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Introduction

• Additive, Multiplicative and Logistic Structural Mean Models.

• Reformulate moment conditions in such a way that
Generalised Method of Moments (GMM) estimation
techniques can be applied.

• Extension to multivalued/multiple instruments is then
straightforward, again using GMM to estimate the causal
parameters, throughout making the no effect modification
(NEM) assumption.

• One-step GMM projection of multiple instruments is same as
proposal by Bowden and Vansteelandt (2010)

• Provide code for estimation of the SMMs by GMM in R and
Stata.

• Extend multiple instruments LATE result of Imbens and
Angrist (1994) to multiplicative Local Risk Ratio.
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• We apply the GMM estimation procedures to estimate the
causal effect of adiposity on hypertension as in Timpson et al.
(2010), using genetic markers as instruments for adiposity.
The data are from the Copenhagen General Population Study.
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Multiplicative SMM

Y ,X and Z are binary. Z is instrumental variable; X is exposure,
and Y is outcome.

The multiplicative SMM is

E [Y |X ,Z ]
E [Y (0) |X ,Z ] = exp (θ0 + θ1Z )X ,

where Y (0) is the exposure- or treatment-free potential outcome.

Assuming NEM, θ1 = 0, and exploiting the conditional mean
independence (CMI), assumption

E [Y (0) |Z = 1] = E [Y (0) |Z = 0] = E [Y (0)] ,
it follows that

E [{Y exp (−X θ0)− α0} |Z = 1] = 0;

E [{Y exp (−X θ0)− α0} |Z = 0] = 0,

where α0 = E [Y (0)].
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For a multivalued instrument Z with values 0, 1, 2, From NEM
and CMI we get the moment conditions

E [{Y exp (−X θ0)− α0} |Z = 2] = 0;

E [{Y exp (−X θ0)− α0} |Z = 1] = 0;

E [Y exp (−X θ0)− α0] = 0,

with α0 = E [Y (0)].
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If we denote the indicator variables Zj = 1 {Z = j} and let
S = (1,Z1,Z2)

′, then

E
[{

Y
exp (X θ0)

− α0

}
|S
]
= 0,

or

E
[
Y − exp (α∗0 + X θ0)

exp (X θ0)
|S
]
= 0,

where α∗0 = ln (E [Y0]). But, by dividing by the constant α0, it
then also follows that

E
[
Y − exp (α∗0 + X θ0)

exp (α∗0 + X θ0)
|S
]
= 0.
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GMM Estimation of Multiplicative Model

Let gi (δ0) = si
(

yi
exp(xi θ0)

− α0
)
, δ0 = (α0, θ0)

′, then

E [gi (δ0)] = 0. The GMM estimator δ̂ is the solution to

δ̂ = argmin
δ

(
1
n

n

∑
i=1
gi (δ)

)′
W−1n

(
1
n

n

∑
i=1
gi (δ)

)
.

A one-step GMM estimator, δ̂1, is obtained by choosing an initial
weight matrix, e.g. Wn =

1
n ∑i si s

′
i . The effi cient two-step GMM

estimator is obtained as

δ̂2 = argmin
δ

(
1
n

n

∑
i=1
gi (δ)

)′
W−1n

(
δ̂1
)(1

n

n

∑
i=1
gi (δ)

)
where

Wn

(
δ̂1
)
=
1
n

n

∑
i=1
gi
(

δ̂1
)
gi
(

δ̂1
)′
.
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Under standard regularity conditions the limiting distributions of
the one- and two-step GMM estimators are

√
n
(

δ̂1 − δ0
)

d−→ N
(
0,
(
C ′0WC0

)−1 C0WΩ0WC0
(
C ′0WC0

)−1)
√
n
(

δ̂2 − δ0
)

d−→ N
(
0,
(
C ′0Ω0C0

)−1)
where

C0 = E
[

∂gi (δ)
∂δ′

|δ0
]
;

Ω0 = E
[
gi (δ0) gi (δ0)

′] ;
W = plim (Wn)

e.g. W = E [si s ′i ] when Wn =
1
n ∑i si s

′
i .

As the instrument is discrete, no further effi ciency gains can be
made and the 2-step GMM estimator is asymptotically effi cient,
see Chamberlain (1987).
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As we now have more moment conditions than unknown
parameters in the model we get that when the moment conditions
are valid

J
(

δ̂2
)
= n

(
1
n

n

∑
i=1
gi
(

δ̂2
))′

W−1n
(

δ̂1
)(1

n

n

∑
i=1
gi
(

δ̂2
))

d−→ χ2q ,

with q the degree of overidentification, in this example q = 1.
J
(

δ̂2
)
is a test for the validity of the model assumptions and is

known as Hansen’s J-test, Hansen (1982).
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Considering the one-step GMM estimator with Wn =
1
n ∑i si s

′
i .

The first-order condition, using gi (δ) = si
(

yi
exp(xi θ)

− α
)
:

(
1
n

n

∑
i=1

∂gi (δ)
∂δ

)′
W−1n

(
1
n

n

∑
i=1
gi (δ)

)
= 0

or
D ′S

(
S ′S
)−1 S ′v = 0

D =
{
d ′i
}
; S =

{
s ′i
}
; v = {vi}

di =

(
1
yi

exp(xi θ)
xi

)
; vi =

yi
exp (xi θ)

− α

The instruments get combined into the projection S (S ′S)−1 S ′D,
i.e. a constant 1 and the linear projection of yi

exp(xi θ)
xi on si , the

projection as proposed by Bowden and Vansteelandt (2010).
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For the binary case considered here,

E
[

YX
exp (X θ)

|S
]
=

1
exp (θ)

E [YX |S ] ,

and this is therefore equivalent to using the linear projection of yixi
on si as an instrument. It is also clear from this that the same
one-step GMM estimate of θ is obtained by specifying the moment
conditions as

gi (θ) = s̃i

(
yi

exp (xi θ)

)
;

s̃i = (zi1 − z1, zi2 − z2)′ ,

with z j the sample average of zij . This transformation is generally
used in G-estimation, see e.g. Vansteelandt and Goetgebheur
(2003).
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Logistic SMM

Considering the logistic SMM, the moment conditions are derived
from

logit {E [Y |X ,Z ]} − logit {E [Y (0) |X ,Z ]} = ξ0X .

For Z taking the values 0, 1, 2, this results in,

E [{expit (logit (E [Y |X ,Z ])− X ξ0)− α0} |Z = 2] = 0;

E [{expit (logit (E [Y |X ,Z ])− X ξ0)− α0} |Z = 1] = 0;

E [expit (logit (E [Y |X ,Z ])− X ξ0)− α0] = 0,

where, again, α0 = E [Y (0)].
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Following Vansteelandt at al. (2010), let the saturated model be

logit {E [Y |X ,Z ]} = logit {P (Y = 1|X ,Z1,Z2)}
= β0 + β1X + β2Z1 + β3Z2 + β4XZ1 + β5XZ2
= m (X ,Z1,Z2; β)

and let β̂ be an estimate of β. The logistic SMM estimate can
then be obtained from minimising the GMM criterion(

1
n

n

∑
i=1
gi
(

δ, β̂
))′

W−1n

(
1
n

n

∑
i=1
gi
(

δ, β̂
))

where

gi
(

δ, β̂
)
= si

{
expit

(
m
(
xi , zi1, zi2; β̂

)
− ξxi

)
− α
}

= si
{
qi
(

ξ; β̂
)
− α
}
; si =

(
1 zi1 zi2

)′
.
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Considering the one-step GMM estimator with Wn =
1
n ∑i si s

′
i , the

first-order condition leads to

D ′S
(
S ′S
)−1 S ′v = 0

where

D =
{
d ′i
}
; S =

{
s ′i
}

d ′i =
(
1 qi

(
ξ; β̂
) (
1− qi

(
ξ; β̂
))
xi
)
; vi =

{
qi
(

ξ; β̂
)
− α
}

so the instruments get combined in the projection S (S ′S)−1 S ′D,
i.e. a constant and the linear projection of
qi
(

ξ, β̂
) (
1− qi

(
ξ, β̂
))
xi on si , again the projection as

suggested by Bowden and Vansteelandt (2010).
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Conditioning on the estimate β̂ will lead to invalid inference for the
standard GMM estimation results, as they ignore the first stage
estimation. Gouriéroux, Monfort and Renault (1996) show that
correct inference for this so-called Two-Stage GMM estimator
(2SGMM) is obtained from a first-order expansion around the true
values β0 and δ0, resulting in

√
n
(

δ̂1,β̂ − δ0
)

d−→ N
(
0,
(
C ′0WC0

)−1 C0WΩ∗0WC0
(
C ′0WC0

)−1)
,

where Ω∗0 is the variance of the limiting normally distributed

1√
n

n

∑
i=1
gi (δ0, β0) + E

∂gi (δ0, β0)
∂β′

√
n
(

β̂− β0

)
.
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Alternatively, one could specify the joint moments as

hi (ζ) =
(

ri (yi − expit {m (X ,Z1,Z2; β)})
si {expit (m (xi , zi1, zi2; β)− ξxi )− α}

)
where ri = (1, xi , z1i , z2i , xiz1i , xiz2i )

′, and estimate ζ =
(

β′, α, ξ
)′

jointly by minimising the GMM criterion(
1
n

n

∑
i=1
hi (ζ)

)′
W−1n

(
1
n

n

∑
i=1
hi (ζ)

)
.

Gouriéroux, Monfort and Renault (1996) show that the asymptotic
distributions of the 2SGMM and the joint GMM estimates for δ are
the same. An important advantage of using the joint moments is
that standard GMM software can be used to estimate the
parameters ζ. For example, the gmm command in Stata or the
gmm() function in R can straightforwardly be employed.
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Stata syntax:
logit y x z1 z2 xz1 xz2
matrix from = e(b)
predict xblog, xb
gmm (invlogit(xblog - x*{psi}) - {ey0}), instruments(z1 z2)
twostep
matrix from = (from,e(b));
* SEs incorrect here
gmm (y - invlogit({logit:x z1 z2 xz1 xz2} + {logitconst})) ///

(invlogit({logit:} + {logitconst} - x*{psi}) - {ey0}), ///
instruments(1:x z1 z2 xz1 xz2) instruments(2:z1 z2) ///
winitial(unadjusted, independent) from(from)
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Some Monte Carlo Results

We generate data from a logistic SMM model, satisfying the NEM
and CMI restrictions. The data is generated from

E [Y |X ,Z1,Z2] = expit(β0 + (β1 + ξ0)X + β2Z1
+β3Z2 + β4XZ1 + β5XZ2).

We set the treatment effect ξ0 = 0.6. We further set
P (Z = 1) = 0.3; P (Z = 2) = 0.2;
P (X = 1|Z = z) = p10 + 0.15× z ; E [Y (0)] = 0.19;
E [Y ] = 0.25; β1 = 0.15; β4 = −0.6 and β5 = 0.6. The other
parameters are such that CMI and NEM hold: β0 = −1.518;
β2 = 0.3183; β3 = −0.5202; and p10 = 0.4404.
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Table 2. Estimation results for Logistic SMM

Instruments Z Z1,Z2 Z1,Z2
Moments 2SGMM/joint 2SGMM joint GMM
One-Step α 0.1912 0.1905 0.1907

(.0168) (.0153) (.0153)
[.0167] [.0152] [.0152]

ξ 0.5970 0.6033 0.6001
(.1905) (.1729) (.1731)
[.1899] [.1722] [.1721]

Two-Step α 0.1904 0.1911
(.0153) (.0154)
[.0152] [.0152]

ξ 0.6038 0.5957
(.1729) (.1735)
[.1722] [.1722]

Hansen J 0.9882 0.9827
rej-freq 5% 0.0503 0.0495

Notes: Sample size 10,000. Means of 10,000 MC replications;
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We find the Logistic SMM estimators behave well, also for
instruments with 6 or even 11 values, although we find that the
2SGMM estimator has a small upward bias for the designs we
considered. For example, for an instrument with values
0, 1, 2, ..., 10, we get means (sd) of the two-step GMM estimates of
0.6323 (0.1073) for 2SGMM and 0.5999 (0.1066) for the joint
moments GMM estimator.
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Going back to the design with Z taking the values 0, 1, 2, we
change the parameter of Z2 to β3 + τ with τ = 0.25. The
estimators are severely biased. The GMM estimates using the joint
moments has a mean of 1.2805, with a standard deviation of
0.1511. The mean (variance) of Hansen’s J-test is equal to 1.26
(3.09) with a rejection frequency at the 5% level of only 8.5%.

In contrast, if we change the parameter of Z1 to β2 + τ with
τ = 0.1, the estimator has a much smaller bias, with a mean of
0.5527 and standard deviation of 0.1660, but the J-test has much
more power in this case, rejecting 49.4% of the times at the 5%
level.
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Multiple Instruments and Local Treatment Effects

For the single instrument case when the NEM assumption does not
hold, but when a monotonicity condition

P [X (1)− X (0) ≥ 0] = 1

does hold, then the local risk ratio, defined as

LRR =
E [Y (1) |X (1) > X (0)]
E [Y (0) |X (1) > X (0)]

is identified and estimated by the multiplicative SMM. Likewise,
the linear SMM estimates in that case the so-called Local Average
Treatment Effect (LATE) or Complier Average Causal Effect
(CACE), see Imbens and Angrist (1994), defined as

LATE = E [Y (1)− Y (0) |X (1) > X (0)] .
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Let the values for Z , {0, 1, 2, ...,K} be ordered such that
E [YX |Z = k ] > E [YX |Z = k − 1].We show that, for the
one-step GMM estimator,

e−θ
z =

K

∑
k=1

µke
−θ
k ,k−1

which is a weighted average. Also,

eθ
z =

K

∑
k=1

τke
θ
k ,k−1

with

τk = (E [Y (X − 1) |Z = k ]− E [Y (X − 1) |Z = k − 1])

· ∑K
l=k πl (E [YX |Z = l ]− E [YX ])

∑K
l=0 πlE [Y (X − 1) |Z = l ] (E [YX |Z = l ]− E [YX ])

.

This constitutes a weighted average if
E [YX |Z = k ] > E [YX |Z = k − 1] and
E [Y (X − 1) |Z = k ] > E [Y (X − 1) |Z = k − 1].
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As an example, consider an instrument that takes the values
Z = {0, 1, 2, 3}, with Y and X generated form a bivariate normal
distribution as

X = 1 {c0 + c1Z1 + c2Z2 + c3Z3 − V > 0}
Y = 1 {b0 + b1X − U > 0}(

U
V

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
with, as before, Zj = 1 {Z = j}. We set πl = P (Z = l) = 0.25
for all l ; the cl parameters are such that
P (X = 1|Z = l) = 0.1+ 0.1× l ; b0 = Φ−1(0.4); b1 = 0.5 and
ρ = 0.8.
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The population local risk ratios are then equal to

LRR1,0 = eθ
1,0 =

E [Y (1) |X (1) > X (0)]
E [Y (0) |X (1) > X (0)] = 1.1585;

LRR2,1 = eθ
2,1 =

E [Y (1) |X (2) > X (1)]
E [Y (0) |X (2) > X (1)] = 1.3227;

LRR3,2 = eθ
3,2 =

E [Y (1) |X (3) > X (2)]
E [Y (0) |X (3) > X (2)] = 1.5303,

and the population values of the τk are given by
τ1 = 0.3725; τ2 = 0.3991; τ3 = 0.2285.
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The one-step GMM estimator will thus be an estimate for the
weighted average τ1LRR1,0 + τ2LRR2,1 + τ3LRR3,2 = 1.3090.
Table 3 presents some estimation results confirming this, for a
sample of size 40,000 and for 10,000 Monte Carlo replications.

Table 3. Risk ratio estimation results

eθ
1,0 eθ

2,1 eθ
3,2 eθ τ1 τ2 τ3

mean 1.164 1.330 1.542 1.311 0.373 0.399 0.228
st. dev. 0.094 0.121 0.160 0.038 0.027 0.032 0.022

Notes: Estimation results from 10,000 MC replications. Sample size 40,000.

Further, using the two-step GMM results, Hansen’s J-test rejects
the null 47% of the time at the 5% level, therefore clearly having
power to reject this violation of the NEM assumption.
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Application

We apply the estimation procedures described above to estimate
the causal effect of adiposity on hypertension as in Timpson et al.
(2010), using genetic markers as instruments for adiposity. The
data are from the Copenhagen General Population Study and the
full details of the variable definitions and selection criteria are
described in Timpson et al. (2010).
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The outcome variable is whether an individual has hypertension,
defined as a systolic blood pressure of >140 mmHg, diastolic blood
pressure of > 90 mmHg, or the taking of antihypertensive drugs.

The intermediate adiposity phenotype is being overweight, defined
as having a BMI>25.

The two Single Nucleotide Polymorphisms (SNPs) that were used
as instruments are the FTO and MC4R loci, see Frayling et al.
(2007) and Loos et al. (2008).
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The combinations for the four values of instrument combinations
are given in Table 4.

Table 4. Combinations of instruments

FTO MC4R Z Freq
0 0 0 0.20
0 1 1 0.15
1 0 1 0.27
1 1 2 0.21
2 0 2 0.09
2 1 3 0.07
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Table 5 gives the frequency distributions for the hypertension (Y )
and overweight (X ) variables.

Table 5. Frequency distributions for hypertension overweight

All Z = 0 Z = 1 Z = 2 Z = 3
X

Y 0 1 0 1 0 1 0 1 0 1
0 0.18 0.12 0.19 0.12 0.19 0.12 0.17 0.13 0.16 13
1 0.25 0.44 0.27 0.42 0.26 0.43 0.23 0.46 0.23 0.48

30



Table 6. Estimation results

SMM
Linear OLS 2SLS GMM2 J-test

ψ
0.2009
(0.0039)

0.2091
(0.0819)

0.2094
(0.0819)

0.2965

Multiplicative Gamma GMM1 GMM2 J-test

θ
0.2974
(0.0063)

0.3090
(0.1192)

0.3104
(0.1192)

0.3071

Logistic Logistic regression GMM1 GMM2 J-test

ξ
0.9487
(0.0189)

1.0409
(0.4220)

1.0528
(0.4217)

0.2924

Notes: Sample size 55,523.
Standard errors in brackets; p-values are reported for the J-test.
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Although the J-test results do not indicate that the NEM
assumptions are not valid, we present in Table 7 the local risk ratio
estimation results as described in Section 4. The most precisely
estimated risk ratio is LRR2,1 = eθ

2,1 which gets therefore the
largest weight, τ2 = 0.81.

Table 7. Risk ratio estimation results

eθ
1,0 eθ

2,1 eθ
3,2 eθ

Coeff 2.2065 1.1086 2.6935 1.3621
95% CI 0.548-8.884 0.791-1.553 0.588-12.336 1.078-1.720
Sample Size 34,896 40,552 20,627 55,523

τ1 = 0.1037; τ2 = 0.8082; τ3 = 0.0881
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Continuous Exposure

Following Vansteelandt and Goetghebeur (2003), we can use the
same GMM format to estimate the logistic SMM with a
continuous exposure X .

With a continuous exposure, parametric assumptions have to be
made in order to identify causal parameters. Following
Vansteelandt and Goetghebeur (2003) and Vansteelandt et al.
(2010), we impose that the exposure effect is linear in the exposure
on the odds ratio scale and independent of the instrumental
variable:

odds (Y = 1|X ,Z )
odds {Y (0) = 1|X ,Z} = exp (ξ0X ) .
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Further, we specify the association model as

logit {E [Y |X ,Z ]} = logit {P (Y = 1|X ,Z1,Z2,Z3)}
= β0 + β1X + β2Z1 + β3Z2 + β4Z3

+β5XZ1 + β6XZ2 + β7XZ3
= m (X ,Z1,Z2,Z3; β)

and estimate the parameters using the joint moment conditions.
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For the continuous exposure we use
(
BMI − BMI

)
,

10
(
lnBMI − lnBMI

)
and 10 (lnRELBMI ), where lnBMI is the

natural logarithm of BMI , and lnRELBMI are the residuals of the
regression of lnBMI on sex, age, age squared, ln(height) and an
age-sex interaction, as used in Timpson et al. (2010) to represent
relative BMI.

We subtract the mean from BMI and lnBMI to ensure that zero
exposure is part of the data range. We further multiply the lnBMI
and lnRELBMI by a factor 10 so that the estimated odds ratio is
for an increase in exposure of approximately 10%.
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Table 8. Estimation results for logistic SMM, continuous exposure

Exposure BMI lnBMI lnRELBMI

ξ
0.1122
(0.0384)

0.3035
(0.1069)

0.2879
(0.1016)

J-test 0.4714 0.4828 0.5004

Notes: Sample size 55,523. Two-step GMM estimates, using joint moments
Standard errors in brackets; p-values are reported for the J-test.
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