
Improved Approximations for Multilevel Models with Binary Responses

Harvey Goldstein; Jon Rasbash

Journal of the Royal Statistical Society. Series A (Statistics in Society), Vol. 159, No. 3. (1996),
pp. 505-513.

Stable URL:

http://links.jstor.org/sici?sici=0964-1998%281996%29159%3A3%3C505%3AIAFMMW%3E2.0.CO%3B2-G

Journal of the Royal Statistical Society. Series A (Statistics in Society) is currently published by Royal Statistical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Mon May 14 09:53:59 2007

http://links.jstor.org/sici?sici=0964-1998%281996%29159%3A3%3C505%3AIAFMMW%3E2.0.CO%3B2-G
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rss.html


J. R. Statist. Soc. A (1996) 
159, Part 3, pp. 505-513 

Improved Approximations for Multilevel Models with Binary Responses 

By HARVEY GOLDSTEIN? and JON RASBASH 

Institute of Education, London, UK 

[Received April 1995. Final revision March 19961 

SUMMARY 
This paper discusses the use of improved approximations for the estimation of generalized 
linear multilevel models where the response is a proportion. Simulation studies by 
Rodriguez and Goldman have shown that in extreme situations large biases can occur, 
most notably when the response is binary, the number of level 1 units per level 2 unit is 
small and the underlying random parameter values are large. An improved approximation 
is introduced which largely eliminates the biases in the situation described by Rodriguez 
and Goldman. 
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1. INTRODUCTION 

Rodriguez and Goldman (1995) have pointed out that existing approximate 
procedures for estimating parameters of generalized linear multilevel models, in 
particular those with binary responses, can be seriously biased when the underlying 
random parameter values are large. They used a set of simulated data with the 
computer programs VARCL (Longford, 1988) and ML3 (Prosser et al., 1991) to 
demonstrate the extent of these biases. This paper describes a procedure which shows 
a considerable improvement in estimation and is implemented in currently available 
software. This work was stimulated by the work of Rodriguez and Goldman and we 
are most grateful to them for helpful discussions and for supplying us with one of 
their simulated data sets. We now briefly outline the existing procedure and then 
describe the extensions. 

2. TWO-LEVEL BINARY RESPONSE MODEL 

A simple model which captures the essence of the problem is one where level 1 
units, e.g. mothers, are nested within level 2 units, e.g. communities. The procedure 
that we describe, however, can be used for any number of hierarchical levels and 
random coefficients at these levels. For each mother we have a binary response, e.g. 
whether or not they received adequate prenatal care during a pregnancy, and a set of 
explanatory variables, measured at either the individual or community level. We 
write a logit link function 
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n, =f(XiP +u,) = [l +exp{-(Xip +uj))]-' (1) 

for the probability that the ith individual within the jth community received 
adequate prenatal care. The term X,P is the ijth row of the component of the linear 
predictor which has fixed coefficients, and u, represents the random departure for the 
jth community with uj -N(0,d). The response y, for an individual is binary and we 
make the usual assumption of independent yi - bin(1, n,). In a more general model 
some of the coefficients ,B may also vary across level 2 units and the following 
exposition extends straightforwardly to that case, as it does to models with more 
than two levels of nesting and with a response which is a proportion. 

Our basic approach to estimating the parameters of equation (1) is first to linearize 
the exponential function so that it assumes the form of a standard two-level normal 
model and then to apply quasi-likelihood estimation using the binomial distribution 
assumption to define the level 1 variation. Full details can be found in Goldstein 
(1991) and Rodriguez and Goldman (1995). 

We use a first-order Taylor expansion for the fixed part about the current 
estimates. For the second-order expansion for the random part we expand about 0, 
and we show below how this is modified to obtain improved estimates. We obtain at 
the ( t  + 1)th iteration of the iterative generalized least squares (IGLS) algorithm 
(Goldstein, 1986) 

where 

f ' (H) =f(H)(l +exp H ) - ' 7  


f"(H)=f'(H)(l - exp H)(1 +exp H)-'.  


The first two terms on the right-hand side of equation (2) update the fixed part of the 
model and in the special case of a single-level model provide the updating function 
and are equivalent to the standard iteratively reweighted least squares algorithm 
which leads to maximum likelihood estimates. The third term of equation (2) is the 
term suggested by Goldstein (1991) and leads to the first-order adjustment which is 
used in the software packages VARCL and ML3 and by Rodriguez and Goldman 
(1995). The fourth term provides a further adjustment which is the basis of the 
present paper. We note that equation (2) is essentially a linear model so that 
procedures for linear multilevel model estimation can be used. 

There are two choices which we can make for H,, namely 

(a) Ht =xvBtor 
(b) Ht =XuPt + it,,. 

Choice (a) uses only the fixed part predictor for the Taylor expansion and so is 
referred to as marginal quasi-likelihood (MQL) by Breslow and Clayton (1993). 
Choice (b) uses the Taylor expansion about the current estimated residuals, or 
posterior means, zit,,, that is conditioning on these for each level 2 unit and is referred 
to as penalized quasi-likelihood (PQL) by Breslow and Clayton, or predictive quasi- 
likelihood since it uses the predicted residual values. Rodriguez and Goldman (1995) 
also considered MQL with a second-order correction and showed that this improves 
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the estimates, but only slightly. In the remainder of this paper we shall use PQL with 
the second-order term in equation (2). With choice (b) we expand about for the 
random part of the model so that the last two terms of equation (2) become 

r,= (uj - fij)f'(H,) + (uj - Ijj12f"(H,)/2 

and the expansion for the random part is about the current estimate of the level 2 
residual rather than about 0. For large values of the uj this will be expected to provide 
a better linear approximation. In Appendix A we show how the estimation for this 
model is carried out. 

3. MARGINAL, POPULATION-AVERAGE AND UNIT-SPECIFIC MODELS 

Zeger et al. (1988) made a distinction between two kinds of model for hierar- 
chically structured data where there is a non-identity link function such as the logit 
or log. The model of the present paper is referred to by them as a 'subject-specific' 
model which derives from their consideration of a repeated measures model where 
'subject' is level 2. A more general description is 'unit specific' (US), which we shall 
adopt. Because terms uj for the higher level units are explicitly included it leads to a 
specific covariance structure for the responses. An alternative specification is to write 
what is termed a 'population-average' (PA) or 'marginal' (Diggle et al., 1994) model 
as 

where V can assume particular or general structures, e.g. an equicorrelation struc- 
ture. Specifically, it is not an explicit function of the covariance matrix of the random 
coefficients, although its form is sometimes derived from considering a particular 
US model and integrating over the random coefficients to obtain the marginal dis- 
tribution (see for example Bock and Aitkin (1981)). 

The' two models in general will differ in their covariance structures and hence will 
provide differing estimates of the fixed coefficients for the same data. The PA model 
provides no specific information about higher level variation and is therefore useful 
only for making inferences about average population effects. Thus, equation (4) 
allows us directly to estimate the change in response probability corresponding to a 
unit change in a covariate xiiwhereas in equation (1) a unit change in xiiallows us to 
estimate a change in the response probability for any given level 2 unit. Since the link 
function is non-linear, this change will depend on uj. 

If we wish to use model (I) to estimate the average population change in 
probability for a unit change in xiiwe can either use an approximation based on the 
normality assumption (Zeger et al., 1988) or simulate from the fitted model. In the 
latter case we would generate a sample of N ujs assuming normality and apply the 
antilogit transformation to each for each relevant value of xii.These transformed 
values on the probability scale are then averaged to give an estimate of the popula- 
tion mean for the given xii.By increasing the value of N we can approximate the 
population mean as accurately as desired (Goldstein (1995), chapter 5). 
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One of the suggested advantages of PA models is the direct estimation of popu- 
lation effects on the probability scale. In view of the fact that these effects are readily 
estimated from US models this advantage seems negligible. However, the dis- 
advantage of not being able to provide estimates for higher level structure variation 
seems in general to be a major disadvantage of PA models. If there really is a 
hierarchical structure it seems natural to incorporate it into the model directly. In 
this sense PA models are not multilevel models at all since no explicit hierarchical 
structure is specified. For this reason we do not consider them further here. 

4. RESULTS 

In Table 1 we compare first-order MQL estimates with second-order PQL 
estimates for 25 of the simulated data sets used by Rodriguez and Goldman (1995). 
We have used only the first 25 data sets of Rodriguez and Goldman (1995) since a 
preliminary study indicated that these provided sufficient accuracy for estimating the 
bias. We have chosen the most extreme case where the first-order MQL estimates 
perform worst, namely for a three-level variance components model with both the 
level 2 and the level 3 variances set to 1. The model from which the data are 
simulated is 

where i, j and k respectively index the level 1, 2 and 3 units and the true values are 
given in Table 1. Each data set consists of 2449 level 1 units, 1558 level 2 units and 
161 level 3 units with a binary (0, 1) response. We have used restricted IGLS 
(Goldstein, 1989) which in the normal response case is equivalent to restricted 
maximum likelihood and have incorporated the adjustment to the variance estimates 
of the residuals (see Appendix B). We have used a stringent convergence criterion, 
namely that for all the parameter estimates the relative change from one iteration to 
the next is at most 0.001. 

It is clear that the second-order PQL estimates are a considerable improvement, 

TABLE 1 
Mean values of multilevel logit estimates for the jirst 25 simulated data 

sets used by Rodrkuez and Goldman (1995)t 

Parameter (true value) A ,  MQLfirst order B, PQL second order 

Fixed 
Po (0.665) 0.48 (0.03) 0.62 (0.03) 
PI (1.0) 0.76 (0.03) 0.96 (0.04) 
h (1 .o) 0.76 (0.01) 0.96 (0.02) 
a (1 .o) 0.74 (0.03) 0.96 (0.04) 

Random 
nu2 (1.0) 0.09 (0.03) 0.73 (0.02) 
0 ; 3  (1.0) 0.73 (0.01) 0.93 (0.02) 

tColumn A fits the MQL first-order model and column B the second-order PQL 
model. Standard errors of the means are given in parentheses. 
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especially for the level 2 standard deviation, and the fixed parameter estimates are 
close to their true values. 

In Table 2 we have carried out a further 200 simulations for the same underlying 
true model, fitting the first-order MQL and PQL models as well as the second-order 
PQL model. The results of these 200 simulations confirm that the only serious bias 
for the second-order PQL estimates is in the level 2 standard deviation, of the order 
of 20% underestimation. Apart from the level 2 standard deviation parameter, the 
greatest improvement is in moving from the first-order PQL to the second-order PQL 
estimates and both the PQL procedures eliminate most or all of the 0 estimates for 
the level 2 standard deviation. As in the Rodriguez and Goldman study, the standard 
error estimates for all the parameters, for all estimation methods, are almost un- 
biased. 

In a separate study Ayis (1995) has carried out a comparison of the second-order 
PQL procedure with full maximum likelihood estimation, for a two-level model with 
level 2 variances up to the value of 1.0 and with between 24 and 96 level 1 units per 
level 2 unit. Her study confirms that the second-order PQL procedure produces 
almost unbiased estimates for the fixed parameters and estimates with biases that are 
no greater than 4% for the random parameters. 

5. DISCUSSION 

We have demonstrated that in the situation considered by Rodriguez and 
Goldman the second-order PQL procedure considerably improves the model 
estimates, with the greatest improvement occurring with the move from first- to 
second-order PQL. Although we have not given details, as Rodriguez and Goldman 
(1995) demonstrated, a second-order MQL procedure produces only a modest 
improvement over a first-order MQL procedure. 

The example chosen is based on large underlying random parameter values. In the 
more common case where variances in a variance components model do not exceed 
about 0.5 the first-order PQL model can be expected to perform well, and for smaller 
variances the first-order MQL model will often be adequate. It is also possible that in 

TABLE 2 
Mean values of multilevel logit estimates for 200 simulated data sets using MLn for 

model (7) t 

Parameter (true value) A, MQLfirst order B, PQLfirst order C ,  PQL second order 

Fixed 
Po (0.665)
81(1.0) 

0.512 (0.010) 
0.738 (0.012) 

0.548 (0.01 1) 
0.795 (0.013) 

0.660 (0.014) 
0.965 (0.01 5) 

P2 (1.0)a (1.0) 
0.745 (0.006) 
0.767 (0.014) 

0.805 (0.006) 
0.837 (0.015) 

0.968 (0.008) 
1.002 (0.019) 

Random 
uu2 (1.0) 0.119 (0.010) 0.457 (0.006) 0.802 (0.01 1) 
nu3 (1.0) 0.748 (0.004) 0.800 (0.005) 0.968 (0.007) 

% 0 estimates at level 2 54 9 0 

tColumn A fits the MQL first-order estimates, column B the PQL first-order estimates and column C 
the PQL second-order estimates. Standard errors of the means are given in parentheses. 
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some circumstances the second-order procedure could give worse estimates than the 
first-order procedure. To establish this would require extensive further simulations 
which have not yet been undertaken. Likewise, the dependence of the bias on the 
number of level 1 units within each level 2 unit and the ratio of the number of level 1 
to level 2 units requires further study. It seems, however, that the bias for binary data 
arises principally from the relatively small number of level 1 units per level 2 unit. 

As an analysis strategy, a first-order model can be fitted followed by a second- 
order model and note taken of the changes in the estimates. The program MLn 
(Rasbash and Woodhouse, 1995), which is the successor to ML3, has been used for 
all these calculations. The procedures described here have been applied to handle 
other link functions and distributions, such as the log-Poisson and logistic-multi- 
nomial models. 

The principal advantage of the estimation procedures described here is that even 
for large data sets and numbers of parameters the computational burden is modest. 
Full maximum likelihood involving numerical integration is feasible for simple 
models but becomes intractable when the number of random parameters is 
moderately large. Gibbs sampling is another alternative but is also computationally 
intensive. The present procedures can be combined with bootstrapping for a final 
stage of bias reduction. A standard application of a parametric bootstrap (Efron and 
Tibshirani, 1993) will not yield satisfactory estimates of bias, but Kuk (1995) 
describes an iterated version of the bootstrap which does give asymptotically un- 
biased estimates, although again computationally intensive. 

It would be possible to improve further the approximation given by equation (2) 
by considering subsequent terms in the Taylor expansion. For example, if we include 
a third-order term we obtain 

r, = ( ~ j -  Gj) ff(Ht) + (u, - Gj12 fU(Ht)/2 +(uj- 4)3 f Ill (Ht)/6, 

f (H,) =y(Ht ) ( l  - exp Ht)(l +exp H,)-' - 2 ff(Ht) exp Ht(1 +exp H,)-~, 

which will lead to further offsets when estimating the random parameters. We can 
derive a similar expression for the fourth-order term which additionally involves 
an offset in the fixed part of the model. When these modifications have been 
implemented, however, there has been little improvement. 

Finally, Breslow and Lin (1995) have proposed an alternative approximating 
approach, but restricted to the two-level variance components case. We have not 
compared that approach with that described in the present paper. 
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APPENDIX A: ESTIMATION USING SECOND-ORDER ADJUSTMENTS 


Referring to equation (3) and assuming normality we have, omitting subscripts, 
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E(ru) = a?, f"(Ht)/2, 

var(ru)= a?,f ' ( ~ ~ ) ~+a;f " ( ~ ~ ) ~ / 2  

where 

4= var(u - zi) 

and the current value of Hi is used. Goldstein (1995), appendix 2.2, and Waclawiw and Liang 
(1994) have derived formulae for a?,. 

If we replace the last term in equation (2) by its expected value and use equation (3) we 
have 

For the modified response n* we now have a standard formulation for the second-level 
component of a two-level model with modified fixed part explanatory variable design matrix 
Xf'(H,) and random part explanatory variable f'(H,). We complete the specification by 
writing the full model for the observed binary response yo as 

A 

y..
y -- n* 

y 
+e..yZeu =XijPt+l f'(Ht) +uj f'(Ht) +eijz,~, (8) 

zeq = { q ( l  -nu)} It2, 

E(eu)=0, 

var(eo) = 1. 

This definition of the level 1 random variation is based on the binomial assumption. If we 
unconstrain var(eo) then extrabinomial variation models can be fitted. Estimation for 
equation (8), with the explanatory variables updated at each iteration, follows the standard 
procedure as for continuous normal models, in this case providing quasi-likelihood estimates 
based on the expected values and the variance function. 

In each cycle of the IGLS algorithm, the random parameters, the variances and co- 
variances, are first updated and these values used to provide new estimates for the fixed 
coefficients by using generalized least squares. The procedure for updating the random 
parameters also uses generalized least squares and at this stage the last term in equation (2) is 
used as an offset. 

Unless the number of level 2 units is large the estimate of a?, required in equation (6) will 
underestimate the true variance since it takes no account of the sampling variance of the 
parameter estimates themselves. One, computationally intensive, solution is to carry out a 
bootstrap estimation at each iteration. Alternatively, we can obtain better estimates by using 
a delta method adjustment which adds a first-order or second-order correction to the 'nayve' 
estimate. This procedure is described in Appendix B. 

APPENDIX B: DELTA METHOD ESTIMATORS FOR 

COVARIANCE MATRIX OF RESIDUALS 


We consider the case of a two-level normal model 
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where we require estimates of the level 2 residuals u. Conditionally on the observed data and 
model parameters these are given by (Goldstein, 1995) 

We have, for the comparative variances, 

where the terms on the right-hand side of equation (10) are regarded as functions of the 
model parameters and evaluated at the sample estimates. For the jth level 2 unit the first term 
is given by the usual estimate 

G?, -R& Vol{ VO)-X(XTVG' X)-'x T }  Vol Rg , (1 1) 

RQ = @')nu, 
cov(u) = QU, 

V(,) =E(Y',)Y;)), 

which adjusts for the sampling variation of the fixed parameter estimates. 
We shall use the first-order approximation derived from the Taylor expansion about 

E(8) = 8, for the covariance matrix of a function, namely 

In some circumstances we may wish to have a better approximation, in which case, assuming 
multivariate normality, we obtain the additional contribution, evaluated at the sample 
estimates 

where cov(8) = {av} 

and a = {aii}. 
For ii as a function of the random parameters 8, we have 

if Ok not at level 2. 


The elements of dV/dOk are just the elements of the design vector for the parameter Ok and 
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The row vector dk has q elements, one for each residual at level 2 with d = Idk)a t x q matrix 
where t is the total number of random parameters. The adjustment term in equation (10) is 
therefore 

This procedure for the variance of the estimated residuals is essentially equivalent to that 
proposed by Kass and Steffey (1989) who gave an alternative derivation using the Laplace 
method. They also considered the extra adjustment term based on the next term in the Taylor 
expansion as above. 
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