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T H E  C H O I C E  OF C O N S T R A I N T S  IN C O R R E S P O N D E N C E  ANALYSIS 
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A discussion of alternative constraint systems has been lacking in the literature on correspon- 
dence analysis and related techniques. This paper reiterates earlier results that an explicit choice 
of constraints has to be made which can have important effects on the resulting scores. The paper 
also presents new results on dealing with missing data and probabilistic category assignment. 
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Introduction 

The range of techniques variously known as optimal scaling, dual scaling, or multiple 
correspondence analysis, have been widely applied in a number  of contexts including test 
item scoring and estimation of bone maturity. Nishisato (1980) and Greenacre (t984) 
present accounts and McDonald  (1983) has contributed further results. De Leeuw (1984) 
describes various extensions known as the Girl system. Healy and Goldstein (1976) con- 
sidered the fundamental problem of which basic constraint systems should be used in 
order to obtain nontrivial solutions. They pointed out that the choice of an "end-point" 
or "linear" constraint gave different results to the usual choice of an "average" or "qua- 
dratic" constraint. They suggested that the nature of the problem should determine the 
constraint system, but this does not seem to have been followed up, and the choice of an 
average constraint typically is assumed to be a "natural" one. For  example, in an at tempt 
to synthesize existing procedures. Tenenhaus and Young (1985) fail to recognize the 
possibility of alternative constraint systems. 

The main purpose of this paper is to reiterate the need for a careful choice of 
constraints and in particular to investigate multiple solutions with varying sets of con- 
straints. In addition, the paper  extends the results of Healy and Goldstein (1976) to the 
case of randomly missing data and probabilistic category assignment. 

Notat ion 

Consider a system with h attributes with the i-th attribute having Pl categories, with n 
categories in total. The score to be allocated to the j - th category of the i-th attribute is x u. 
We have a sample of size N with zi,, the score of the m-th subject on the i-th attribute, so 
if the j- th category is observed for this subject z~,~ = x u. We define a mean score for the 
m-th subject as 

Zra = ~ i  Wi Zim, E i w i = 1 

where the w~ are preassigned weights. Most  applications of dual scaling have used w~ = 
h-  ~. A measure of "disagreement" between the (weighted) components of a subject's score 
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can be defined as 

d= = E~ W~(Z~m -- £,,)2, 

and a class of  op t imum scoring systems can be defined as those which minimize 

D = Z m dr,. 

To  avoid the trivial solution x~i = constant ,  we need to impose basic constraints.  
Healy  and Goldstein considered two possibilities: 

£2~ = 1, 

e = N-~£~ , ,  = 0 (1) 

and  

x r q = 0 ,  x r r =  t (2) 

where x = vec (xo), and N is the total number  of  subjects and q and r are (n x 1) with all 
elements equal to zero except for those cor responding  to at tr ibute categories 1 and p~ 
respectively, which are equal to w~. 

We define the following matrices:  The nonnegat ive definite matrix A is n x n sym- 
metric with diagonal elements N i ~ w i ( 1 -  w~) and off-diagonal elements --N~ikzwiw k, 
where N~j is the number  of  subjects in category j of  at tr ibute i and Nuk ~ is the number  of  
subjects in category j of  at tr ibute i and I of  at tr ibute k. 

The matrix Z is n x n symmetr ic  with diagonal  elements N u w~ and off-diagonal 
elements Nijkt w iw  k. The matrix S = A + Z is n × n diagonal  with elements N~j w~, and 
the number  of  subjects N = tr (S). J,-t is an r x t matrix of  ones. 

By equating coefficients of  the x~j we see that  D = xrAx.  With  the average con- 
straints (1) the optimal scores are given by the solution of  2Ax - 22Zx - HSJ,, a = 0, that  
is, the latent vector corresponding to the smallest nonzero  roo t  of  

I A -  2ZI  = I A -  2(1 + 2 ) - l S l  = 0, (3) 

which in the case of equal weights is equivalent to the solution given by G u t t m a n  (1941). 
Wi th  the end point  constraint  (2) the opt imal  scores are given by the vector x satisfying 
both  (2) and the set of  linear equations,  

2Ax -- q2 -- r#  = 0 (4) 

Healy and Goldstein also considered the "canonical"  scoring problem where each 
subject has p sets of  at tr ibutes and we wish to find p sets of  scores such that  the weighted 
average disagreement between the p scores is minimized. This case is not  considered in 
detail here, but  the methods  to be outlined below can be adapted  readily to tha t  case. 

It  is wor th  not ing that  there is sometimes a misunders tanding about  the use o f  the 
term "constraint  system." All derivations of  the classical correspondence analysis results 
implicitly assume constraints.  Thus,  for example, the derivat ion which seeks to  minimize 
the ratio x r A x / x r Z x  requires that  x r Z  ~< 0, and since, wi thout  loss of  generality, we 
can set x r Z x  = 1, this becomes equivalent to the formulat ion given in (t). Likewise, the 
end point  system of  Healy  and Goldstein can be derived by minimizing x r A x /  
(xr r  -- xrq) 2 with the requirement that  x r r  4: xrq,  and as before, wi thout  loss of  gener- 
ality setting x r r - x r q  = 1. It  should also be noted that  a second constraint  in 
each case, (xrSJ,1 = xTq = 0) is necessary to fix the locat ion of  the solution vector x. 
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Probabilist ic Category  Assignment 

In  the case of  probabilistic assignment to categories an individual subject has a score 
given by 

Zi,. = Zi Pij,. x~i, Z~ Pij,. = 1 (5) 

where Pi~,. is the stated probabil i ty that  for subject m an observat ion belongs to the j - th  
ca tegory  of  attribute i. The estimation equat ions  are as above except that  in the matrices 
A, S, and Z ;  N o  is replaced by ~ ; , . p Z ,  and Nqk  ~ is replaced by Z,.pO,.pk~,~. 

Probabilistic assignment m a y  be useful in a number  of  circumstances. Fo r  example, 
several raters may make  category judgments  which differ, and the Plj,. can then be taken 
to be the relative frequencies of  categories chosen. In  another  case, an observat ion may  
possess some features typical of  one category and other  features typical of  another  cat- 
egory, and p~j,. can be defined in terms of  relative frequencies or  possibly a subjective 
assessment. 

Fur ther  Constraints  Among  Scores 

With  the end point  constraint  given by (2) leading to (4) we can incorporate  p, say, 
general linear constraints of  the form: 

x r C  = 0 

where C is n x p: which leads to the set of  linear equat ions 

2Ax -- q2 -- rp -- Cw = 0 

(6) 

(7) 

together  with (2) and (6), which can be solved using the same s tandard  methods  as before. 
w i s p  x 1. 

With the average constraint  we obtain:  

2Ax -- 2Zx2 - SJ, l la  - Cw = 0, (8) 

not ing that  Jl , ,Sx  = J~. Zx  = J1.  Ax = 0. Multiplying on the left by  Jx . ,  we have 

# + J x .  C w { J I n S J . a }  -1 = O, 

so that  8 becomes:  

Ax -- Zx)~ -- {I  -- N - 1 S J n . } C w  = O, (9) 

where N is the number  of  subjects and n is the number  of  categories. Equat ion  (9) can be 
written as: 

(S* -- 2*B*)x* = O, (10) 

where the (n + p) x (n + p) matrix 

with E = (I -- N -  1SJ. . )C,  and the (n + p) x (n + p) matrix 
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and 

x* = , 2* = I + 2. 
w 

In the general case where E r S  - *E is nonsingular, (10) can be solved utilizing (S*)-1, 
with an appropriate procedure for dealing with an asymmetric matrix. We require in this 
case the smallest positive value of 2, which exists if and only if there is at least one latent 
root of (S*)-iB* within the interval (0, 1). Thus, not all constraint systems are necessarily 
admissible (McDonald & Goldstein, in preparation). 

Missing Data 

Several procedures have been proposed for dealing with the case where not all subjects 
have an observation on each attribute and responses are missing at random. Nishisato 
(1980) suggests creating an extra category for missing responses, but where there is 
random sampling of individuals from a well defined population, the expectations of these 
estimates will not equal those where the responses are not missing, and in this sense 
Nishisato's procedure can be said to be biased. He also suggests ignoring the missing 
responses when calculating the relevant matrices and then using these matrices as if the 
data were complete. This approach, however, while it may give a reasonable approxi- 
mation when there are not many missing responses, is not exact since (3) and (4) are not 
satisfied strictly. The following procedure provides optimal estimates which minimize the 
disagreement for randomly missing data. 

For  the average constraint, minimization of D over the nonmissing data leads to 

A x  --  Z x 2  - S J n l  # = O. 

We have Jln Sx = 0, but A T J n l  = {aij  }, where a~j = w~(N o --  E k M i j  k wk), where M i j  k ~- N i j  

- -  Lqk  and Li j  k is the number of missing observations in attribute k for those subjects 
with thej- th  category of attribute i. This gives 

# = N -  1J1~ A(1 + 2)x 

leading to 

{[I -- N - 1 S J n , J A  --  2[Z + N - ' S J n n A ] } x  = O. (11) 

This can be solved by standard methods. For  the end point constraint we solve the 
same set of equations as before with A calculated over nonmissing responses. Where there 
are constraints with missing data, the above results can be combined in straightforward 

fashion. 

Multiple Components 

With the average constraint system, the definition of second and subsequent compo- 
nents as mutually orthogonal leads to a straightforward extraction of eigenvectors of (3), 
(10), (11). For  the end point constraint however the position is more complex. 

First we note that Equation (2.6) in Healy and Goldstein (1976) is incorrect since 
x T s J n l  ~ O. The correct additional constraint is 

yT{z - -  N - 1SJnn S}x --- O. 

For  the first component the use of the end point constraint implies that intermediate 
category scores lie in the range (0, 1) and this is indeed the case in the examples below. It 
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is not clear, however, that a second component  should be orthogonal  to the first, since 
this is likely to force intermediate category scores outside the range (0, 1), which some- 
what invalidates the original choice of the end point constraints. Computat ions with the 
data in Healy and Goldstein (1976) verify that this is so. 

Instead, it seems to us that we should reconsider the purpose of having multiple 
components.  One function of a second component  is to explain residual variation in 
observed responses, subject to the second component  scores having a predefined relation- 
ship with the first component  scores. For  the average constraint, as in traditional multi- 
variate analysis, the specified relationship is one of overall orthogonality of scores. This, 
however, is not necessary in order to obtain a solution. Thus, any two distinct constraints 
involving first component  scores will lead to a solution, and likewise for the end point 
basic constraint. Thus, for either basic constraint system a general definition for such a 
second component  can be written as minimizing D subject to a set of p constraints 

x T c  = k r, (t2) 

where k is p x 1 and includes first component  scores. 
There is no reason, however, why components  should always be in order of impor- 

tance of extraction. From a general standpoint each component  is defined by a set of 
constraints which may or may not involve scores associated with other components. 

In the case of an average constraint system, the definition of second and subsequent 
components  as orthogonal to earlier ones seems reasonable if the use of an average 
constraint implies that no subset of scores is singled out for special attention. In the case 
of the end point (or other subset specific) constraints, however, we may often wish to 
define subsequent components in terms of further subset specific constraints. Thus a 
second component  might involve constraints which forced early stages to be equal in 
order to produce better discrimination among later stages. In some cases a "hierarchical" 
second component  might be chosen which incorporated constraints which used functions 
of first component  scores. Also, the weights w~ may change from component  to compo-  
nent. 

Examples 

The following example uses maturity data from X-rays of tooth development in 
French Canadian children. Each tooth can be observed in one of up to nine stages, 
labeled 0 -- H, where 0 is the least mature stage and H the most  mature stage. The data 
are described by Demirjian and Goldstein (1976) who present end point constrained 
maturi ty scores for various sets of teeth. The data used here are those for boys on the 
following four teeth: first molar  (M1), first premolar  (PM1), second molar  (M2), and 
second premolar (PM2). The scores for the first maturity component  using equal attribute 
weights and the constraints (2) are given in Table 1. For  convenience the estimated scores 
have been linearly rescaled so that all the first stage scores are zero and the final stage 
scores add to 100. 

To illustrate the use of additional constraints, we now consider adding the con- 
straints which set the first four stages of M2 and PM2 and the first three of PM1 to be 
equal in order to produce a scale which is more sensitive to the later period of devel- 
opment. In effect, this is equivalent to merging the related categories. The results are given 
in Table 2. The most marked effect is to reduce the scores for stages D-F  of PM1 relative 
to the other teeth. 
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TABLE 2 

Scores obtained by pooling first 4 stages of Table I 

Tooth Sta~e 

0-42 D E F G H 

M2 0.0 8.5 14.8 18.9 21.2 23.6 

M1 0,0 9.6 10.0 13.3 20.9 30.5 

l:M2 0.0 8.1 13.9 18.6 20.8 22.9 

1'I, I1 0.0 4.8 12.6 17.7 20.5 23.0 

We next add the constraint which sets stages D-H for each tooth equal in order to 
produce a system which is sensitive in describing early development. In addition, this 
time, we weight M2, PM2 and PM1 twice as much as M1 to reflect the greater number of 
early stages. The results are given in Table 3. Again, the effect on PM1 is most  marked 
with the scores being relatively much higher than for the other teeth compared to the first 
component  solution. 

Finally, we use the average constraint system, and the scaled scores are displayed in 
Table 4. The scores are similar to those in Table 1 with strictly increasing scores within 
attributes. The scales do not rank subjects in precisely the same order, however. For 
example, with the end point constraint, a subject in the initial stages of teeth M2, M1, 
PM2 and stage B of PM1 is given a higher maturity score than a subject in the initial 

TABLE 3 

Scores obtained by pooling last ~ stages of Table I 

Tooth Stage 

0 A B C D-H 

M2 0.0 9.7 14.4 17.3 20.2 

M1 0.0 26.2 

PM2 0.0 9.5 13.5 16.8 19.6 

PM1 0 . 0  20 .0  28.6  34.2 
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T ~ r ~  4 

~cores obtained for tooth maturit,y stages for French Canadian boEs 
usin~ average constraints 

Tooth Sta~e 

0 A B C D E F G H 

M2 0.0 1.0 3.4 8.0 14.4 20.2 23.6 25.0 25.2 

N1 0.0 1.0 4.7 10.2 17.3 24.7 

PM2 0.0 0.9 2.8 7.6 13.7 19.1 23.0 24.5 24.9 

PM1 0.0 0.6 4.2 10.6 17.9 22.4 24.6 25.3 

stages of M2, M1, and PM1 and stage A of PM2. With the average constraint, however, 
this ordering is reversed. The correlation between the systems is given by 

x zx2(x (Z - N -  ' s J . .  s )x2}  - . 2 ,  

where Xa, x 2 are the score vectors for the average and end point constraint respectively. In 
the present case, using the standardizing sample gives a correlation of 0.99 which is very 
high and reflects the inherent strong ordering of the data. In the example given by Healy 
and Goldstein (1976), the correlation is 0.81, which is for a set of behavioral questionnaire 
data with no such strong inherent data ordering. Here, the use of an end point constraint 
seems desirable since it reflects the order assumptions involved in the design of the 
question categories. 

Discussion 

Clearly constraint systems and category weightings other than the ones considered in 
this paper are possible. Ideally, a particular choice should be justified by substantive 
arguments rather than any purely mathematical criterion. This applies to the choice of 
first component as well as to subsequent ones and is an issue which largely has been 
ignored in the literature. In practice, of course, it may be difficult to make a choice, and 
sometimes a range of different choices will anyway lead to similar conclusions. In other 
cases however, the choice of constraints will be crucial and it will often be a good idea to 
try several systems in an exploratory spirit. Such an examination would be assisted by 
graphical displays of individual subject "disagreement" scores, plotted against fitted 
values and each other. 

It is also worth raising another issue alluded to by Healy and Goldstein (1976), 
namely the choice of reference population. In some applications this may be obvious but 
in others less so, and since the estimates will reflect the population structure, the issue is 
very relevant. In the above examples, we would wish to include "all ages" equally and to 
sample as many as necessary fully mature and immature subjects to give good estimates 
of the end point scores. There is, however, no obvious age cut-off and for example, 
sampling too many mature adults will have the effect of giving too much weight to the 
extreme category estimates. One solution is to fix the end points of each attribute, for 
example to be 0.0 and (hwi)-l, but this then introduces extra constraints which may not 
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be reasonable. In the present case a reasonable solution would be to sample ages in 
proportion to the number of nonmature individuals at each age. 

Finally, let us reiterate the main point of this paper. Correspondence analysis, like 
other scaling techniques, depends on certain assumptions in order to produce nontrivial 
estimates. These assumptions involve the choice Of loss function, D, as well as constraints, 
although we have focused on the latter. Thus, given the data, the estimates obtained are in 
effect defined by the choice of assumptions, a fact which these techniques share with 
so-called latent variable models. The choice of loss function is also a feature of the class of 
response/explanatory variable models such as linear regression, but the latter do not 
depend on the further choice of constraints to achieve a nontrivial solution, and given a 
loss function there are objective procedures for choosing between model equations in 
terms of "closeness" to the data. In the former case, however, such procedures are specific 
to the constraints chosen so that there can be no completely objective means of choosing 
between constraint systems. The implication is that careful attention should be paid to 
any choice and the dependence of any solution on different choices should be clearly 
understood. Furthermore, the examples suggest that the choice of constraint system may 
be especially important for data lacking a strong inherent structure. In cases where the 
estimates depend strongly on the choice of constraints, it might be reasonable to ask 
whether a scaling procedure is appropriate at all. From this viewpoint we could regard 
the comparison of constraint systems as a means of ascertaining the appropriateness of 
any of them. 
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