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1. Introduction 

Methods for estimating and testing the fit of linear models, such as regression models 
with fixed regressor (explanatory) variables, or general models for linear structural rela- 
tions, are well understood for the analysis of a simple random sample, or for the simulta- 
neous analysis of random samples from distinct populations (see, for example, JSreskog & 
S6rbom, 1979; McArdle & McDonald, 1984). The extension of such methods to multilev- 
el data, as given, for example, by samples of randomly drawn students from randomly 
drawn classes from randomly drawn schools, has presented both theoretical and practical 
difficulties. Aitkin and Longford, (1986), describing the application of a 2-level model to 
educational data, with students nested within schools, show that it is misleading either to 
aggregate the student variables to form school means for a "means-on-means" analysis, or 
to ignore the hierarchical structure of the data. It can be expected that the application of 
a factor model or a model for linear structural relations to multilevel data similarly will 
need to take into account the structure of the data. For example, existing models and 
computer software do not cater for the important case in which the factor structure of a 
set of tests given to random samples of students within a random sample of schools, 
results from distinct factor structures for the between-school covariance matrix and the 
between-student-within-school covariance matrix. Similarly, existing models for linear 
structural relations do not allow causal modeling of relationships between school, class 
and student characteristics. The general theory to be described covers such cases. 

In addition to the contribution from Aitkin and Longford (1986), in recent years a 
number of articles have described particular models for the analysis of certain kinds of 
multilevel data structures. Thus, Strenio, Weisberg, and Bryk (1983) show how maximum 
likelihood estimates can be obtained for growth curve data viewed as part of a two-level 
structure. Goldstein (1986a) shows how a general p-level multivariate mixed effects model 
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can be defined and analyzed with allowance made for possible measurement errors in the 
explanatory variables, 

In the present paper we develop the model in Goldstein (1986a) into a more general 
one which includes the above models as special cases and among others contains models 
for multilevel structural relations, possibly with latent variables, generalizability theory 
and general repeated measures designs. In the next section we describe the basic general 
model and following that, several special cases of interest. 

2. A General Multilevel Model 

Let y be a (n × t) vector of responses obtained from a hierarchical design with h 
levels of nesting, and ordered to reflect the hierarchy. The ith response, the ith component  
of y, may be indexed by writing 

Y~ = Y~hih- ~ " "" i l ,  

to indicate that it corresponds to the i~-th first-level unit within the i2-th second level unit 
within . . .  the ih-th h-level unit. For  example, we might have students as first-level units 
randomly drawn from classes as second level units randomly drawn from schools as third 
level units, and write 

Yl3i2it 

for the response of the il-th student in the i2-th class in the i3-th school. In some 
applications one level of nesting may correspond to repeated observations as in longitudi- 
nal or time series data (see sections 5 and 6). Further, the response vector may include 
responses defined at any level of the hierarchy. Thus, for example, schools classes and 
students may all be characterized by one or more response variables. Missing response 
data at any level require no special treatment; the corresponding component  is simply 
omitted from y. 

We suppose that the components  of y are ordered in a natural way, such that y may 
be partitioned in h ways, according to each of the levels of the hierarchy, with the 
subvectors of each level nested within subvectors of a higher level. Corresponding to the 
k-th level, y is partitioned into n k subvectors, and we write Sink for the total number  of 
observations (usually of level one units) in the m-th k-level unit. 

We write the linear model 

y = Xil (I) 

where X is a (n x p) "design" matrix and Il is a (p x 1) vector of unknown coet~cients, in a 
suitable form for the hierarchical design, namely; 

Y = X o  Ilo + ~'k X k  II, k = I . . . . .  h (2) 

where il o is a (P0 × 1) vector of fixed parameters, and II k consists of n k random subvectors 
Ilk,,,, m = 1 . . . . .  n k , each of Pk components,  that are independently and identically distrib- 
uted with mean zero and covariance matrix f~k, of order p~, whence 

cov (Ilk) = I , ~ ® f ~  k (3) 

It is assumed that; 

COV (Ilk, Jim) = 0, k ~ m (4) 

That  is, random variables at different levels of the hierarchy are supposed uncorrelated. 
As illustrations of the model, consider two simple cases. In the first, suppose we have 
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a two level hierarchy consist ing of students within a popula t ion  of schools. The  response 
Yji of the i-th s tudent  in the j - th  school, is given by;  

yji=flOl +flo2Xji+flo3Zj+f121j+f122jXji+flUi ,  i=  1, . . . ,  lj ; j =  1 . . . . .  n 2. 

The  coefficients fl01, f102, f103 are fixed paramete rs  defining a linear regression of Yii 
on the s tudent  level exp lana tory  variable xji and the school-level explana tory  variable zj. 
The  coefficients f121j and fllji are respectively the simple between-school  and between- 
s tudent-within-school  residuals, and  fl22i is a r a n d o m  coefficient of  xji, varying across 
level-two units, that  is between schools. The  fl2tj and  f122j are in general correlated but  
uncorrelated with fll~. There  are n 2 schools, with li s tudents  f rom the j th  school. In  the 
nota t ion  of  (2), y is a (n x 1) vector  where;  

n = ~ l j ,  j = l  . . . . .  n 2 

11S=(&1 
and X o (n x 3) has (1 xji zj) as i t s j i - th  row;  11, (n x 1) has fl,~ as i t s j i - th  c o m p o n e n t  and 
X 1 = I ,  ; 112 (2n 2 x 1) has (f12,~ f122j) r as its j - th  subvector ,  and X 2 is a d iagonal  b lock 
matr ix  (n x 2n2) whose j - th  diagonal  block (lj x 2) has (1 xji ) as its i-th row. The  fllji are 
i.i.d, with variance tr~ and the (f121a fl22) r are i.i.d, with covar iance matr ix  f~2, whence;  

cov (PO = a l. ; 

COV (112) = 1.2(~')2 
As an example  of  a different kind, again with, say, s tudents  within schools, suppose  

we have one measure  Y~I character is ing the j t h  school,  and  two response measures  Yj~2, 
Yi~3, character is ing the ith s tudent  in t he j - t h  school, i = 1 . . . . .  lj ; j  = 1 . . . .  , n 2 . We write; 

Yji = fljl 

Yji3 = flj3 ~i- [~ji3" 

In the nota t ion  of (2), 111 is a (2n x l) vector  whose n subvectors,  (flji2 flji3) r are i.i.d. 
with covar iance matr ix  i l l ,  and 112 is a (3n 2 x 1) vector  whose n 2 subvectors  (flit flj2 flj3) T 
are i.i.d, with covariance matr ix  f~2. Table  1 shows, in extenso, a simple case of  this model  
with just two schools, three students in one, two in the other, and missing responses Y133, 

Y222" 

Yt l  

YlI2 

YlI3 

Y122 
Y123 

Y132 
Y21 

Y212 
Y213 
Y223 
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From this example it may be seen more generally how the design matrix handles 
multivariate data with randomly missing responses. From another point of view the 
model can be described as a three-level model with schools as the third level, students as 
the second level, and (response) variables as the first level, but without terms representing 
variation between first-level units. This approach (see below), which regards the multi- 
variate model as a special case of a univariate model, is described more fully in Goldstein 
(1986b). 

Since in general n may be very large, procedures for estimation in this model are 
based on the use of expressions for the covariance matrix of y, its inverse and (for 
maximum likelihood estimation) its determinant, that take a suitable form for compu- 
tation. Generally, as in the examples given, the design matrix X~ is block diagonal, 
partitioned by rows corresponding to the k-level partitioning of y, into diagonal blocks 
X k m ,  of order (Sink x Pk)" Hence we have; 

V = c o v  (y) = E{(y -- X o [Io)(y -- X o [Io) r} 

= Z X~(l.k®n~)X~ 
k 

= ~ ~),,  Xkm ~k Xk~, m = 1 . . . . .  n k (5) 
k 

where <~ is the direct sum operator. 
Note that each of the k terms in this sum is a diagonal block matrix, with diagonal 

blocks of order (Sink X Sink), m = 1 . . . . .  nk ; k = 1, . . . ,  h. Note also that this generalizes 
somewhat the model in Appendix 2 of Goldstein (1986a) where it is proposed that 
s,,~ = I. The two models can be made formally identical, however, by considering an 
(h + D-level model where level one in Goldstein has no random variation between units 
and defines a set of multivariate responses using level one (0, 1) dummy explanatory 
variables, the coefficients of which are random at level two and possibly at higher levels. 
The number of observations in the ruth level-k unit is s, ,  k which may be large in appli- 
cations. 

A convenient recursive expression for V is obtained by writing 

v=v~, 

where 

~ + ,  = v. + x . + , ( l . . + , ® n o + , ) x ~ + , ,  (6) 

o r  

mT V0+ 1 = Vg + 0~),. Xg+l,,.f~g+lXg+l,, m = 1 . . . . .  ng+r (7) 

This yields, further, a reeursive expression for V-  x, namely, 

-- I y t  I / -  I 
Vo+~ = V ~  1 - -  V ~ X o + ~ ( I , o + ~ ® D o + O {  I + X o r + l V ~ X o + x ( l , o + , ® D o + x ) }  - = ' o + ~ - o  

(8) 

by the use of a well-known identity for the inverse of matrices of this form (see Goldstein 
1986a). A computationally convenient recursive expression for the determinant of V is 
given in the appendix. By the use of these recursive relations, the largest matrix requiring 
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inversion by numerical methods is of order equal to the largest number of random 
coefficients at any level. 

These expressions provide a basis for practical procedures, applicable to large data 
sets, for maximum likelihood estimation of the parameters [~0 and ilk, k = 1 . . . . .  h of the 
general model (2), or of further parameters of which these are restricted to be functions. In 
effect they reduce an initial numerical problem in (generally) very large sparse matrices to 
a tractably compact  form. 

For  a wide class of models following Goldstein (1986a), an iterative generalized least 
squares (IGLS) procedure can be recommended, as it is relatively straightforward and 
makes it easy to incorporate adjustments for errors in variables not available with stan- 
dard maximum likelihood (ML) approaches. Nevertheless, as shown in appendix 1 of 
Goldstein (1986a), IGLS is equivalent to ML for a wide class of models when the random 
variables have a multivariate normal distribution. The essence of the IGLS algorithm is as 
follows. 

I f i  = { l  1 . . . . .  l , }  and hence V are known then the GLS estimates are given by 

~o = ( X T V -  1X)- 1 X r V -  ly (9) 

When I is unknown, the numerical algorithm proceeds by choosing a starting value 
(typically the ordinary least squares (OLS) value V = la2). The residuals 

= y - XO0 

and hence the matrix 

z = ~ U  

is calculated, and if the model is correctly specified, 

E(Z) = V. 

As is evident from (7), V is a known linear function of the parameters of i .  These 
parameters are estimated from a GLS regression of veeh (Z) on D, where D is the design 
matrix relating V to a linear function of the elements of i as in (7), and the current 
estimate of cov {vech (Z)} is used as the weight matrix. The vector veeh (Z) is formed by 
stacking the columns of the lower triangle of the symmetric matrix Z under one another. 
Details of this procedure are given by Goldstein (1986a), who also indicates how algo- 
rithms can be developed for efficient use of computer  storage. The estimated parameters 
of I are then used to form an updated estimate of V which is used in (9) recursively until 
convergence is obtained. Extensive numerical work will be needed to compare alternative 
numerical algorithms, but the principles governing such work now are clear. 

In the present paper  we develop the model in Goldstein (1986a) into a more general 
one which includes the above as special cases. We show that this general model contains 
the following special cases: time series models, models for longitudinal data, multiple 
matrix sampling models, generalizability theory models, multilevel common factor models 
and multilevel counterparts of models for linear structural relations (path analysis) with 
latent variables, and complex sample survey designs. 

The general model provides both a theoretical unification of a wide range of models 
for multivariate and univariate data and general procedures for fitting these models by 
ML or IGLS. The theory is developed in terms of a hierarchical model, for simplicity of 
presentation, but in section 11 we show that it readily generalizes to include cross classifi- 
cations for random factors, thus incorporating the class of variance and covariance com- 
ponent models. 
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3. Parameter Constraints 

From the model specification it is clear that the structures of the fixed and random 
parts of the model can be defined quite separately. In effect this involves constraining 
subsets of the parameters to be fixed functions, typically by requiring a set of linear 
functions to be zero. The simplest example is the well known case of so called "regression 
through the origin" where 

yj = ~j +/~xj  

and 

E(~i) = 0, var (~) = a 2. 

In addition, however, we can jointly constrain the fixed and random parameters with 
the constraining function being imposed at each cycle of iteration. An example is a 
"constant coefficient of variation" model where the square of the predicted response is 
equal to the simple between-individual variance at level 1. An interesting class of models 
which could be studied is that where a subset of the random parameters is constrained so 
that the values are known functions of the fixed part of the model, and possibly other 
random parameters, by virtue of particular distributional assumptions. 

4. Conditional Estimates 

We can obtain conditional estimates of II k, k = 1 . . . . .  h by ordinary regression. These 
may be referred to as conditional or posterior means or generalized (shrunken) residuals 
at level k. (See Aitkin & Longford, 1986 for a discussion). By (2), (3) and (4) we have 

c o v  (y, Ilk) = Xk(l .k®nk) = Wk, (10) 

whence we obtain an estimate of 

a s  

with 

Pk I Y - Xo Po, f~k 

Ok = W~ V-  ~(y - Xo Po) 

cov (0k) = w ~  v - l { v  - Xo(X'g v - l X o ) - ' x ~ } v - ' w ~ .  

A consistent estimator of cov (Ok 1 Y) is given by substituting parameter estimates in 

Wk V W~. ( l .k®f~k)--  r -1 

If multivariate normality is assumed we obtain the same estimators. On substituting 
estimates for V and W k we can provide standardized shrunken residuals to assess model 
adequacy, or for the higher level estimates to give estimated residuals for the individual 
units. These estimates can be ranked or otherwise compared (Aitkin & Longford, 1986), 
although care needs to be taken to ensure that there is no model misspecification which 
might alter them appreciably. 

5. Time Series Models 

Single level time series models typically lead to structures for V which involve 
nonlinear (product) functions of the parameters to be estimated. Without going into great 
detail we shall suppose that suitable nonlinear estimation procedures are available, and 
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we see that if there are level 1 random errors which have a time series structure, then for a 
multilevel model the estimation procedure follows the lines already described. 

Consider, for example, the first order autoregressive model, with a single residual 
term at Level 1, with the following structure: 

where 

We have 

et = P e ( t - l )  + vt ,  

E(vv r) = l o  "2, E(V,) = E(e,) = O. 

W = E(ee r) = 0"2(1 - -  p 2 ) - 1 R ,  

where the (i,j)-th element of R is pll-Jl, and W-1  has a simple form. 
An alternative to a full nonlinear analysis of such models is to use the estimated 

residuals ~ at the current iteration as response variables to obtain estimates of p and a 2 
which are used for the next cycle of iteration. Such a procedure will generally give 
consistent estimates for a wide class of models. One important  application is where there 
is one short time series on each of a number of randomly chosen units. By imbedding the 
time series model within the general multilevel linear model we can provide efficient 
estimates of the common parameters, and at the same time incorporate covariates in a 
straightforward fashion. 

6. Longitudinal Data  

The usual multivariate models for the analysis of repeated measurement data can be 
reformulated in terms of a 2-level model, in which individual subjects are at Level 2 and 
measurements at occasions within subjects are at Level 1. Thus, for example, the 2-level 
polynomial growth curve model can be written as 

Yit = 2 ~ i j X l  "~ E O~kZttk "~- 13it, (11) 
j - -  k 

where 

/~,j = / / j  + r,j, 

where the Ylj are random variables at Level 2, x, is age or time, e, is a random variable at 
Level 1, and U = c o v  (yij) is the covariance matrix of the polynomial coefficients between 
subjects. The second term in (11) allows us to specify further explanatory variables and 
levels. We can also further model the eit as a function of time so that the within-subject 
residual variation varies with time. The principal advantage of this formulation of the 
model is that it places no restrictions on the number  or spacing of occasions, which has 
been one of the drawbacks of the traditional multivariate models (Goldstein, 1979). 

We return to the case of a fixed set of p measurement occasions, and write (11) as 

Yij = ~ flijwj + ~ CXkZtjk, (12) 
j k 

where 

10 if the measurement is at occasion j 
wi = if not 

There is now no Level 1 variation and (12) is essentially the model (Jones, 1980) for 
providing efficient estimation of means in a "mixed longitudinal" or "rotated design" 
study. The model (12) is also more flexible than that of Jones in that further fixed or 



462 PSYCHOMETRIKA 

random explanatory variables and levels can be incorporated, and any pattern of missing 
data can be handled easily. Further details with examples are given in Goldstein (1986b). 

7. Multivariate Models and Matrix Sample Designs 

For  the case of complete p-variate data obtained from units sampled at two levels, 
say p response measures on students in schools, we consider the simple model 

y = X 0 II o + XII~ 1 + X 2112, (13) 

where the j i - th  subvector of ~1, I~lj~ and the j-th subvector of I~ 2, 1~2j, are (p x 1) vectors 
with covariance matrices f ~ ,  f~2 respectively representing between-student-within-school 
covariance and between-school covariance. 

Alternatively, for the m-th Level 2 unit, we write 

Ym = X.o  I~.o + X,,,ll].~I + X,211.2, (14) 

where 

gin2 = l , , ~ Q l p  ; 

X,,,I = l , l , Q I  p, 

lira1 is (p X 1) with covariance matrix f21, and 11,2 is (p t l ,  x I)with covariance matrix 

1,1. ® f~2, 

where t~. is the number of Level 1 units in the m-th level 2 unit. Thus with complete data 
we have 

V m = coy (Ym) = 1,,. l r Q n 2  + I , , ,~ ) f~ , ,  (15) 

in which case the inverse and determinant take simple forms. More general cases, with 
further fixed and random coefficients, with missing observations or with variables at 
different levels, can be handled in the way illustrated by Table 1. 

Other multivariate models can be derived. For  example, the multiple discriminant 
function can be derived from estimates of "within" and "between" group covariance 
matrices. As in Table 1, designs where the multivariate vector consists of responses 
defined at several levels of the hierarchy will have applications, for example in path 
analysis educational models where, say, a second occasion response vector may consist of 
students' achievements related to previous measurements and (Level 2) teacher attitudes 
which are also related to previous teacher and student variables. Another application is in 
repeated measurement studies where, for example, responses are (level 1) growth measure- 
ments and (Level 2) measurements such as final growth status with the latter being 
correlated at Level 2 with the polynomial coefficients. 

An application, of importance in surveys of educational achievement, is to provide 
efficient analysis of multiple matrix designs where individual subjects provide measure- 
ments on only a subset of possible response variables. Hence this is a particular case of a 
multivariate linear model with missing responses. Such designs, typically, are carried out 
in the context of hierarchical educational or social systems, the characteristics of which 
can be incorporated as higher levels in the same model, as can further explanatory 
variables. An example of such an analysis is given by Goldstein and Silver (in press) for a 
design where students are sampled within schools and each student takes a common core 
mathematics test and one of four "rotated" forms, with explanatory variables measured at 
both the student and teacher level. 
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8. Generalizability Theory 

According to Shavelson and Webb (1981) in their review of generalizability theory, 
estimation has been its "achilles heel". In fact, generalizability models are simply variance 
or covariance component models (see section 11) where a test score response is related to 
parameters which vary between subjects and between tests or items within subjects. They 
are therefore special cases of the general multilevel model. Moreover, the general model 
provides efficient estimation procedures and flexibility with respect to incorporating extra 
levels for an educational system and further explanatory variables. It also allows a more 
complete specification of the covariance matrix V by including covariances between the 
random parameters; a typical omission in traditional generalizability analyses (Johnson 
and Bell, 1985). In our view, it should become easier to evaluate the validity of gener- 
alizability analysis when it is expressed in terms of the notation and terminology of 
multilevel models, than when using the specialized notation found in the generalizability 
literature. 

9. Latent Variable Models 

We now turn to the application of multilevel models where some or all of the 
random coefficients depend on further unobserved or "latent" variables. Existing formu- 
lations of such latent variable or covariance structure models are concerned exclusively 
with a single level and we shall demonstrate how multilevel latent variable models can be 
specified in a natural way. 

Consider the general multilevel model given by (1), (2) and (3). We define the multi- 
level latent variable model as one where some components of the vectors Ii k are dependent 
on a set of unobserved variables. We note that any other fixed or random explanatory 
variables will already have been incorporated into X o Iio. Any of the standard formu- 
lations for specifying latent structures may be used. In particular the Reticular Action 
Model (McArdle & McDonald, 1984; McDonald, 1985), a general latent variable path 
model which makes no distinction between response and explanatory variables, is readily 
adaptable to the hierarchical model. Thus, for example, we can define a 2-level common 
factor model by writing 

il2j = Awl + uj (16) 

Plji = Bzj i  "k eji 

in (13) with the usual assumptions defining a common factor model at each level, yielding 

Y ji -~ X o ~o -k X l fi( B z  ji dl- eft) -~- X 2j( A w j .3 U u j), (17) 

where Yji is a p-variate vector corresponding to the i-th level 1 unit in the j-th level 2 unit. 
By choosing various definitions of X I ,  Xz in (13), the latent variables at each level can be 
independent or related in part to the same explanatory variables. 

An interesting special case is obtained by choosing X I ,  X z as above for (13). Then 
theji-th observation vector becomes 

Yjl = Xoi/l~o + Aw~ + u~ + Bz~/+ e~i (18) 

where in general A (p x q) and B (p x r) may be of different column orders. Equation (18) 
can be regarded as a generalization of the classical model for simultaneous factor analysis 
in several groups (J6reskog and S6rbom, 1979), with the response variables being func- 
tions of between group plus within group factors. Further, for some groups a separate 
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factor structure may be fitted, so allowing a general model which incorporates the classi- 
cal simultaneous factor model as a special case. 

More generally, as in the second example in section 2, this formulation of the multi- 
level linear model allows response variables at different levels and possibly with missing 
data for which it provides efficient estimates in the ordinary single-level case. It  thus 
becomes possible to write more general counterparts of existing linear structural relations 
models. Thus, in the context of educational research we may have causal models relating 
latent variables associated with schools, with teachers and with students. In the context of 
econometrics, for example, we may have relationships between latent characteristics of 
macro systems and those of micro systems. As in section 4 we can obtain conditional 
estimates for factor scores and residuals. 

The efficient estimation of the parameters of a general linear multilevel latent vari- 
able model proceeds as follows. At each cycle of the iteration for the basic multilevel 
model, the current estimates of cov (ilk) are used to estimate the parameters of the latent 
variable model using a standard efficient algorithm. These parameters are then used to 
construct new predicted estimates of the cov (Ilk) which are then used in the next iteration 
cycle. Thus there is a double cycle of iterations which takes place. Such a procedure, 
therefore, may make heavy computing demands and a compromise, less efficient but still 
consistent, is to use only the final estimates of cov (Ilk) from the multilevel fitting in the 
latent variable estimation. A study of this and other aspects of multilevel latent variable 
models, will be reported elsewhere (McDonald & Goldstein, in preparation). 

10. Sample Surveys 

Complex sample surveys with multistage designs are an example of hierarchical 
structures which can be modeled in the ways already described, where a "super- 
population" structure is assumed, and where stratification factors can be modeled as fixed 
effects. The advantage of a direct modeling approach is that efficient parameter  estimates 
can be obtained and a wide variety of models fitted as a standard procedure. We also note 
that aspects of a hierarchical population structure not included in a sampling scheme can 
be modeled. Thus, for example, we might sample schools and children within schools, but 
we can also include classrooms as an extra level in a model. 

Often in sample surveys, Level 1 units will have differing selection probabilities and 
hence, according to standard sample survey theory, require different weights in an analy- 
sis. If  wj is the weight of the j - th  unit and E i w i = 1, and W = diag {ws}, then the analysis 
proceeds as described above with y being replaced by W°'Sy and X by w°'sx .  Where 
there are response variables at several levels in a multivariate model we will define 
separate sets of weights for each level with each set summing to unity. The weights 
attached to a higher level unit need not be a function of the weights for the lower level 
constituent units, but for example could be based on the higher level unit's own selection 
probability. In addition, a priori weighting considerations may influence the weights 
assigned. Nevertheless, in models where responses at different levels are all related to the 
same set of explanatory variables, care will be needed in choosing weights across levels 
and this is an issue requiring further study. 

11. Variance and Covariance Component  Models 

In previous sections we have dealt with models where the random part  has a fully 
nested structure. In some cases, however, the variation in the random terms between the 
units at one or more of the levels may itself be structured at that level. Thus, for example, 
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in a two level model, with students at Level 1, the Level 2 units may be cross classified by 
school and by neighborhood, with the total variation between the resulting "cells" of the 
cross classification consisting of the sum of a component  between schools and a compo- 
nent between neighborhoods. Suppose that there are r factors classifying the level k units. 
The contribution to the random variation at level k for a particular level k + 1 unit, is 
given by: 

U~k>iP~k~i, i = 1 , . . . ,  r (19) 
i 

where Utk~ is the (ntk÷l > x pq~) design matrix for the i-th factor, Iltk>i is the ~q~) vector of 
random terms for the ith factor, p is the number  of explanatory variables defining the 
random variables at level k, ntk+ t] is the number of Level 1 observations in the level k + 1 
unit, and q~ is the number of design variables for factor i. 

We have therefore 

and we assume; 

cov (Ptk)i) = I®t )k , i ,  

cov ( p ~ ,  P<k>i] = 0 

where f~k.~ is the (p x p) covariance matrix of the random coefficients at level k. 
Note that for high order cross classifications, the factors referred to above may 

comprise "interaction" terms as well as main effects. Furthermore, some of the cells of the 
cross classification can be missing. 

The first term in the brackets on the right hand side of (6) now becomes modified to 

® A v~ .... } + E v ~x ®a~,,)vT, (20) 
i 

where V~k ~ .... now represents the contribution of units at levels 1 . . . . .  k - 1, 
This is a generalization of the strictly hierarchical model, but can be analyzed using 

the same general procedures and involving in general the inversion of matrices of order 
Pqi. All the special cases considered in previous sections can be generalized to incorporate 
the structure of (20). 

In the special case where p = 1 in a 2 level model with a simple random term at 
Level 1, we have the usual r-way variance component  or mixed effects model. 

12. Discussion 

A number of other issues not discussed in detail also arise. We have shown how to 
deal with missing responses in multivariate response data, but the case of missing ex- 
planatory variables in a multilevel model requires further investigation. We have dis- 
cussed models with particular covariance structures at Level 1. In some applications 
higher level units also may have such structures, for example a time series structure. In 
principle the methods we have used can be extended to such cases. There is the issue of 
assigning weights to units at different levels which we have discussed, and there is the 
issue of robustness of the models against alternative distributional assumptions, and here 
it seems we require both theoretical and empirical investigations. The estimates given for 
the standard errors of the parameter  estimates assume that II is known, and hence ignore 
its sampling variation. Further study of this problem is desirable, especially where there 
are small numbers of higher level units. 

In many  scientific areas, but especially in the human sciences, data typically are 
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obtained from hierarchically structured populations, whether by a deliberate multistage 
sampling scheme, by a census, or by some other probability method. For such data it is 
important that statistical model fitting takes account of these hierarchies, since failure to 
do so can result in inefficient and/or inconsistent parameter estimates. This is true for 
both observed variable models and latent variable models. The applications described in 
this paper are intended to show how existing practices can be improved by incorporating 
the multilevel structure of the data into a range of widely used techniques. The theory 
identifies the form of an extensive program for the development of computer software. We 
anticipate that further applications of the ideas in this paper will be found for other 
models, including further generalized linear models (McCullagh & Nelder, 1983) and 
nonlinear models. The methodology presented in this paper can be applied generally 
where data are obtained from replicated surveys or experiments. Thus, so called meta- 
analysis procedures can be studied in terms of "meta-parameters" representing the vari- 
ation between individual parameters across studies. These latter parameters might be 
derived, for example, from regression models or, say, from latent variable models. Finally, 
the ability of the models to handle random coefficients provides a powerful tool for the 
detailed exploration of the structure of the random component of linear models, and thus 
opens up a promising new area of data analysis. 

Appendix 
Estimating the Determinant o f  V 

Let Vg+ Lm be the m-th diagonal block of Vg+ 1. Then, 

I~+1  t = I-I I ~+1 , . 1 ,  m = 1 . . . . .  % + 1  
m 

where 

(A1) 

Then 

I f ( i +  1) 
I ~ g + l . m  

= I v (°  I1 V0+I) + vo+1) o 1( 1 + v*(0 r r r~  V~')m] -1 v*0) o ~-Iv(i+t)r  (A4) --g+l.m --g.m ~ g + l . m a ~ g +  ~ g + l . m L M J t  ~ L g + l . m ~ g + l ]  ~Lg+l.rn 
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