Statistical image analysis for cone-beam CT

Susan Doshi & Chris Jennison University of Bath, Mathematical Sciences Cathy Hall UHBristol, Radiotherapy Physics Unit

Introduction

- Cone-beam computed tomography
- Radiotherapy
- Statistical model

Computed tomography

Cone-beam CT

'Conventional' reconstruction

Filtered back-projection

□ assumes linearity in physics

Felkamp-Davis-Kress algorithm

□ approximate filtered back-projection for CBCT

- Prostate cancer most common cancer in UK men
- Bladder and rectum both radiosensitive
- Soft tissues in pelvis very mobile

- Hard to distinguish between tissues
 - □ gold markers implanted
 - markers easy to see on projections
 - but cause artefacts on reconstructions

Prostate fiducial markers

Statistical question

Where is the patient's prostate?
where are the markers?

Sub-question:

□ what does the patient look like?

□ artefact removal

'Obvious' model

- $\mathbf{X} = \mathsf{parameterisation}$ of marker in 3D
- $\mathbf{Y} = \text{projection data}$

$$\pi(\mathbf{x}|\mathbf{y}) \propto \pi(\mathbf{y}|\mathbf{x})\pi(\mathbf{x})$$

 \mathbf{Y} is $512\times512\times620$ ~ 10^8

More tractable model

- $\mathbf{X} = marker$ in 2D projection
- $\mathbf{Y}=\text{data}$ for this projection

Parameterisation of marker

$$y_{(i,j)}|\mathbf{x} \sim N(\mu_{\star}, \sigma^2)$$

$$\mu_{\star} = \begin{cases} \mu_b & \text{`background'} \\ \mu_m = \mu_b + 1000 & \text{`marker'} \\ \mu_h = \mu_b + 500 & \text{`half'} \end{cases}$$

$$\pi(\mathbf{x}) \propto \exp{-\left\{\alpha A + \beta B + \gamma C\right\}}$$

- A = shortness
- B = wiggliness
- C = curviness

Sampling from posterior

- $\mathbf{I} \pi(\mathbf{x}|\mathbf{y}) \propto \pi(\mathbf{y}|\mathbf{x})\pi(\mathbf{x})$
- Summarising $\pi(\mathbf{x}|\mathbf{y})$ still hard!
- Find candidate regions of interest
 - □ in a subset of projections
 - using morphological analysis

Sampling from posterior

Sampling from posterior

- Metropolis-Hastings MCMC
 within each region of interest
- After burn-in, record:
 - 1. positions of marker ends after each iteration
 - marker and posterior density (whether or not we move there)

Sampling from posterior π (any marker in this ROI|<u>Y</u>) $\mathbf{\lambda}$ = π (this marker in this ROI|<u>Y</u>) = all markers $\mathbf{N} = \pi$ (this marker in this ROI|<u>Y</u>) \approx markers seen

Pick 'top five' regions of interest

Finding the markers

- Recall X is related to a marker at (i, j, θ)
- \blacksquare Let $f(\mathbf{x}|\mathbf{y})$ be the un-normalised density
- Parameterise markers in 3D by four ends

□end *s* at $(u_s, v_s, w_s) \in \mathbb{R}^3$ □ $\mathbf{x}' = (u_1, \dots, u_4, v_1, \dots, v_4, w_1, \dots, w_4)$

Finding the markers

Define objective function:

$$r(\mathbf{x}') = \sum_{i,j,\theta} \left[f(\mathbf{x}|\mathbf{y}) \times (1 - \mathbb{I}_{[\text{end of marker predicted at } (i,j,\theta)]}) \right]$$

Statistical question

Where is the patient's prostate?
where are the markers?

Sub-question:

□ what does the patient look like?

□ artefact removal

What does the patient look like?

- Remove the markers from projections
- Reconstruct 3D volume

Further work

Pragmatic approach

Revisit the 'obvious' model
 restricted to a small volume
 model patient as 3D MRF
 superimpose markers

Thanks!

- Invert (Bath Electrical Engineering)
- Paul Stevens (UHBristol)
- Ron Hartley-Davies (UHBristol)
- Tom Marchant (Christie, Manchester)