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SUMMARY

Models for the analysis of hierarchically structured data are discussed. An iterative
generalized least squares estimation procedure is given and shown to be equivalent to
maximum likelihood in the normal case. There is a discussion of applications to complex
surveys, longitudinal data, and estimation in multivariate models with missing re-
sponses. An example is given using educational data.
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1. INTRODUCTION

In the social and other sciences, data are often structured hierarchically. Thus, for
example, workers are grouped into workplaces, individuals into households, animals into
litters, and subjects can be studied repeatedly, so giving rise to measurements grouped
within individuals. It has long been recognized that the existence of such 'clustering'
presents particular problems of model specification due to lack of independence between
measurements, and techniques for dealing with these have been evolved, for example in
the analysis of longitudinal data (Goldstein, 1979), and sample surveys (Holt, Smith &
Winter, 1980). In addition, however, the groupings themselves are often of interest in
their own right, rather than being conveniences as is typical in surveys. Thus, the
grouping of children within classrooms and schools implies an interest in the 'contextual'
effects of the characteristics of classes and schools on such things as children's
achievements.

Despite much interest in the specification of such models, there seems to have been a
limited use of them, partly it appears because of the statistical and computational
complexities. The present paper sets out a comprehensive multilevel mixed effects model
and shows how efficient estimates can be obtained. It is developed using an educational
context, and its use in a range of applications is illustrated.

2. BASIC MODEL AND NOTATION

Consider, as an example, a data set with three levels: schools, classrooms within
schools and children within classrooms, and assume that simple random sampling takes
place at each level. Suppose also that we have measurements on a response variable for
the jth child in the ith classroom within the hth school. The full model is
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At each level of the 'hierarchy' we set up a linear model relating the terms in (1) to a
function of explanatory variables, as follows

y* = yo+yiwuk+...+vk = £ ytw,ik+vk, (2)
( = 0

where vk is a random variable with E(vk) = 0, \&r(vk) = o2,, and yt is the school level
coefficient for the Ith explanatory variable wl<k for school k. Also

t (3)
1 = 0

where uk! is a random variable with E(ukj) = 0, var (uki) = cr2(k), and /?, k is the classroom
level coefficient for the Ith explanatory variable Z, kl for classroom ki. Lastly, we have

r

<Xkij = <*o + ai,kixi.kij+--- + ekij = £ ai.H*i.iky + «ky. ( 4 )
1 = 0

where ekiJ is a random variable with E(ekij) = 0, v&r(ekij) = cr2(A;i), and a, t i is the child
level coefficient of the Ith explanatory variable xlkii for child kij.

We may also have interactions of explanatory variables between levels and these can
also introduce further random terms. For example, we may have

«i,ki = P'o + P'iZ'ki + Ki, (5)
which adds an extra random term ukizt kij.

Later we shall see how such error terms and more general random coefficient terms can
be incorporated, but for the sake of simplicity this is postponed and all coefficients are
treated as fixed.

Thus we can write the simpler full model, combining (2), (3) and (4), as

Z .Hj L . . L , J (6)
1 = 1

or as Y = XP + E. The model is assumed to be of full rank.
We have

assuming that all covariances between the random variables in (6) are zero. Thus the
overall variance of Y can be partitioned into components for school, class and child,
hence the term 'variance component' models. We also assume further for simplicity that
au(k) = o\ and O2(ki) = o2, but the general formulation can be estimated; see Appendix
2. We obtain

var(Fw.) = o2.+a2 + o2/nki, var(7 t . ) = a2
v + a2tk + a2/nk,

where
flic fflJc fl*

h = E '*(< lki = nJnk, nk = £ nki, n= £ nk\
f - i ( = i t = i

Yki. = »«' I YkiJ, Yk_, = nr I nki Yki.
j=i ( = i

Here, nki is the number of children in the ith classroom of the kth school, mk is the
number of classes in the &th school, and m is the number of schools. Note also that

cov (YUJ, YUf) = a2 + a2, cov (YUJ, Ykrr) = a\ (i + i').
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Thus for classrooms we can define the 'intra class coefficient'

and, for schools,

Now for each school k we have

covt (YUJ) = a2 7(nk) + a2 7(lTIk) ® </<„„,, + a2 J(nit). (7)

The matrices 7(p) and J(q) are respectively t h e p x p unit matrix and the q xq matrix of
one's. The symbol ® denotes the direct product of the matrices. Thus the total
covariance matrix is block diagonal, where each school is represented by a block. We
have also for the kth school

<x>vk(YkL) = di&g(a2 + a2/nki) + a2J(mk), cov (Yk ) =

3. ESTIMATION

Harville (1977) discusses maximum likelihood and restricted maximum likelihood for
normal mixed effects models, and gives formulae for special cases, while N. Longford in
an unpublished paper gives a computationally efficient method for obtaining maximum
likelihood estimates for the general multilevel mixed effects model. For a two-level
model, Mason, Wong & Entwistle (1984) obtain restricted maximum likelihood
estimates using the EM algorithm, and Aitkin, Anderson & Hinde (1981) use the EM
algorithm for a simple version of (5). Fuller & Battese (1973) show how noniterative but
consistent moment estimators of the error variances for a simple three-level model can be
obtained and used in generalized least squares estimation.

Tn (6), Y is an n x 1 vector with cov (Y \ X(i) = cov (E) = V, say. Tf V is known then we
have the usual generalized least squares estimators

^=(XrV-1X)-1XrV~1 Y, cov(/?) = ( X T F - 1 X ) - 1 . (8)

If P is known but V is unknown, then we can obtain estimators /?* of the parameters of
V using generalized least squares as

ft* = (x*T(v*ri x*)-ix*T(v*ri y*. (9)
where Y* is the vector of the upper triangle elements of (Y — Xfi) (Y — Xf})r, that is the
squares and products of the residuals, and V* is the covariance matrix of Y*; X* is the
design matrix linking Y* to V in the regression of Y* on X*.

When neither fi nor V is known, the iterative generalized least squares estimates are
those which simultaneously satisfy both (8) and (9). In Appendix 1 it is shown that the
procedure based on (8) and (9) is equivalent to maximum likelihood in the normal case.

The estimation procedure commences from an initial estimate of V, which we use to
obtain estimates /?, and then obtain an improved estimate of V, and so on, iteratively,
until convergence is achieved. If the initial estimate of /? is consistent, for example, if we
use V = a2 I, which gives ordinary least squares, then so is the estimate of /J* based upon
it, and hence the final estimates, by assuming the existence of finite moments up to the
fourth moment. Because the /?, p^*'s are each estimated using consistent estimators, they
are asymptotically efficient.
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Stalling with V = \\ = a2 /(n), we obtain fir = (XT X)~l XT Y, which is a consistent
estimator of /?. Now form residuals Y—f = Y — X$x, giving for the kth block

Y? = Vech{(Yk-?k)(Yk-?k)
T},

and for the model (7) the nk x 3 matrix

Xt = {vech (J(Bk)), vech (/(Hlfc) ® J(Bkl)), vech (/„„,)}.

Using the results given in Appendix 2, with current estimates fi*(o2 = a2 = 0), we obtain
new estimates /?* = (ff«2. ̂ u. £2)T- The vector vech (̂ 4) is formed by stacking the columns
of the lower triangle of the symmetric matrix A under one another. The vector vec(A)
used in the Appendices is formed by stacking the complete columns of A under one
another.

Having done this, we obtain a consistent estimator V2 and so form a new estimate of ft,

02 = (XrV2ixy1 xTv2
l Y.

The procedure is repeated until convergence is obtained. The constraints denning the
feasible region for the solution are (a2, o2, a2) ^ 0. If the solution lies outside the feasible
region, then the constrained solution will lie on the boundary. In this case, at any
iteration, we can fix each variance in turn to be zero and reestimate the others, choosing
the minimum value of the generalized variance |cov(/?)|. If further variances become
negative, the process can be repeated setting pairs of variances to zero, etc.

We obtain final estimates /f together with cov (fi) and also fi*T = (a*, a2, a2). We can
use cov (/?*) to test hypotheses about the elements of /?*.

4. RANDOM COEFFICIENTS

Model (6) can be generalized readily to include random coefficients. In single level
models, the random coefficients necessarily are defined at that level; see, for example,
Fisk (1967). In a multilevel model, however, if a coefficient at any level in (6) is assumed
to be a random variable, it can be written in general as the sum of linear functions of
explanatory variables at that level and other levels plus error terms which, in principle,
could operate at any level.

Consider, as in the example discussed below, the coefficient of the variable 'size of
class' in a model with school, class and child nested levels. This coefficient could be a
random variable at the level of the school, indicating that the 'effect' of size of class
varies randomly between, but not within, schools. It could be a random variable at the
class level indicating that it varied between classes but not within classes. It could also
be a random variable at the child level indicating that the child level variance was
related to size of class. This could, for example, account for a heterogeneous child level
variation, and one aim of an analysis might be to determine whether further explanatory
variables measuring children's characteristics could account for this random coefficient
variation.

Another example would be where the child level variance differed between, say, single
sex and mixed schools. Thus, an indicator variable for school gender would be defined at
the level of the school and its coefficient assumed to be a random variable at the child
level.

The fixed part of such models will generally involve interaction terms at different
levels, such as given by (5), and the random part will involve products of explanatory
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variables and random error terms. It is assumed that the fixed part of the model has been
specified and the estimation of the random part is now considered. Thus, for example, if
P, t is random we might have

where fi'lk is a linear function of explanatory variables. The new error term in (6) is

In practice, as discussed earlier, it will often be convenient to make simplifying
assumptions of constant variances. The error term in (6), it should be noted, is the special
case where the overall constant in the model is the only random coefficient, with error
terms at all three levels.

With more than one random coefficient at any level we will in general have covariances
between the random errors. Thus for two random coefficients, f$i,k,fiPik, the extra error
term at the school level is rt kZt ki + rp kZp ki, with, say, cov (r, k,rp t) = atp. Thus, in
covk(Ykij), ol is replaced in (7) by

a2
v + of ZlM Zl<ki. + ap ZpM ZpM, + alp{ZlM ZpX, + ZlM. Zp_ki),

for classrooms i, % in school k. The contribution to cov (Ykij) from the school level error
terms can be written for the kth school as

c2
v(Z0Z

T
0) + <T?(Z[Zj) + crp(ZpZ

T
p) + alp(ZlZ

T
p + ZpZj),

where Zt is nk x 1 with Icijth element Zt ki and Zo = J, also »k x 1.
Tn general, there will also be nonzero covariances between vk and r( k, rp k, and the above

formulae will be modified in obvious ways. For the class level error terms we have
analogous formulae, and likewise for random coefficients at the individual and school
levels. The covariances are subject also to the constraint that the corresponding
correlations have absolute value less than or equal to unity, and a similar procedure can
be used as described in §3 for the constraints on the variances.

The use of random coefficient models may be useful in accounting for heterogeneous
variances at any level. It is possible in the extreme case, however, to have as many
parameters as equations or more, which will necessitate the introduction of constraints.

The specification of random error terms need not be restricted to the coefficients of the
explanatory variables in (6). Additional variables can be introduced with random
coefficients which have zero expected values, so that they contribute to the random but
not the fixed part of the model. Hence, at each step of the iteration these are used in the
estimation of)?* but simply omitted from the estimation of fi. Thus, for example, we may
wish to introduce variance heterogeneity into a model by allowing a variance to be a
particular function of time or age without incorporating the same function into the fixed
part of the model. A simple example of such separate error specification arises in
ordinary least squares in the case of simple regression through the origin, where the
constant term does not appear in the fixed part of the model, but is used to specify the
error variance.

5. CONSTRAINTS AMONG PARAMETERS

Linear constraints among the ft or /?* parameters can be incorporated by suitable
reparameterization. In some applications, however, the elements of ft* rnay be functions
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of/? and X, say g(fi, X). Jobson & Fuller (1980) discuss a single level model of this kind.
The present procedure provides efficient estimates for these models.

We incorporate new random variables which are proportional to the functions g(/i, X).
Thus, for example, the constant coefficient of variation model, at the class level, specifies

The second column of the matrix X* will be multiplied by g(fl,X), where the current
values of /? are used at each iteration, in model (7).

6. FURTHER APPLICATIONS

6-1. Sample surveys
The above model offers an alternative to the traditional approach to the analysis of

complex sample surveys, where the survey design involving stratification and clustering
is used to calculate the variances and covariances of derived statistics. Computer
programs such as SUPERCARP (Hidiroglou, 1981) use this approach to obtain consistent
ordinary least squares or weighted least squares estimates of regression coefficients and
then obtain consistent estimates of their standard errors using the known sample design.
The main problem with this approach is that it is not efficient, and this will be important
if intraclass correlations are high.

The present model can incorporate stratification variables by fitting constants for all
strata in the model or, more efficiently, attempting to model strata variations, where
multiple factors are used for strata definition.

62. Longitudinal data
Another important area of application is in models for time related longitudinal data,
such as the fitting of polynomial growth curves (Goldstein, 1979). Here we have a sample
of individuals, possibly classified in terms of measured explanatory variables or nested
within a hierarchical structure, each of whom has a set of measurements on a variable at
different ages or time points. Thus, there is a within-individual model of the form

a*= L *iAj
1 = 0

and the simplest between-individual model, if we omit other classifying factors, is
Pi = Po + Ui- In general, there will be random variables at the level of the individual,
which are correlated among themselves and with the ut:

where all individuals are measured at the same set of k time points. This model is
considered by Rao (1965), but is more general in allowing different sets of measurements
for each individual in its multilevel model formulation.

In fitting growth curves we might also wish to allow for increasing error variance with
time, for example e^ = attj, and the procedures of §4 can be used.

A special case of the growth curve model is when there are p+ 1 time points and the
explanatory variables for the within-individual model are p + 1 dummy variables
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specifying at which time point a measurement is made. The coefficients are then
estimates of the means of the measurement at each time point. Since the model does not
require a measurement at each time point for each individual, this provides a procedure
for the efficient estimation of parameters in mixed longitudinal or rotating survey
designs, analogous to that given by Jones (1980), but additionally providing an estimate
of the covariance matrix rather than assuming it is known.

6-3. MvMvariate multilevel mixed effects models
In the above special case of the growth curve model, there is in fact no requirement

that the measurement at each time point should be the same variable. Thus, we can
think simply of measuring p+\ variables for each individual and using the model to
estimate their means and covariance matrix. We have now, therefore, specified a
multivariate linear model in terms of a two-level univariate mixed effects model. In
addition, there is no requirement to have each response variable measured on each
individual, and the model can include both extra random or fixed explanatory variables
for each response variable and further levels of nesting. Thus, we see that the general
multivariate multilevel mixed effects model with possibly missing data can be analysed
as a special case of the univariate multilevel mixed effects model with an extra within-
individual level. Clearly, also, the model can be used to provide efficient estimates for the
usual multiple regression model with missing data.

7. ERRORS OF MEASUREMENT

The usual model is X = x + u and Y = y + e, and the linear model is

with the usual independence assumptions. We write

V = cov(q), v = q + e — uP, u ~ iV(0, i^J .

The x, y represent 'true' scores, and the X, Y observed scores, and it is assumed that we
wish to make inferences about the relationship between the true scores, namely fi and V.
The matrix Cl^, is the pxp covariance matrix of the measurement errors, where p is the
number of explanatory variables. This matrix is assumed to be diagonal, with nonzero
entries corresponding to those variables where measurement errors exist. The q, e are the
residual terms incorporating random errors from each level of the model. Where
replications of (X, Y) are available, these can be incorporated directly into the model as a
further level of nesting. Otherwise we require external estimates of the relevant
quantities and, following a similar procedure to Warren, White & Fuller (1974), who deal
with the ordinary least squares case, the following results are obtained for errors of
measurement at the child level. A detailed derivation with extensions for errors of
measurement at other levels is given in Appendix 3.

At any iteration a consistent estimator of /? is given by /? = &Zx &xy> where

tixx = xT f~l x-{n~x tv(f-l)}sm, ttxy = xTf~lY,
and n~l Sm is a consistent estimator of Cl^, estimated independently of the other error
terms. Appendix 3 shows how to obtain a consistent estimator of V and cov (/?). With
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these modifications the iterative procedure proceeds as before until convergence is
achieved.

Where reliability estimates are available, the above procedure can be adapted to that
case; see Fuller & Hidiroglou (1978).

When independent replication of X, Y is available for individuals, and there are just
two levels, the program LISREL (Joreskog & Sorbom, 1979) will give efficient estimates.

8. EXAMPLE

The data consist of 969 cases from a much larger longitudinal study of educational
attainment carried out by the Inner London Education Authority (1969) from 1968 to
1973. The variables used here are standardized reading scores on the same children in the
first and final years of junior school, that is, with average ages of 8 and 11 years, together
with the size of the class at 8 years, in 1968. Very small classes of fewer than 10 children
are omitted from the analysis, since these will often be special classes formed of low-
attaining children. Table 1 shows the means and variances of these variables. There were
28 schools in the sample, with between I and 3 classes per school. Only children who
remained in the same school are used in these analyses.

Table 1. Regression of 8 year reading score on class size. Fitted constants
and standard errors

Explanatory variables OLS B

Overall constant
Class size
Mean class size for school

Error parameters

°l
a2

Intraclass correlations

Schools
Classrooms
Number of iterations

103-4
-032(036)
-006(039)

OLS

205-7

103-6
- 0 2 1 (0-48)
-006(056)

A

181 (8-9)
8-2(6-1)

182-3 (8-5)

A

009
O13
5

1031
-026(024)

B

181 (8-9)
81 (60)

182-3(8-5)

B
(M)()

oi:{

OLS, ordinary least squares analysis;
A, analysis based on all three explanatory variables;
B, analysis based on first two explanatory variables.
The means and standard deviations of 8 yr reading score, 11 yr reading score and class size
are respectively: 940. 14-5; 938,14-4; 353, 12-3.

Table 1 presents results for the regression of 8 year reading score on the child's class
size. In all these analyses, the convergence criterion is that the relative change in each
random parameter between consecutive iterations is less than 10~3. Analysis B fits a
simple regression with error terms at each level. Analysis A introduces a further
explanatory variable which is the mean class size of the classes in the school. The
ordinary least squares analysis is given for comparison and it should be noted that the
most marked difference is in the smaller standard errors estimated in the usual way for
ordinary least squares. Also, the larger standard error for class size in analysis A as
compared to analysis B results from the high correlation of class size with mean class size
for school, a variable which adds little information. This effect of underestimating true
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standard errors is well known in sample survey theory where there is positive intraclass
correlation as here.

From analysis B we see that an increase in class size of 10 children is associated with a
decrease of 2-6 score units, or about 18% of the standard deviation of reading test score.
The standard error of this coefficient is relatively high, however, with a 95% confidence
interval which includes zero, and this is consistent with other findings on class size which
show only small relationships with attainment. A quadratic term for class size was also
studied but had no discernible effect. As would be expected, the child level error term
dominates the others, and it is interesting to note the greater homogeneity between
classes than between schools.

Table 2. Regression of 11 year reading score on 8 year reading score. Fitted constants
and standard errors

Explanatory variables

Overall constant
8yr reading score
Mean 8yr reading score

for classroom
Within-classroom standard

deviation of 8yr reading
score

Error parameters

103

Intraclass correlations

Schools
Classrooms
Number of iterations

OLS

28-8
073 (002)

27-8
0-73 (O02)

B

27-9
0-73 (002)

-00039(006) -0-0072(0-08) -0014(008)

C
23-9
0-74 (003)
O012 (0-08)

-021(016) -017(0-21) -0-14(021) -005(022)

OLS

95-4

A

00
4-21 (1-83)

91-42(4-25)

A

0
004
5

B

00
00
0-46 (0-20)

91-32(4-24)

B

C

I -85 (1 -84)
4419(49-43)

7-0 (<H>) .
-0-.>6(O54)
90-74 (4-29)

C

Subscripts 0,1,01 refer respectively to the simple error, the 8yr score coefficient
covariance of these errors.

29

error and the

Tn Table 2 the 11 year reading score is regressed on 8 year score, mean 8 year score for
the classroom and the within-classroom standard deviation of 8 year score. Strictly
speaking, an adjustment for measurement error in 8 year score should be incorporated,
but unfortunately no good estimate of this measurement error variance is available.
Nevertheless, for this kind of test, values of the reliability coefficient are typically quoted
around 095, so that any adjustment would not be substantial and none is used in this
analysis. Analysis A fits only a simple error term at each level and the school level
variance now disappears. This suggests that in terms of reading progress between eight
and eleven years, there is some variation between classrooms but none between schools,
in contrast to the previous analysis of 8 year reading attainment, where there was more
variation between schools than between classrooms. The intraclass coefficient for
analysis A is now rather small so that the OLS analysis is closer to the multilevel model
analysis than it is in Table 1.

Analysis B introduces a random error term into the regression coefficient of 8 year
score with the error being at the classroom level, and the 'constant' error variance
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becomes zero. Finally analysis C adds the covariance term at the classroom level. The
solution, at the stated level of accuracy, lies on the boundary of the feasible region, in
this case where the correlation is equal to —1-0.

A further important point is that the estimated variances will depend on the origin
and .scale chosen for the explanatory variables and, where covariance terms are not
fitted, this will affect the adequacy of the fit, and the parameter estimates. This is
relevant to the implementation of variance component models in existing packages,
which do not fit covariance terms.

9. DISCUSSION

Previous work on the mixed effects linear model has dealt largely with estimation
procedures for special cases, although the important paper by Harville (1977) discusses
general maximum likelihood estimation. The present paper extends this work in a
number of ways.

First, it is shown how mixed effects models at each level of a hierarchy simultaneously
can be specified and the hierarchical structure utilized in the estimation. Secondly, a
general algorithm is given which is straightforward to apply to any design, and which
preliminary experience suggests has good convergence properties. Thirdly, the basic
model of Harville (1977) assumes that the random error terms associated with the overall
constant term, the residual errors in ordinary least squares, are independent of the other
random error terms. This is shown to be both unnecessary and undesirable. Fourthly, the
generalized least squares approach, while giving maximum likelihood estimates in the
case of normal errors, provides a means of obtaining efficient estimates for other
distributions. Finally, the present paper shows how parameter constraints and errors of
measurement can be incorporated into the model.

The availability of a practical method for fitting multilevel models with many random
error terms raises a number of important considerations which are counterparts and
extensions to those arising in ordinary least squares models. Thus, for example, decisions
are required concerning which error parameters should be included; whether there is a
prior order in which they should be introduced; how one interprets the estimates; the use
of residuals at different levels and so forth. There is also the general issue of how to deal
with coefficients which may be treated either as fixed or random. It is to be hoped that
extensive practical use of these models will provide the experience for forming sound
judgements on these issues.

Further topics worth investigating include the issue of convergence, failure or
convergence to a value which is not a global minimum.

When the boundary of the feasible region is reached during the iterative process, the
procedure suggested does allow subsequent estimates to move away from the boundary.
This is observed to occur in practice when the solution actually lies within the feasible
region, but where the solution is on the boundary a local minimum might be found. In
this case the solution could be explored by restarting the iterative process with
parameter estimates close to other boundary points which could define local minima and
observing the behaviour of the iterations. Further work on this issue would be useful.

With a local minimum we still obtain consistent point and covariance matrix
estimates, although if several local minima were found it would be advisable to look
carefully at the data. Simulation studies with small samples would be useful, and robust
procedures need investigating in the estimation of both /? and j3*. A computer program
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for a 3-level model has been written with the ability to handle random coefficients, and
this is being extended to handle constraints and errors of measurement at any level. A
study of the efficiency of the procedure and the sampling properties of the estimators
under alternative error distributions also needs study. One important area is the case
where the individual level errors are multinomial with variances and covariances which
are known functions of P and the methods of §5 can be used. The error terms at higher
levels may be continuously, for example normally, distributed, or have multinomial
distributions. In general we can have models with mixtures of error distributions at
all levels.
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APPENDIX 1

Equivalence of maximum likelihood and iterative generalized least squares estimates
The log likelihood function for the multivariate normal model is, apart from a

constant,

where S = (Y — Xp) (Y — Xp)r. The estimation equations for /?* are

Now equation (9) is obtained by minimizing

G = vech (S- F)T (F*)~ 'vech (S- V).

When the error terms are normally distributed, this is equivalent to minimizing

G = vec(S- V)T(Q~l (gtfr1) vec(S- V) = t r ^ ' 1 ^ - F)}2,

where Q is the true unknown covariance matrix with

cov(/?*) = (x**TQ-1®n-1x**)-1 ,
where Ar** corresponds to X* but based on vec (F) rather than vech (F) (Browne, 1974).

Thus estimates of p* are given by

dp* { dp* dp*

The iterative generalized least squares procedure sets Q = F, so we have
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which is the same as the maximum likelihood estimation equations above. The
equivalence of the estimation equations for /? follows immediately from the fact that
both involve the minimization of ( Y — Xfi)T V~1(Y — Xfi). Thus, the iterative generalized
least squares procedure is one method for obtaining maximum likelihood estimates. For
distributions other than the normal the two sets of estimates will not be identical,
although the iterative generalised least squares will still be consistent. For a further
discussion in the context of covariance structure models, see Bentler (1983).

APPENDIX 2

Calculation of the inverse of the error covariance matrix and the error variances and
covariances

We use the result

(A + BCB7)'1 = A~1-A~1 BC(I + BT A'1 BC)'1 BT A'1. (Al)

Consider first the simple two-level model where the block diagonal error matrix is

v2 = e {o2iM+o2
uj{ni)} = e {a2/ (n i )+(Tu

2j (n |X1)/ (1 )j (1 )<B()},

where 0 is the direct sum operator. Using (Al) we obtain

FJ1 = 0 a-^I^-alin.al + ^y'J.J.
i= 1

For the simple three-level model (6), the typical block of the covariance matrix can be
written as

and using (Al) we have

' 3 = © [ ' l , k ~ * 2,k " ( m , x l ) \ a v + « ' ( 1 x n k ) ' Z.k ^ ( i t * x 1 ) } " ( 1 x nk) ' 2 , * J >
k

where the scalar

fJ
This result is equivalent to that derived, using a direct evaluation of V^l, by Searle
(1970). The extension to higher level models is obvious.

Tn the case of random coefficients, again consider first the two-level model. The first-
level error terms contribute elements to the covariance matrix for the tth block,

Vx.,- = © {tfij, Zij) "i (Xij, W. (A2)

where, for the r first-level coefficients which are random variables, including the overall
coefficient a0, X^ is the 1 xpx vector (xpi i} t.-.xPx tJ) = {xpjj}, and for the second-level
coefficients ZtJ is the 1 xp 2 vector {zpjj}, where by definition z

P,ij = z
P,iy an(J

Q1 = {alrs}, the covariance matrix of order (px+pz) of the first-level errors.
The set of second-level error terms contribute elements (Xt, Z,) Q2 (Xit Z^1', where, with

the same notation, Xt = [X^.Zj = {Z^} and Q2 '
s the covariance matrix of the second-

level errors.
Thus

V2 = ®{VlJ + (X,,Zi)Q2{Xi,Zt?}. (A3)
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Using a similar notation we have, for the three-level model,

V, = ®{V2,k + (Xk,Zk, Wk)Q3(Xk,Zk, Wk)
T}, (A4)

k

where Xk = {XkiJ}, and so on, and Q3 is the covariance matrix, of order (px+pz+pw), of
the third-level errors. Note, that in general, the error terms for each level will be
associated with different sets of explanatory variables. It should also be noted that, while
the error terms at any one level are assumed to be independent of those at any other
level, within a level, errors from explanatory variables defined at different levels can be
dependent. These results apply also to the general error structure given by (7), which can
be estimated using a suitable modification to the matrix X*.

Thus FJ 1 is readily evaluated via (A1)-(A4) and the extension to four or more levels
is straightforward. The largest matrices requiring inversion by numerical methods are of
order equal to the number of random coefficients at each level, and procedures can be
programmed for the economical use of core store.

We have, as in Appendix 1, (V (g> F)" 1 = F " 1 ® V~l, which, for the three-level
model, is block diagonal with blocks Vk

l <g) Vk
x.

The estimates /?, /?* can be calculated at each iteration using the following identity
for a block diagonal matrix with blocks indexed by t,

Also, we have X** = vec(dV/dp*), so that the typical component of Xk* can be
written as the sum of terms of the form vec (xr xj) or vec (xr xj) + vec (x, xj) for variance
or covariance terms respectively; and we can also write Y** = vec {(Yt — Yt) (Yt— Yt)

r}.
Now, for vectors ait bt, cit

{vec K aT
2)}

T(Qo l ® &o M = {vec (fio~' «i « I "o l)V =

say, and { v e c ^ bl)}T vec(Cj cj) = {clb2) (blc^, so that the estimates ft* are easily
calculated.

APPKNDIX 3

Derivation of estimators when there are errors of measurement in explanatory variables
For the model in §7 we have

plim (XT V'1 X) = xT V~l z + plim (ur V~l u).

For errors of measurement for child level variables, the (j, lc)th term of plim (MT V~lu)
is E(ff''cov (uj,uk) with summation over individuals, where au is the ith diagonal term of
I""1, and cov (uj,uk) is the covariance of the jth and kth measurement errors. The
covariance is zero except for j = k.

For errors of measurement at the class level, a" is replaced by the sum of the elements
of I'"1 corresponding to the ith class, and, for errors of measurement at the school level,
it is replaced by the sum of the elements corresponding to the tth school. The definition
of Tv below is modified accordingly. For child level errors of measurement we have

plim(XT V'1 X) = xrV~1x + tr(V-l)Quu.

Let Suu = n&vu, with diagonal elements 8^ which are estimated independently of the
other error terms.

Writing tr (V~l)/n = Tv, we obtain a consistent estimator of Mxx = xr V~l x,

Mxx = XrV-lX-TvSuu.
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We also have a consistent estimator of Mxy, Mxy = MXY = XT V~l Y. Thus we obtain a
consistent estimator of /?,

0 = ifr;,1 Mxy = P + ti;x
l{XT V-lv + TvSuJ}. (A5)

Using a similar derivation to that given by Warren et al. (1974) we obtain an estimate
of cov (/?) given by

M;x
l {XT V-1 X + XT f-2X{al + fu) + n-lflSuu$p8uu + 2n-lM1

v} ti;x\ (A6)

where
Tu = n~1 Zjpj S2

uJ, R = n diag (df* $f SA
ui)

and d[ are the degrees of freedom used in calculating S^.
At each iteration we require an estimate of V. We note that

so that the quantity (a2 + Tu) I(n) should be subtracted from the covariance matrix
estimate calculated at each iteration, and (A5) is used then to estimate the coefficients,
and (A6) their covariance matrix. Typically in practice sample estimates of S2j will be
obtained from special studies of measurement errors.
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