, Sigle-Rushton and Kravdal (2008) Submitted.
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Simultaneous Equations Model for Parental Divorce

and Children’s Education

Event history model for divorce

Outcome is duration of marriage j for woman i

Include woman-specific random effect uD
i

Sequential probit model for educational transitions

Convert 5-category educational outcome yij for child j of
woman i into binary indicators of 4 sequential transitions
(compulsory → lower secondary, . . ., undergrad → postgrad)

Include woman-specific random effect uE
i(

uD
i , u

E
i

)
∼ bivariate normal with correlation ρ
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Probability of Continuing Beyond Lower Secondary

(Before and After Allowing for Selection)

ρ̂ = −0.431 (SE=0.023)



Final Remarks

Multilevel modelling a flexible approach for analysing
longitudinal data, and can now be implemented in several
software packages

BUT need to be especially careful in treatment of time-varying
covariates – are values of xt and yt jointly determined?

Multilevel multiprocess models can be useful for modelling
selection effects (endogenous xt)

Increasingly used in social sciences (e.g. demography)
Can be framed as multilevel multivariate response models



Software for Multilevel Longitudinal Data Analysis

Growth curve models
Basic model in any mainstream statistics package (e.g. SAS,
Stata, SPlus) and specialist multilevel modelling software (e.g.
HLM, MLwiN)
Autocorrelated residuals in SAS and MLwiN

Dynamic models
Allowing for initial conditions requires flexible environment
(e.g. SAS, MLwiN)

Event history analysis
Discrete-time models for one type of event, competing risks, or
multiple states in any of the above
Discrete-time models for multiple processes in software that
can handle bivariate discrete responses (e.g. SAS, MLwiN,
aML)
aML most flexible for multiple processes (focus on
continuous-time models)



Resources on Multilevel Longitudinal Data Analysis

Hedeker, D. and Gibbons, R.D. (2006) Longitudinal Data Analysis.
John Wiley & Sons, New Jersey. [See also online resources at
http://tigger.cc.uic.edu/∼hedeker/long.html]

Singer J.D. and Willett J.B. (2003) Applied Longitudinal Data
Analysis: Modeling Change and Event Occurrence. Oxford
University Press, New York.

Steele F. (2008) Multilevel Models for Longitudinal Data. Journal
of the Royal Statistical Society, Series A, 171, 5-19.

Centre for Multilevel Modelling website
(http://www.cmm.bris.ac.uk) includes materials from workshop
on Multilevel Event History Analysis.
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