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Summary. Multilevel modelling is used on problems arising from the analysis of spatially distributed
health data. We use three applications to demonstrate the use of multilevel modelling in this area.
The ®rst concerns small area all-cause mortality rates from Glasgow where spatial autocorrela-
tion between residuals is examined. The second analysis is of prostate cancer cases in Scottish
counties where we use a range of models to examine whether the incidence is higher in more rural
areas. The third develops a multiple-cause model in which deaths from cancer and cardiovascular
disease in Glasgow are examined simultaneously in a spatial model. We discuss some of the issues
surrounding the use of complex spatial models and the potential for future developments.
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1. Introduction

Geographical epidemiologists are increasingly using complex methods of statistical analysis
to investigate the distribution of diseases, such as cancers, by using data which are aggregated
into small areas such as postcode sectors (Elliott et al., 1992, 1995). The analysis of such
geographically distributed disease data tends to fall into one of two broad categories which
re¯ect di�erent motivations and goals.

The ®rst category, exploratory analysis, produces maps of the distribution of disease to
provide health researchers with a visual display which can suggest, via patterns and spatial
trends, useful avenues of research into causal processes. Atlases of such maps attempt to
re¯ect the distribution of a range of diseases over a large geographical area (e.g. Kemp et
al. (1985) and Statistics Canada (1991)). However, the use of the relative risk of a disease,
i.e. the number of observed cases divided by the number of expected cases for each area, for
this purpose may lead to problems for areas with small populations. Such areas, usually in
rural locations, tend to have extreme relative risks as the number of expected cases in the
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denominator is low. Conversely, if we map probability values for excesses or de®cits of cases
rather than relative risks, these tend to occur in areas with large populations, usually in urban
areas, as the probability value is related to the sample size (see Clayton and Kaldor (1987)
and Langford (1994)). Here, we try to achieve a compromise by relating the relative risk in
each area to the global distribution of relative risks for all the areas in our sample, or the local
distribution of relative risks in areas that are geographically close to each other. The example
of Section 3.1 shows how this approach can be implemented as part of a multilevel modelling
analysis using data on all-causemortality inGreaterGlasgow for 1993. The data are aggregated
into postcode sectors which are relatively small areas with di�ering sizes of population at risk,
so the use of smoothed relative risks is important to account for the issues discussed above.
Spatial smoothing is also applied, where areas which are adjacent to each other are assumed
to have more similar relative risks. Section 3.3 uses the ¯exibility of the multilevel model to
develop a multivariate spatial analysis, where deaths from two di�erent causes, cancer and
circulatory diseases, are modelled together. We discuss in Sections 2 and 4 how residuals may
be extracted to provide information for mapping the distributions of these diseases.

The second type of analysis is inferential analysis, in which a number of explanatory
variables, some of which may have a spatial component, are used to explain variation in a
particular disease of interest. The emphasis here is on the testing of speci®c hypotheses, or
prior beliefs, about the distribution of the disease and associated, potentially causal, factors
(Langford, 1995; Langford and Bentham, 1996). Accounting for spatial correlation between
areas enables more reliable inferences to be made. In Section 3.2, using data collected on
prostate cancer incidence in the 56 old local government districts of Scotland, we demon-
strate that choosing between di�erent spatial models is not always straightforward. The aim
of this analysis is to investigate whether more rural districts, de®ned as having higher pro-
portions of the male workforce employed in agriculture, forestry and ®shing, have a higher
incidence of prostate cancer.

In this paper, data are investigated which consist of observed and expected counts of cases
of disease in discrete spatial units. Hence, for a population of geographical areas, a number of
cases occur within a speci®ed population at risk in each area. Whether we are embarking on
an exploratory or inferential analysis, it is useful to break down the likely in¯uences on the
distribution of a disease into three separate categories:

(a) within-area e�ects, such as population at risk, or individual characteristics;
(b) hierarchical e�ects, arising from small areas being grouped into larger areas, for admin-

istrative, cultural or geographical reasons, e.g. a number of local authority districts
may be grouped into health boards which have di�erent methods of treatment or
classi®cation of a disease;

(c) neighbourhood e�ectsÐareas which are close to each other in geographical space may
share common environmental, social or demographic factors in¯uencing the incidence
or outcome of disease. Also, as areas are usually formed by using geopolitical bound-
aries which are unrelated to the disease of interest, we may wish to use spatial smoothing
of the distribution of relative risks to remove any artefactual variation brought into the
data by the method of data aggregation.

The use of empirical Bayes and fully Bayesian techniques allows the distribution of a
disease to be a�ected by various models of spatial and environmental processes which arise
from di�erent underlying beliefs about aetiology (Bernardinelli et al., 1995; Bernardinelli and
Montomoli, 1992; Cisaghli et al., 1995; Clayton and Bernardinelli, 1992; Clayton and Kaldor,
1987; Langford et al., 1998; Langford, 1994, 1995; Lawson, 1994; Lawson andWilliams, 1994;
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MollieÂ and Richardson, 1991; Schlattmann and BoÈ hning, 1993). Two main statistical meth-
odologies have been used to model geographically distributed health data in this way. The
®rst is Markov chain Monte Carlo (MCMC) methods using Gibbs sampling (Gilks et al.,
1993) often implemented via the BUGS software (Spiegelhalter et al., 1995). The second is
multilevel modelling techniques based on iterative generalized least squares (IGLS) procedures
(Goldstein, 1995) which are the focus of this paper. These two kinds of method can be described
as using the Bayesian and empirical Bayesian models respectively, and we discuss the di�er-
ences between the two approaches. In the following section, we detail the methodology and
computational algorithms that are necessary to model the three types of e�ect described above
within the IGLS framework. Section 3 presents the three examples of analyses of geographical
health data mentioned previously. The models were all ®tted using the multilevel modelling
software MLn (Rasbash and Woodhouse, 1995). The discussion focuses on issues surrounding
both the theory and the methodology of building complex spatial models and how these
models should be interpreted, and provides pointers for future research.

2. Methods

2.1. The linear random coef®cients model
The basic model of ®xed and random e�ects described by Goldstein (1995) and Breslow and
Clayton (1993) is

Y � X� � Z� �1�
with a vector of observations Y being modelled by explanatory variables X and associated
®xed parameters �, and explanatory variables Z with random coe�cients �. (� represents all
the random coe�cients for Y and hence contains residual terms in the model.) The ®xed and
random design matrices X and Z will not, in general, be the same. Goldstein (1995), pages
38±41, described a two-stage process for estimating the ®xed and random parameters (the
variances and covariances of the random coe�cients) in successive iterations using IGLS. A
summary of this process follows. We estimate the ®xed parameters in an initial ordinary least
squares regression. From the vector of residuals from this model we can construct initial
values for V, the dispersion matrix for Y. Then, we iterate the following procedure, ®rst
estimating ®xed parameters in a generalized least squares regression as

�̂ � �XTVÿ1X �ÿ1XTVÿ1Y �2�
and again calculating residuals ~Y � Yÿ X�̂. We now form the matrix product of these residuals
and stack them into a vector Y* � vec� ~Y ~Y T�. By doing so we can estimate the variance of the
random coe�cients �,  � cov���, as

̂ � �Z*TV*ÿ1Z*�ÿ1Z*TV*ÿ1Y*, �3�
where V* is the Kronecker product of V, namely V* � V
 V, noting that V � E � ~Y ~YT�,
and Z* is the appropriate design matrix for the random coe�cients. Assuming multivariate
normality, the estimated covariance matrix for the ®xed parameters is

cov��̂� � �XTVÿ1X �ÿ1 �4�
and, for the random parameters, Goldstein and Rasbash (1992) showed that

cov�̂� � 2�Z*TV*ÿ1Z*�ÿ1: �5�
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2.2. The Poisson model
Consider a population of areas with the ith area having Oi observed cases and Ei expected
cases, where Ei may be calculated from the incidence in the population Ni for each area as

Ei � Ni

P
Oi

�P
Ni, �6�

and Ei may be divided also into di�erent age and sex bands. We can write a basic Poisson
model with heterogeneity e�ects as

Oi � Poisson��i� with log��i� � log�Ei� � �� xi� � ui �7�
where log�Ei� is treated as an o�set, � is a constant and xi is an explanatory variable with
coe�cient �. This model may be generalized to include any number of explanatory variables.
We take account of the distribution of cases within each area by assuming that the number of
cases has a Poisson distribution. In contrast, the ui represent heterogeneity e�ects between
areas (Clayton and Kaldor, 1987; Langford, 1994), which may be viewed as constituting
extra-Poisson variation caused by the variation among underlying populations at risk in the
areas considered. However, we also want to take account of the fact that the relative risks
may be spatially autocorrelated. One way of doing this is to treat the model as a `multiple-
membership' model (Goldstein, 1995; Goldstein et al., 1998), where each area is a member of
a higher level unit which contains its nearest neighbours, e.g. those areas with which it shares
a common boundary. We can write this model as

Oi � Poisson��i�,
log��i� � log�Ei� � �� xi� �

P
j

ui
p
wij,

�8�

where wij are weights, and wij � 0 if district j is not adjacent to district i. If a district had three
neighbours, then we could construct weights such that wii � 0:5, and for the adjacent districts
wi1 � wi2 � wi3 � 0:167, so that �j wij � 1. However, this formulation does not allow us to
examine heterogeneity and spatial e�ects independently, so we have used a model developed
for the distribution of relative risks of a disease by Besag et al. (1991). This can be written as

Oi � Poisson��i� with log��i� � log�Ei� � �� xi� � ui � vi: �9�
The vi are spatially dependent random e�ects and may have any one of a number of
structures describing adjacency or nearness in space. However, before discussing the structure
of these spatial e�ects, we must ®rst account for the fact that we have a non-linear (log-
arithmic) relationship between the outcome variable and the predictor part of the model.
There are two options.

(a) If the number of cases in each area is su�ciently large, say Oi > 10, then it may be
reasonable to model the logarithm of the relative risks directly (Clayton and Hills,
1993), assuming that these follow a normal distribution. Heterogeneity e�ects can then
be accommodated by weighting the random part of the model by some function of the
population at risk in each area.

(b) When the normal distribution approximation is inappropriate, we can make a linearizing
approximation to estimate the random parameters, i.e. the residuals ûi and v̂i from
the model, by using penalized quasi-likelihood (PQL) estimation with a second-order
Taylor series approximation (Breslow and Clayton, 1993; Goldstein, 1995; Goldstein
and Rasbash, 1996). We write model (7) as
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�i � Ei f�H � with H � �� xi� � ui � vi:

Then we linearize f�H � by writing Ht for the value of the linear predictor H at iteration
t. We now express f�Ht�1� as a function of f �Ht� via a second-order Taylor expansion
about current ®xed and random part estimates, so that

f�Ht�1� � f�Ht� � ��t�1 ÿ �̂t� � xi��t�1 ÿ �̂t� f 0�Ht� � �ut�1,i ÿ ût,i� f 0�Ht�
� �vt�1,i ÿ v̂t,i� f 0�Ht� � �ut�1,i ÿ ût,i� 2f @�Ht�=2� �vt�1,i ÿ v̂t,i�2 f @�Ht�=2, �10�

where the ®rst three terms on the right-hand side of equation (10) provide the updating
function for the ®xed part of the model and the last four for the random part (see
Goldstein (1995), section 5.1). For the Poisson distribution

f �H � � f 0�H � � f @�H � � exp�Xi�̂t � ûi�: �11�
Hence, at each iteration we estimate about the ®xed part of the model plus the res-
iduals, ui. A full description of this linearizing procedure can be found in Goldstein
(1995) and Goldstein and Rasbash (1996). The procedure can lead to problems with
convergence, or with the model failing due to arithmetic over¯ow when some of the
residuals are particularly large. In these situations, the second-order term in equation
(10) can be omitted, or, in extreme circumstances, estimates can be based on the
®xed part of the model only. This latter estimation method is called marginal quasi-
likelihood (MQL) (Breslow and Clayton, 1993; Goldstein, 1995) but may lead to
biased parameter estimates. However, bootstrap procedures can potentially be used to
correct for these biases (Goldstein, 1996; Kuk, 1995).

2.3. Estimating spatial effects in a multilevel model
Several possibilities for specifying the structure of the random e�ects in the model are
available (see, for example, Besag et al. (1991) and Bailey and Gatrell (1995)). These models
assume two components: a random e�ects or `heterogeneity' term and a term representing the
spatial contribution of neighbouring areas as in model (9) with intrinsic Gaussian distribu-
tions for each type of e�ect.

We adopt a di�erent approach, which allows a more direct interpretation of the model
parameters and can be ®tted in a computationally e�cient manner within a multilevel model.
For the heterogeneity e�ects, this is not a problem, because we simply have a variance±
covariance matrix with 1s or other speci®ed values on the diagonal, and the model is anal-
ogous to ®tting an iteratively weighted least squares model (McCullagh and Nelder, 1989).
However, ®tting spatial e�ects is more complex, as we are required to ®nd o�-diagonal terms
in the variance±covariance matrix. This can be achieved through a careful consideration of
the structure of the spatial part of the model. Our formulation of the spatial model is to
consider each spatial e�ect vi to be the weighted sum of a set of independent random e�ects v*j
such that

vi �
P
j 6�i

zijv*j : �12�

The v*j can be considered to be the e�ect of area j on other areas, moderated by a measure of
proximity zij of each pair of areas. The v*j , which are the residuals, can be estimated directly
from the model because of their independence.
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Returning to the matrix notation used in equation (1), we can rewrite equation (9) as

log��i� � �i � f log�Ei� 1 xig
1

�

�

0B@
1CA� �Zu Z*v �

�u

�*v

 !
, �13�

where Zu is the identity matrix and Z*v � fzijg, with Z and � from equation (1) partitioned into
heterogeneity e�ects and spatial e�ects to give �Zu Z*v � and � �u�*v � respectively. With a variance
structure such as

var
�u

�*v

 !( )
� �2uI �uvI

�uvI �2vI

 !
, �14�

which is equivalent to

var
ui

v*i

 !( )
� �2u �uv

�uv �2v

 !
,

the overall variance from equation (1), conditional on the ®xed parameters, is given by

var��jX�� � Z��Z
T, �15�

where �� is the variance±covariance matrix of the random terms in �. The structure of ��

will often lead to simpli®cations. For example, in a random e�ects model when � � fuig and
var�ui� � �2u, cov�ui, uj� � 0; then �� � �2uI and so var��jX�� � �2uZZT. Similarly, in the
spatial model de®ned by the partitions in � and Z given by equation (13) and the variance
structure of equation (12),

var��jX�� � �2uZuZ
T
u � �uv�ZuZ*

T
v � Z*vZ

T
u � � �2vZ*vZ*Tv : �16�

There are many ways in which the zij can be formulated; in general we can write

zij � wij=wi� �17�
where the wii � 0. Common choices for the wi� would be wi� � ��j 6�i wij�0:5, which ensures
that the variance contribution is the same for all areas, or wi� � �j 6�i wij indicating that the
variance of an area decreases as the information about that area (e.g. in terms of the number
of neighbours in an adjacency model) increases.

The simplest form of adjacency matrix is such that wij � 1 if areas i and j share a common
boundary and wij � 0 otherwise, although other formulations are possible such as the use of
distance decay functions (Bailey and Gatrell, 1995). The choice of such functions is largely
user dependent and should ideally be based on some prior hypothesis about the data. Here
we have used adjacency matrices and have also considered a simple exponential decay model
where we de®ne the wij as

wij � exp�ÿ�dij� �18�
with dij the Euclidean distances between the centroids of areas i and j, and � a constant to be
estimated from the data. The estimation of � is problematical, as it is non-linear in the
random part of the model. Goldstein et al. (1994) showed that maximum likelihood estimates
can be obtained by using a Taylor series expansion for the normal distribution model.
However, estimation becomes more complicated for a Poisson model; an alternative is to ®t a
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series of models with di�ering values of �k, and to determine the residual deviance Dk from
each model. We can then regress the deviance against the distance decay parameter so that

Dk � a� b�k � c�2
k � ek �19�

where ek is an error term. Di�erentiating, the approximate solution is � � ÿb=2c. Successive
approximations then converge towards the best estimate.

Finally, the random e�ects for heterogeneity and spatial e�ects must be speci®ed within a
generalized linear modelling framework, in this case using IGLS estimation within the MLn
software. There are two approaches for ®tting the random e�ects within MLn which demon-
strate some more general issues for spatial modelling.

First, a suitable set of explanatory variables may be de®ned with random coe�cients. For
example, for the spatial part of the model, we may de®ne a set of variables zv1, zv2, . . ., zvn
whose values form the columns of Z*v , with zvj � fzijg. A similar set of variables can be de®ned
for the heterogeneity e�ects, and a covariance term can be ®tted between the two sets of e�ects.
However, a problem arises because we only wish to estimate a single variance parameter for all
areas for heterogeneity e�ects, a single variance parameter for spatial e�ects and a single
covariance term. Hence, the parameter estimates for each area need to be constrained to be the
same for each set of e�ects, e.g. �2v constrained to be the same for all the zvs. These complex
constraints are introduced into the model via a set of linear equations. A discussion of this
procedure is given by Goldstein (1995), pages 57±58; it requires the inclusion of a large
number of explanatory variables in the modelÐ far more than the number of data pointsÐ
and a large number of constraint vectors. These add to the complexity of the model, the
computational time required and the stability of the model in terms of convergence prop-
erties. However, the calculation of residuals from the model is straightforward, as these can
be estimated for each of the random explanatory variables. This is important when the focus
of our investigation is the comparison of relative risks between the areas in the data set. It is
less important when only the global parameters are of interest, such as �2u and �2v which
describe respectively the size of the overall heterogeneity and spatial e�ects in the model.

An alternative approach is to build the weights matrices associated with the random
e�ects and to ®t these directly into the model. The variance of the data conditional on the
®xed part of the model, as given in equation (16), is formed from three matrices: ZuZ

T
u ,

ZuZ*
T

v � Z*vZ
T
u and Z*vZ*

T
v . Expressing the model in terms of these design matrices overcomes

the need to place multiple equality constraints on the random parameters. This method is
generalizable to the non-linear model of equation (9). A PQL estimation procedure requires
the estimation of the residuals and their associated variances at each iteration. The estimation
of the residuals is described in Appendix A.

3. Applications

In this section, we give three examples of results from health data sets which raise particular
methodological issues addressed in the discussion and show how substantive interpretations
can be made of spatial multilevel models. The data sets are available as MLn worksheets at

http://www.blackwellpublishers.co.uk/rss/

3.1. Greater Glasgow Health Board mortality data
The data for this example are deaths from all causes in 143 postcode sectors within Greater
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Glasgow Health Board in 1993 obtained from the Registrar General for Scotland. Hence, as
postcode sectors are fairly small (average population about 6500), and the data are only for 1
year, we formulate the model in a similar manner to that implied by equations (7) and (10):

Oi � Poisson��i�,
log��i� � log�Ei� � �� ui �

P
j 6�i

zij v*j ,
�20�

where the Ei are age and sex standardized for the Greater Glasgow Health Board area. For a
®rst-order autocorrelation model (Bailey and Gatrell, 1995) we de®ne zij � 1=ni , if area j is
a neighbour of area i and zij � 0 otherwise, with area i having a total of ni neighbours. The ui
are the random e�ects for each area; the v*i , by contrast, are the e�ects of each area on its
neighbours with the summation term �j 6�i zijv*j giving the spatial e�ect for area i. We can
specify a joint distribution for the ui and v*i to model a correlation between the random e�ect
of an area and its e�ect on its neighbours as in equation (14):

ui

v*i

 !
� N

0

0

 !
�2u �uv

�uv �2v

 !( )
: �21�

This may then be expressed in the terms of equations (1) and (13) by writing

X � f log�Ei� 1g,

� � 1
�

� �
,

zu � I,

Z*v � fzij g

9>>>>>>=>>>>>>;
�22�

where 1 is the unit vector. Estimation may proceed as described in equation (16) and Appendix
A. The parameter estimates for this model are shown in Table 1. To aid convergence, the
log�Ei� were centred around 0, and hence � 6� 0 even though the relative risks have a mean
of 1.

The spatial variance and covariance terms are highly signi®cant with a �2-value of 13.44
with 2 degrees of freedom (p � 0:001). The correlation between the random e�ects and
spatial e�ects is 0.774, indicating that the neighbours of an area with high mortality also tend
to have high mortality. The total estimated variance for an area is dependent on its number of
neighbours and is given by �2

u � �2v=ni . The mean number of neighbours for a postcode sector
within Greater Glasgow Health Board is 5.4; this implies a total variance of 0.0333, of which
49.0% arise from the spatial e�ects. The estimated covariance between any two areas depends
on
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Table 1. Parameter estimates and standard errors for
the Glasgow Health Board mortality data

Parameter Estimate Standard error

� 4.2047 0.0374
�2u 0.0174 0.0054
�uv 0.0300 0.0085
�2v 0.0865 0.0334



(a) whether the two areas border each other and
(b) the number of common neighbours.

In terms of the zij used in equation (20) the covariance between areas i and j can be expressed
as

�zij � zji��uv �
P
k 6�i, j

zikzjk�
2
v:

In this example, the ®tted model shows that there are signi®cant parameters for both hetero-
geneity and spatial autocorrelation (using a Wald test with signi®cance level � � 0:05). This
has a sensible interpretation, as postcode sectors are quite variable in population size, and
this e�ect is summarized by �2u, the mean variance between areas. However, the spatial e�ects
parameter �2v is larger (although it needs to be scaled by the number of adjacent areas for
comparison with �2u in each area). This may be because mortality rates are similar in social
areas that are larger than the postcode sectors analysed here. A further analysis could place
larger units such as social neighbourhoods at a higher level in the model to test for their
e�ect, and covariates such as social and housing status could be included. The signi®cant
covariance between the heterogeneity and spatial e�ects parameters occurs because areas
whose populations have similar sociodemographic characteristics (and also large popula-
tions) tend to cluster and also have similar mortality rates.

3.2. Prostate cancer incidence in Scottish districts
In this example, we examine data covering 6 years, from 1975 to 1980, on the incidence of
prostate cancer in 56 districts in Scotland (Kemp et al., 1985). As the data were collected in
larger geographical units and for a longer time period than the ®rst example, the numbers of
cases in each district are su�ciently large (between 10 and 627 cases) for us to model the
relative risks of disease incidence (based on crude rates) and to assume that log(relative risk)
follows an approximately normal distribution. Here, we wish to investigate the hypothesis
that the relative risk of prostate cancer is higher in rural than in urban areas, as previous
research has indicated an association between agricultural employment and incidence of
prostate cancer (Key, 1995). A variable which is the percentage of the male workforce
employed in agriculture, ®shing and forestry industries is used as a surrogate measure of the
rurality of an area. However, we must not only look at the incidence of prostate cancer within
districts but also account for a potential artefactual e�ect caused by di�erential diagnosis
rates between health board areas in Scotland. Hence, spatial e�ects caused by di�erent
processes at two di�erent scales need to be modelled, namely

(a) a spatial autocorrelation model at district scale, which accounts for the possibility that
areas closer in geographical space have similar incidences of prostate cancer and

(b) a variance components model at health board scale, which allows for the possibility
that di�erent health boards have di�erent relative risks of prostate cancer, because
diagnostic criteria are potentially variable.

Hence, equations (1) and (11) can be extended so that

Y � X� � �Zu Z*v �
�u

�*v

 !
� Zhb�hb, �23�

where Zhb and �hb are a design matrix and parameters for health board level random e�ects.

Geographical Distributions of Diseases 261



Here, we have three explanatory variables in the ®xed part of the model �X��, in addition to
the intercept term, namely the proportion of the population in higher social classes (SC12);
the estimated biologically active incidence of ultraviolet light at the earth's surface (UVBI)
and the percentage of males employed in agriculture, ®shing and forestry (AGRI). Social
class and exposure to ultraviolet light were included as these have been postulated as risk
factors for prostate cancer. In this model, Z*v is calculated using distances between district
centroids, and a distance decay parameter � is estimated from the spatial linkage described in
equation (18); Zhb is a vector of 1s which allows for a variance component for each health
board to be estimated, and hence we can measure the variance at this scale, �2hb. Table 2
presents the results of ®tting the model given in equation (23) to the data with Zu � nÿ0:5,
where n is the vector of population sizes for the districts in the study area, so that the districts
are weighted by their population size in the random part of the model. Parameter estimates
and standard errors are shown for four models: a simple, single-level model (A) with no
spatial e�ects; a model with district scale spatial e�ects, but no health board e�ects (B); a
model with only health board e�ects (C); a model with both district and health board e�ects
(D) as given in equation (23).

The results for the simple model A seem to indicate a strong and signi®cant e�ect of
rurality, as measured by percentage of males in agricultural employment (AGRI). However,
this is weakened by ®tting a spatial autocorrelation parameter in model B, suggesting that the
e�ect of AGRI may be because adjacent areas have similar mortalities. The change in
deviance between the two models is 31.68 on 2 degrees of freedom (p < 0:001: with a
covariance parameter ®tted as well as a variance term). The third model (C), using health
boards as a level with no spatial autocorrelation between districts, shows how ignoring auto-
correlation between residuals at a lower level of a multilevel model (districts) could lead to
misleading results at higher levels (health boards), as the parameter for the variance between
health boards is statistically signi®cant at p < 0:05, but the deviance statistic suggests that the
model is not as good a ®t to the data as model B is. Unexplained random variation at district
level can appear spuriously at health board level, and model D, with both health board e�ects
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Table 2. Parameter estimates and standard errors for the prostate cancer models

Estimates and standard errors for the following models:

Model A: simple
model

Model B: spatial
effects

Model C: health
board effects

Model D: both
effects

Estimate Standard
error

Estimate Standard
error

Estimate Standard
error

Estimate Standard
error

Fixed part
Intercept 0.4312 0.8793 70.6199 0.7542 0.3011 0.8180 70.1981 0.7642
SC12 0.0046 0.0052 0.0045 0.0044 70.0022 0.0038 0.0006 0.0041
UVBI 70.0710 0.0952 0.0896 0.0787 70.0353 0.0904 0.0537 0.0830
AGRI 0.0219 0.0083 0.0084 0.0066 0.0119 0.0070 0.0068 0.0064

Random part
�2hb 0.0406 0.0196 0.0116 0.0094
�2u 0.1338 0.0253 0.0474 0.0160 0.0588 0.0129 0.0447 0.0176
�uv 0.0053 0.0048 0.0056 0.0055
�2v 0.0036 0.0017 0.0031 0.0018
� 3.15 2.93
Residual
deviance

35.00 4.32 12.50 1.30



and spatial e�ects between districts, suggests that this may be happening in this example. The
parameter estimate for AGRI becomes statistically insigni®cant in models B, C and D.
Hence, misspeci®cation of the random part of a model can noticeably a�ect the ®xed as well
as the random parameters. Further work needs to be done on the analysis of residuals in
these complex models: Langford and Lewis (1998) details some procedures for the general
analysis of outliers in multilevel models.

3.3. Multivariate spatial analysis of mortality in Greater Glasgow Health Board
postcodes
In the example of Section 3.2, the scale of spatial analysis was extended to include health
board as well as district level e�ects. We can further extend the methods to more than one
disease within the same model. For example, we can look at multiple causes of death from the
Greater Glasgow Health Board postcode mortality data and assess the degree to which
di�erent causes of death are related. In addition, we can examine the possibility of a spatial
element to the distribution of each cause and assess whether these spatial elements are related
for di�erent causes. For example, if we take deaths from cancer (denoted by `P' ) and deaths
from circulatory diseases (indexed as `Q' ) we can write the model

OP,i

OQ,i

 !
� Poisson

�P,i

�Q,i

 !
�24�

where

log
�P,i

�Q,i

 !( )
� log

EP,i

EQ,i

 !( )
� �P

�Q

 !
� uP,i

uQ,i

 !
�

P
j 6�i

zijv*P, jP
j 6�i

zijv*Q, j

0B@
1CA: �25�

This gives a possible 16 random parameters to be estimated. However, we do not estimate all
16 because of the di�culty in interpreting some of the parameters. Speci®cally, the covariance
between the spatial parts of the two causes �v,P,Q and between the random e�ect of one cause
and the spatial part of the other cause �uv,P,Q and �uv,Q,P have all been set to 0. Hence, we
estimate

uP,i

uQ,i

vP,i

vQ,i

0BBBBB@

1CCCCCA � N

0

0

0

0

0BBBBB@

1CCCCCA,

�2u,P �u,P,Q �uv,P 0

�u,P,Q �2u,Q 0 �uv,Q

�uv,P 0 �2v,P 0

0 �uv,Q 0 �2v,Q

0BBBBB@

1CCCCCA

8>>>>><>>>>>:

9>>>>>=>>>>>;
: �26�

The results for this model are given in Table 3. As can be seen, considering only two causes of
death and including no covariates in the model still lead to the estimation of 10 parameters to
account for heterogeneity and spatial e�ects. However, both the heterogeneity and the spatial
e�ects for the circulatory diseases are greater than those for cancers, suggesting a greater
variability between areas for circulatory diseases, and more spatial clustering of mortality
rates in adjacent postcode areas, although it must be borne in mind that some of the standard
errors of the parameter estimates are large. We are currently investigating the e�ect of
entering a covariate measuring deprivation into the model. Computationally, there were
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some problems which needed to be overcome in the estimation of the multivariate model
which will be dealt with in the next section.

4. Discussion

The Glasgow Health Board data show how a simple analysis can be achieved quickly by
setting up a partitioned variance±covariance matrix to describe extra-Poisson variation in a
log-linear model. The theory behind the model is quite complex, requiring the calculation of
residuals at each iteration, and hence a powerful computer with a large memory is required if
the number of areas is large. However, given a suitable software platform, here the MLn soft-
ware (Rasbash andWoodhouse, 1995), which allows for ¯exible random coe�cient modelling,
and some modi®cations using macros, the modelling process can be made relatively simple. A
version of the spatial analysis macros that is suitable for general use is planned in the future.
The second example on prostate cancer shows a more complex series of models, which re-
quire more computing time as an extra parameter for distance decay needs to be estimated
where spatial autocorrelation is included. The models show how care must be taken when
investigating geographically distributed health data to formulate realistic hypotheses, and
then testing these in various scenarios. Given su�cient data, it is possible to add covariates
into the random part of the model at either level. Hence, models can easily become very
complex, and this is why we emphasize the need for hypotheses to be properly speci®ed
before modelling begins. However, it must also be noted that a single ®nal model may not be
the optimal solution to the problem, and a range of possible scenarios may warrant pres-
entation, as here. This is because of the complex nature of the interactions between variables
and geographical space, and choices between competing models may be made on epidemio-
logical as well as statistical grounds.

The multivariate model introduces a further set of issues concerning the complexity of the
model to be analysed, concerning computational requirements and problems of inter-
pretation. The ®rst set of problems concerned the size of the workspace that is required, as
separate design matrices need to be stored and manipulated for each of the random terms
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Table 3. Parameter estimates and standard errors for the
Glasgow Health Board mortality data for cancer and circulatory
deaths

Parameter Estimate Standard error

�P 2.8187 0.0310

�Q 3.3978 0.0367

�2u,P 0.0032 0.0073

�u,P,Q 0.0021 0.0037

�2u,Q 0.0077 0.0065

�uv,P 0.0472 0{
�uv,Q,P 0 0

�2v,P 0.0300 0.0367

�uv,P,Q 0 0

�uv,Q 0.0300 0.0177

�v,P,Q 0 0

�2v,Q 0.1044 0.0421

{This parameter has been constrained so that the correlations
between parameters lie in the range from ÿ1 to 1: see Section 4.



estimated. For large data sets, with several causes of death, this problem becomes intractable,
even with powerful computers using large memories with the current method of estimation.
The second set of problems involves obtaining estimates for variances, or correlations be-
tween parameters which are out of range (e.g. negative variance estimates and correlations
outside the range from ÿ1 to 1). A careful consideration of the in¯uence of individual areas
on the global statistics reported here obviously needs to be made, and some adjustment for
outliers to be undertaken.

The theoretical basis for the spatial multilevel models that we have speci®ed can be labelled
as an empirical Bayes procedure because the random parameters are estimated directly from
the data. By specifying random explanatory variables to de®ne the spatial e�ectsÐa diagonal
matrix of 1s for the global heterogeneity e�ects and a matrix of weights for the local spatial
e�ectsÐand estimating variance and covariance parameters associated with these variables,
we have produced a ¯exible modelling strategy which can be used in conjunction with more
conventional hierarchical models (e.g. Langford and Bentham (1997) and Langford et al.
(1998)). By comparing the size of the estimated variance parameters associated with hetero-
geneity and spatial e�ects, we judge the relative importance of these processes in explaining
the variance seen in the dependent variable. This is similar to the method of Clayton and
Kaldor (1987), where a parameter � is estimated to give the relative weight attached to
heterogeneity and spatial e�ects in an autoregression model. However, the fully Bayesian
approach (e.g. Bernardinelli and Montomoli (1992)) allows for prior distributions to be
placed on the parameters in the spatial model. For example, whereas we estimate the
heterogeneity parameter directly from the data, assuming normality for the random e�ects, it
may be reasonable to assume a gamma or t-distribution as a prior for the relative risks. Our
procedure could be modi®ed to allow for this, but it is easier to implement in the BUGS
software which uses Gibbs sampling (Spiegelhalter et al., 1995). A further avenue which we
are currently exploring is the use of nonparametric maximum likelihood procedures for
estimating the distribution of relative risks (Aitkin, 1996).

In summary, we have explored the theory behind spatial multilevel modelling by using an
IGLS procedure, and we have given three brief examples to show the possibilities that the
technique may bring to the analysis of geographical data. However, the process is far from
complete, and several problems and further possibilities are currently under investigation, as
follows.

(a) Some of the models are inherently unstable, and the log-likelihood curves show several
maxima and minima, or else bifurcate, with models oscillating between two stable
states. This is particularly true of the distance decay models. One solution is to in-
troduce a kernel around each district centroid to restrict its sphere of in¯uence to a
realistic distance. This will, of course, depend on the data and hypotheses being tested.

(b) The deviance statistic for the non-linear models cannot be easily calculated, and a
simulation method for producing a quasi-likelihood ratio statistic is at present being
investigated (Goldstein, 1996).

(c) Residuals can be taken from the model and posterior estimates of relative risk calcu-
lated. Bootstrapping can be used to develop an empirical distribution of the posterior
relative risk for each area, but it is computationally intensive (Langford and Jones,
1998). Iterative bootstrapping to correct for bias may also be used with the MQL
procedure, although this can further increase the e�ort required (Kuk, 1995; Goldstein,
1996).

(d) The non-linear models tend to fail to converge quite regularly. This is due to the PQL
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procedure, where predicted residuals (and their variances if the second-order term of
the Taylor expansion is included) for each area are added back onto the ®xed part of
the model. If one or more of these is very large, then it invokes an arithmetic over¯ow
when exponentiated. This is a technical detail, but it is important if a program for
general users is to be developed. It can potentially be avoided by using iterative boot-
strapping of the MQL procedure.

Conceptually, the clear message is that one must take a decision before analysis on whether
an exploratory or inferential analysis is being conducted. For exploratory analyses, it is best
to keep the models simple, with a heterogeneity and spatial term included in the model,
perhaps at more than one level if this is justi®ed. For inferential analysis, it is important to
have speci®c hypotheses to test via competing models, as spatial e�ects tend to be rather
poorly determined, and interact with covariates, and other non-spatial e�ects in the model.
Complex models can easily be built, but less easily interpreted, and often it is not possible to
judge meaningfully between competing models. However, the tools developed here provide
a methodological and data analytic framework for the exploration of hypotheses where
spatially distributed factors are of potential importance in understanding the aetiology of a
disease.
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Appendix A

Following Goldstein (1995), the residuals for the model with heterogeneity and spatial e�ects given in
equation (11) may be estimated by

�̂u

�̂*v

 !
� �2uZ

T
u � �uvZ*Tv

�uvZ
T
u � �2vZ*Tv

 !
Vÿ1��ÿ X��:

The variance±covariance matrix for the estimators is

var
�̂u

�̂*v

 !( )
� �2u
 Iÿ��2uZT
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where

M � Vÿ1fVÿ X �XTVÿ1X�ÿ1XTgVÿ1,
V � �2e 
 I� �2uZuZ

T
u � �uv�ZuZ*

T
v � Z*vZ

T
u � � �2vZ*vZ*Tv

and �2e is the lower level variance. The estimation for non-linear models remains basically unchanged
following the transformations described in equations (7)±(9) with the addition of o�set terms to the V-
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and M-matrices. Although the equations presented here are in terms of one random and one spatial
e�ect for each area, they may easily be extended to include further random coe�cients and associated
parameters.
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