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Forensic Identification

Given data E in the form of DNA profiles, we want to make
inferences testing hypotheses (‘queries’) H of these kinds:

Criminal case Did individual A leave the DNA trace found at
the scene of the crime?

Criminal case – mixed trace: Did A and B both contribute to
a stain found at the scene of the crime? Who did?

Disputed paternity: Is individual A the father of individual B?

Disputed inheritance: Is A the daughter of deceased B?

Immigration: Is A the mother of B? How is A related to B?

Disasters: Was A among the individuals involved in a disaster?
Who were those involved?

2



Computation of LR

The weight of the evidence is reported as a likelihood ratio

LR =
P (E|H = true)

P (E|H = false)
.

This can be computed in a Bayesian network from:

LR =
Pr(E |H = true)

Pr(E |H = false)
=

Pr(H = true |E)

Pr(H = false |E)
÷ Pr(H = true)

Pr(H = false)
.

Posterior odds = LR× Prior odds

This talk is on methods for assessing sensitivity to assumptions in
such LR calculations.
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Overview

• Bayesian networks

• Genetic background

• Scenario 1: Criminal Identification

• Uncertainty in Allele Frequency

• Identity by Descent, Subpopulations

• Scenario 2: DNA Mixtures

• Scenario 2a: DNA Mixtures using peak areas

• Paternity cases

Focus is on methodology: numerical results are only illustrative.
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A more general setting - Bayesian networks

• Directed Acyclic Graph (DAG)

• Nodes V represent discrete (finite) random variables
Xv, v ∈ V
• Specify conditional distributions of children given parents:
p(xv |xpa(v))
• Joint distribution is then p(x) =

∏
v∈V p(xv |xpa(v))

• Lauritzen & Spiegelhalter algorithm enables efficient
computation of p(xv |xA) for all v ∈ V and A ⊆ V by
probability propagation.

• Mortera, Dawid, Lauritzen, etc., have demonstrated
convenience and flexibility of using BNs to compute
forensic genetic inferences.
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Genetic Background

An identified area (locus) on a chromosome is a gene and the
DNA composition on that area is an allele.

A DNA marker is a known locus where the allele can be identified
in the laboratory.

Short Tandem Repeats (STR) are markers with alleles given by
integers. If an STR allele is 5, a certain word (e.g. CAGGTG) is
repeated exactly 5 times at that locus:

. . . CAGGTGCAGGTGCAGGTGCAGGTGCAGGTG. . .
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Standard Assumptions

A genotype of an individual at a locus is an unordered pair of
genes, e.g.

Marker Genotype

D13 {9, 14}
FGA {21, 22}

It is customary to assume that all actors are drawn from a
homogeneous population in Hardy-Weinberg equilibrium, with
known allele frequencies, e.g. for D13 in Caucasian populations:

allele 8 9 10 11 12 13 14

frequency .113 .075 .051 .339 .248 .124 .048
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Scenario 1: Criminal Identification

A simple case of criminal identification:

we have a DNA profile found at the scene of the crime which
matches the DNA profile of a suspect. We denote this evidence
by E.

The query or hypothesis H to be investigated: Did the suspect
leave the trace at the crime scene? (“suspect is guilty”?)

The LR that is reported to help answer this question compares
the probability (= 1) of the evidence given that the suspect left
the trace, with the probability (� 1) that a randomly-chosen
member of (a suitable) population left the trace.
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Criminal Identification

Crime and suspect’s DNA profile (excerpt)

Marker D13 D3 D5 D7 FGA

Evidence Em 9 14 11 17 9 11 10 21 22

Frequency .08 .05 .002 .125 .05 .38 .24 .19 .22
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Criminal Identification

How might the standard assumptions be questioned?

• Allele frequencies are not known perfectly

• Individuals (“actors”) in the model are not independent –
concept of identity by descent

• Population is heterogeneous – a mixture of subgroups

• Other failures of Hardy-Weinberg equilibrium
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BN for Criminal Identification - 1 marker
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BN for Criminal Identification - 2 markers
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Joint distribution of all variables

p(S guilty?)
∏
m

[p(spgm)p(smgm)p(opgm)p(omgm)]

×
∏
m

[p(sgtm|spgm, smgm)p(ogtm|opgm, omgm)

× p(tracem|sgtm, ogtm, S guilty?)]

13



Sensitivity in Bayesian Networks

Interest is in

logLR = log
P{T = 1|E}
P{T = 0|E}

regarded as a function of the distribution f of the founding
genes, in this case,

∏
m [p(spgm)p(smgm)p(opgm)p(omgm)].

All of our questions about sensitivity can be expressed through
alternative settings for f .

Some generate dependence between founding genes.
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Methods for assessing sensitivity

In our paper, we present:

1. Algebraic/analytic methods

– Constrained steepest descent

– Linear fractional programming

2. Structural methods

for different variations on standard assumptions, illustrated on a
range of criminal identification and disputed paternity scenarios.
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Assessing sensitivity through structure

Here the idea is to model alternatives to the standard
assumptions by elaborating the Bayesian Network structure, and
using probability propagation on the augmented models.

But probability propagation can no longer be used when we have
continuously distributed parents for discrete nodes.
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Variation 1: Uncertain Allele Frequencies

Allele frequencies are not fixed probabilities, but empirical
frequencies in a database.

Assuming the idealisation of a Dirichlet prior and multinomial
sampling the posterior distribution of a set of probabilities r is
Dirichlet (Mρ(1),Mρ(2), . . . ,Mρ(k)).

The founding genes (spg, smg, opg, omg) are drawn
(conditionally) i.i.d. from the distribution r across alleles, which
has the above Dirichlet distribution where M is the (posterior)
sample size and ρ are the database allele frequencies (posterior
means).

This corresponds to the standard set-up for a Dirichlet process
model and can be represented in a BN using a Pòlya urn scheme
(thus integrating out r).
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UAF: Pólya urn scheme

Founding genes g1, g2, . . . are identically distributed, and
exchangeable, but not independent.

g1 ∼ ρ

g2|g1 ∼
1

1 +M
δg1 +

M

1 +M
ρ

g3|g1, g2 ∼
1

2 +M
δg1 +

1

2 +M
δg2 +

M

2 +M
ρ

In general, suppose that n genes have been drawn at random, of
which m are allele a, then the probability that the next gene is
also allele a is

m+Mρ(a)

n+M
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UAF: Pólya urn scheme as a BN

There are other ways to represent this model – but in this
version, all choices are binary, thus reducing the clique table sizes
and hence computational burden.
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Variation 2: Identity by descent

Near relatives show positive dependence between their genes,
through shared ancestry. For example, two siblings have the same
paternal gene with probability 0.5 by virtue of inheritance from
their common father, on top of the possibility of equality arising
fron two independent draws from the gene pool.

The traditional way to quantify this is by means of a scalar
quantity variously denoted θ or FST , that we call the coancestry
coefficient. θ = FST = 0 expresses independence; positive values
quantify the amount of relatedness or in-breeding in a population
(we think of this as ambient IBD).

In forensic genetics calculations, likelihood ratios are often
adjusted for θ = FST > 0 using correction formulae due to
Balding and Nicholls. These formulae have to be derived from
scratch for each new situation: can be quite intricate calculations.
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Identity by descent

The Balding/Nicholls approach can only be approximate given
realistic patterns of relatedness, is only suitable for low levels of
relatedness, and ignores the fact that IBD introduces dependence
between markers when relationships are uncertain.

We consider instead some explicit patterns of close relatedness
(parent/child, siblings, half-siblings, . . . ) with various
probabilities and compute LRs exactly, even in the multiple
marker case, using an elaborated BN.

21



Partial networks representing relation R and IBD
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Variation 3: Heterogeneity – uncertainty in
subpopulation

This induces dependence between markers, m. S is same for all
m so mixing across subpopulations is not the same as using
mixture of allele frequencies.
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Marker data may not be (conditionally)
independent

Usually, the likelihood ratio LR for E = {Em} on
m = 1, 2, . . . ,M markers is given by the product rule:

LR =
P{E|T = 1}
P{E|T = 0} =

M∏
m=1

{
P{Em|T = 1}
P{Em|T = 0}

}
.

For IBD and HET the product rule (PR) fails to apply (they have
latent variables common to all markers).

In such cases, we have to either build a huge network including all
markers at the same time, or loop over markers, running separate
BNs for each, averaging resulting joint ptobabilities appropriately
before forming LRs.
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Some numerical results for criminal identification
LR Standard UAF IBD HET

D13 138.9 106.6 88.7 126.7

D3 1162.8 194.6 111.9 3488.4

D5 27.7 23.6 20.5 35.6

D7 16.9 14.6 13.7 11.8

. . . . . . . . . . . . . . .

Overall Log10LR for 8 markers

exact 13.38 12.10 7.71 13.85

product rule 13.38 12.10 11.54 13.57

[Basis: UAF: M = 100; IBD: parent/child and half-sibs w.p. 5% each.]

Overall LR for UAF is about 20 times smaller than baseline,
whereas for IBD it is roughly 460× 103 smaller than baseline and
7× 103 smaller than product rule.
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BN for several markers, with uncertain allele
frequencies, IBD and population heterogeneity
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Scenario 2: Identification from a DNA mixture

Suppose that analysis of a trace (for example a blood stain) at a
crime scene reveals presence of more than two alleles at one or
more markers, showing that more than one individual contributed
to the trace. The stain (mix) can be explained as a combination
of the genotypes of a victim and a suspect (vgt and sgt). How
incriminating is this evidence?

We have to assess the probabilities that other members of the
population could have contributed to the stain, perhaps in
combination with the victim or suspect (and possibly that more
than two individuals were involved).
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Identification from a DNA mixture

Marker mix sgt vgt

D13 8 11 8 8 8 11

D3 16 18 18 18 16 16

D5 12 13 12 13 12 12

D7 8 10 11 8 10 8 11

FGA 22 24 25 26 22 26 24 25

THO1 6 7 6 7 6 7

TPOX 8 11 8 8 8 11

VWA 17 18 17 17 17 18
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BN for DNA mixture

Note: 4× 2 = 8 founding genes in this case.
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Results for DNA Mixture

Marker Baseline UAF IBD HET

D13 5.22 4.85 4.83 7.17

D3 7.10 6.38 6.22 6.72

D5 3.63 3.36 3.40 3.53

Overall log10LR for 8 markers

exact 6.59 6.33 4.85 6.52

product rule 6.59 6.33 6.22 6.46

The baseline is roughly 1.8, 55 and 1.2 times bigger than those
for UAF, IBD and HET. The PR is about 23 times bigger than
the exact for IBD; for HET it is about 1.2 times smaller.
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Postscript: Using more information - peak areas

The data are not really discrete; we can try to get more out of
the analogue profile, especially in the mixed trace identification
problem.

Outline
DNA Mixtures

Model for peak weights
Bayesian networks (BN)

Incorporating artifacts
Results

Discussion and further work
References

Motivating example
Genetic terminology
Standard assumptions
Mixture profiles
Objectives of analysis

Two-person DNA Mixture profile

Marker VWA with allele repeat number {15, 17, 18}, peak area and
peak height.

Julia Mortera Università Roma Tre Bayesian Networks for Analysing Complex DNA Mixtures
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Cowell/Lauritzen/Mortera peak area model

In a mixed trace, for each particular marker, let Wia be peak
weight for individual i and allele a – defined as peak area
multiplied by allele number, to correct for preferential
amplification. CLM derive an independent Gamma model for the
Wia, with means proportional to θinia where θi is the proportion
of DNA in profile that is contributed by individual i (constant
across markers), and nia = 0, 1, 2 is the number of alleles a in i’s
genotype.

It follows that the relative total weights

Ra =

∑
iWia∑

a

∑
iWia

,

which are observable, have a Dirichlet distribution with
parameters (σ−2 − 1)µa where µa = (1/2)

∑
i θinia. They fix σ2

to match reported major/minor peak area ratios.
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CLM peak area model as a BN

In place of the discrete mixed trace at each marker, we now have
a data node for the relative total weight vector (Ra), whose
parents in the DAG are the individuals’ genotypes, as before, and
an additional node holding the unknown contribution fractions
(θi).

The latter can be discretised without much loss, but how can we
represent the (Ra) in a (discrete) BN?

Fortunately, the (Ra) are observed, so their possible other values
are immaterial – all that they contribute to the (posterior) joint
probability of all other variables is the likelihood. So we can
include in the BN a dummy node for each marker, with parents θ
and marker-specific genotypes, providing the appropriate factor
for the probability propagation algorithm.
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Sensitivity to prior assumptions with peak areas

This can be studied exactly as before.

Markers will always be dependent, because of uncertainty in the
shared latent variable θ.
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Evett data

Marker Relative weights on alleles

1 2 3 4

D8 0.435 0.029 0.537 —

D18 0.887 0.054 0.059 —

D21 0.053 0.068 0.428 0.452

FGA 0.570 0.391 0.039 —

THO1 0.402 0.598 — —

VWA 0.417 0.088 0.475 0.020

Suspect’s genotype highlighted in blue.

Is the crime-scene trace a mixture of the suspect and an unknown
individual, or two unknowns?
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Evett data – provisional results

Marker Baseline UAF IBD

D8 12.73 11.43 11.39

D18 32.00 24.29 26.12

D21 40.26 34.56 34.55

FGA 8.11 7.54 7.49

THO1 7.94 7.27 7.22

VWA 5.28 5.27 5.23

Overall log10LR for 6 markers

exact 8.23 7.93 6.20

product rule 6.75 6.44 6.46

Discrete uniform prior on θ; σ2 fixed at 0.01.
Inference much more certain using peak weights – discrete
profiles give log10(LR) of 4.40 in baseline case.
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Other scenarios: paternity cases

A simple disputed paternity case. Some likelihood ratios:
standard: 1318; IBD: 202 (798 by product rule).
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Other scenarios: paternity cases

A more complex scenario - disputed sibship.
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Discussion

• We have a range of different methods. Some of these could be
applicable to other domains of application of BNs.

• Results show that effects of IBD, UAF and HET can be quite
dramatic.

• IBD more subtle than the standard θ (FST ) approach.

• The Bayes net approach extends to deal with a number of
important variations on standard assumptions.

• IBD and HET induce dependence among markers which can be
handled it in one big net or using smaller nets and looping over
latent variables.

• Can infer the posterior probability of a specific relationship R
among actors. Useful in immigration cases?

• Free software Grappa in R
(http://www.stats.bris.ac.uk/∼peter/Grappa) for construction
of and inference in discrete BNs.
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To follow up

• “Sensitivity of inferences in forensic genetics to assumptions
about founding genes”, by Green and Mortera,
Annals of Applied Statistics, 3, 731–763 (2009).
doi: 10.1214/09-AOAS235.
ArXiv: http://arxiv.org/abs/0908.2862.

• Webpage: www.stats.bris.ac.uk/∼peter/Sensitivity

• Email: P.J.Green@bristol.ac.uk, mortera@uniroma3.it
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