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SUMMARY 

In the medical screening of a population for latent diseases, it is often possible to 
define subpopulations with differing 'risks' of diseases. In order to make the most efficient 
use of the resources available for screening programmes, the allocation of these resources 
should take account of the differing risks. Some decision theory models are proposed for 
determining the optimum allocations. 

These models are applied to data on handicaps in young children and on perinatal 
mortality. 

INTRODUCTION 

Recent years have seen the development of many inexpensive, easily 
administered techniques for detecting diseases. The availability of these has 
often stimulated mass screening programmes, some of the more familiar 
ones being those for cervical and lung cancer. 

These programmes have operated in a variety of ways. In some cases the 
screening facilities have simply been advertised and the public invited to 
attend. In other cases, for example in schoolchildren, all individuals of a 
particular age group have been examined, and enlightened employers have 
sometimes screened their total work force. There has also been a recognition, 
however, that in cases where the screening resources are relatively scarce, 
for example in specialised ante-natal care (Aubrey and Nesbitt [1969]), the 
available resources should be concentrated on those individuals known or 
thought to be at higher-than-average risk of developing the disease screened 
for. 

In the early 1960's this thinking led to the setting up of 'At Risk' registers 
of children in certain English local authorities (Lindon [1961]). The children 
on these registers were those identified at 'high risk' of physical or mental 
handicap on the basis of factors ascertained at birth. The intention was that 
these children would then be given special attention during infancy and in 
particular be given priority in any screening programmes. The remainder of 
this paper will discuss the allocation of resources in the context of the detec- 
tion of handicaps in children, although the mathematical results are appli- 
cable to other situations. 

In a recent paper, Alberman and Goldstein [1970] discussed the 'At Risk' 
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registers and presented a simple decision theory model to determine resource 
allocation. They only considered, however, the case of a single type of handi- 
cap and a single type of resource used to detect it. The present paper extends 
this model to the case of more than one type of handicap and resource for 
detection. In the next section, some general considerations are discussed and 
this is followed by the development of models for particular situations with 
some numerical examples. 

GENERAL CONSIDERATIONS 

It will be supposed in what follows that in a population of children at a 
given age it is possible to define different handicaps. In addition, it is sup- 
posed that the probabilities of finding these handicaps in a randomly chosen 
child are given by functions of 'predictor' variables measured at an earlier 
age. The handicaps of most interest are those which are severe enough to 
make it necessary for the child to need special education or care and where 
early detection is useful. The predictor variables are those social, maternal, 
and obstetric ones which can be measured at the birth of the child. A de- 
tailed discussion of the problems of selecting predictor variables and of 
defining handicaps is given by Alberman and Goldstein [1970]. In that paper 
a linear model was used relating the logit transformation of the probability 
of handicap to 5 predictor variables, each present at either 2 or 3 levels. 

This model may be extended to the multivariate case of more than one 
handicap, by defining a 'multivariate logit' as follows: 

Pii = ezii/D, 

Di = Eezii2 i1, ... s j = 1, *X,k 

where Pii is the probability of the jth handicap in the ith group and ZHi is a 
linear function of independent variables. The model may be written 

Z=X.B.A, (1) 

where B is a q X t matrix of unknown coefficients, X is a n X q 'design matrix' 
(rank q) defining the independent variables, and A is a t X k 'design matrix' 
(rank t) for the ways of classification among the probabilities of handicap. 

The maximum likelihood (ML) analysis of this model is described in 
detail by Bock [1969]. Alternative models have been proposed (Goodman 
[1970]) but have not been tried on these data. 

Following an analysis using equation (1) the population can be divided 
into s groups each one defined by a combination of levels of the predictor 
variables. For an individual (child) in the ith group let the estimated prob- 
ability of having the jth type of handicap be pui . Also let the proportion of 
individuals in the ith group be a, . 

E a; = 1 (2) 

The case s = 2 with just a 'high risk' and 'low risk' group is of special 
interest and will be returned to later. 
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Suppose that there are certain resources available for screening the 
population in order to try to detect the handicaps. Resources for screening 
may take the form of tests for defective vision, hearing, motor functioning 
and so on. It is assumed that for each type of handicap there is a correspond- 
ing type of resource for detecting it. Furthermore, it will be assumed that 
the resources can be divided and allocated to the individuals in the population 
in any manner. 

Let the amount of resource j given to each individual in group i be 
Rij . If there are T; individuals in group i, then the total amount of resource j 
which is allocated is TQj: 

T T,Rj = -TQ,, (3) 

where D_i Ti = T so that ai = T1/T. 
If there is a given total amount of resource j then the value of Qj is fixed. 

Alternatively, the total amount TQ of all resources may be fixed in which case 

wiaiRi- = Q (4) 

SW; 1 
i 

The wj are introduced to convert the different units in which the separate 
resources may be measured to a common unit, for example a monetary one 
(see below). 

The choice of a utility function F(x) to evaluate the screening procedure, 
will in part depend on the situation in which the model is being applied and 
in particular on the facilities available to deal with the handicaps which are 
detected. 

The simplest natural choice for such a function is as follows: 

1 if a handicap is detected 
F(x) = (5) 

0 otherwise 

The different handicaps may, however, be given different weights. For 
example, it may be felt more important to detect a speech defect than a 
visual defect at a given age, in which case (5) may be modified to 

u; if handicap j detected 
F(x) = (6) 

0 otherwise 

Alternatively, instead of being defined solely in terms of the presence or 
absence of a handicap, the utility function may take account of the asso- 
ciation between the handicaps leading to a function of the form: 

1 if a child has one or more handicaps 
F(x) = (7) 

0 otherwise 
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which is concerned solely with the number of children handicapped in any 
way. More generally F(x) will be some function of the numbers of the dif- 
ferent types of handicaps per child. An intermediate function between (5) 
and (7) is F(x) = u log (1 + x), where x is the number of handicaps detected 
in a child, and u is an arbitrary constant. 

In the remainder of this paper only functions (5) and (6) will be con- 
sidered, since these lead to relatively simple equations and seem to be reallis- 
tic for many practical situations. 

Using (6) the expected utility for the jth handicap in an individual in 
the ith group is 

Taiuijpiig(Rij), 

where g(R j) is the probability of detecting the jth handicap in an individual 
in the ith group when that individual possesses, or will develop the handi- 
cap j. 

Thus the total expected utility is 

C =T E' atpig(Rj). (8) 
i i 

The RHj are determined by maximising C for variation in the Rij. In 
order to do this, however, a form for g must be chosen. The following assump- 
tions about this form will be made: 

(a) g(R3j) does not depend on i, so that the probability of detecting a 
handicap if one is present or 'latent' is unrelated to the risk of possessing that 
handicap. 

(b) g(Rij) and g(R,j) are independent (j %d k) so that the detection of 
one handicap does not influence the detection of others. 

Assumption (a) may not always be very realistic, since the chance of 
having a handicap may well be related to the aetiology of the handicap, in 
which case the detection of the handicap may be easier in one child than in 
another. There does not seem to be any empirical information which casts 
light on this problem. A special case where assumption (a) is not made is 
given in Model 5. 

As for assumption (b), it may be true that a given handicap is easier or 
more difficult to detect if others have previously been detected, but again 
there seems to be no useful information available on this. 

An explicit form of g(Rij) has still to be determined, and one possible 
choice can be motivated as follows: 

Suppose the resources devoted to an individual (Rnj) are used in discrete 
amounts (e.g., a unit amount is one screening test), and the probability of 
one unit amount failing to detect a handicap is q. Then for x units the prob- 
ability, assuming independence, of x units of resource failing to detect a 
handicap is q = qbRi, where b is a constant. Therefore the probability of 
detection is 1 - qbR,i Thus if the unit of Rij is suitably chosen, the prob- 
ability of detection is 

1 - eji (9) 
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The unit of Rij is thus determined by the probability of detection, so that 
different resources will not all necessarily be measured in the same units. 
Since the resources are all positive, there is the inequality constraint 

Rij > 0 all i, j. (10) 

Specific models will now be considered in detail. In Models 1 to 4 the 
above form of g(Rij) will be assumed and in Model 5 a different form appli- 
cable to certain situations will be examined. 

MODEL 1 

In the previous section, alternative utility functions and alternative 
constraints on the amounts of resources were discussed. The first model to 
be considered uses the constraint given by equations (3) and (6), namely a 
fixed amount of resource for each handicap and the utility function given 
by (6). 

Since the ui are relative utilities we may without loss of generality define 

=u =k >0. (11) 

The total expected utility is thus 

C = T E E aittpii(1 - ei). (12) 

This expression is to be maximized with respect to the Rij subject to (3) 
which can be written 

RIjai- = Q =1, , I k (13) 

and also subject to (10). Ignoring (10) the unconditional maximum or mini- 
mum of C is given by 

aC/dR j + X1ai = 0, (14) 

where Xi is a Lagrange multiplier giving 

u;p1ie-Rii + Xi = 0 (15) 

or 

Rij = log pii + B; + log ui . (16) 

Multiplying by ai and summing over i for each value of j gives 

= - ai log pi - log u;, (17) 

so that 

Ri= log pi i + Q;- Z ai log pii (18) 

and 

C/1 = itipio E - e 1p , (19) 
j i 
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where 

Pio = Aaipii, 

which is the proportion of individuals with the jth handicap in the popula- 
tion. CIT is the average (maximised) number of handicaps detected per 
individual. 

The above solution is readily shown to be a maximum, by noting that 
all the second order differentials are negative: 

a2C/aR2, = -aiuipiieR"' < 0. 

when a = 1 and s = 1, then 

C/T = ipio- upoe-Q' 
(20) 

= vuip1o(l- = e jj C, (say). 
i i 

For the jth handicap, 

C' = CJ/po = u(l -e (21) 

is the proportion of all children with handicap j in which the handicap is 
detected, when each child in the population receives the same amount of 
resource j. If this is known in a particular population, the Q, may be deter- 
mined using (21) and substituted in equations (16)-(18). The numerical 
results given later are evaluated for ranges of values of the C' . 

If k = 1, equations (19) and (20) reduce to the formulae given by Alber- 
man and Goldstein [1970] for a single handicap. The solutions for Model 1 
may be regarded as the sum of the separate solutions for single handicaps, 
the only restriction in this case being that the combinations of predictor 
variables are the same for each handicap. 

For small values of Pii and Qi, equation (18) may give some negative 
values of R j . When this occurs it becomes necessary to search for a relative 
maximum subject to (10). It is shown in the Appendix that this relative 
maximum occurs when one or more of the R,j are equal to zero, for each 
resource containing a negative Rj; . 

If r is the number of resources with at least one Rj; negative, then if 
s and r are not too large it is a straightforward matter to evaluate C/ T for 
all of the 2r(28- - 1) possibilities and to choose the maximum. Equations 
(15)-(17) are modified by omitting the R,j which are set equal to zero. 

Where complete evaluation is not feasible, solutions can be sought using 
non-linear programming techniques (see, e.g., Geary and McCarthy [1964]). 

In this and the following models it is worth pointing out that some of 
the pji may be equal and so also may some of the Re,, thus allowing consid- 
eration of special cases where different resources may be detecting the same 
handicap or one resource may be detecting different handicaps. 
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MODEL 2 

In practice, it is likely that further restrictions may have to be placed 
on Model 1. For example, when a standard battery of screening tests for the 
different handicaps is available, then the relative amount of each test is 
fixed and this restriction gives the k - 1 constraints 

Rsi-djRi+j,j = 0 di > 0 (22) 

or 

aiRi - di a,Ri+1,i = 0, (23) 
s s 

and using (3) this gives 

di = Qj/Q,+j (24) 

All RXi(j = 2, ... , k) can now be expressed in terms of R1, Q1, ** *, 

Maximising C as before, we have 

aC/OR1j + Xai = 0 i = 1, *... s, (25) 

giving 

u3pii exp (-RjiQj/Qj) + X = 0 (26) 

which together with ;, aiRl, = Q, can be solved iteratively. For s = 2, 
(26) becomes 

EujpjlQi exp (-RllQj/Ql) 

- u1jpj2Qj exp [-Qj(Qj - aRjj)/(a2Q1)] = 0. (27) 

As a starting value for the solution of (27), Ril = Q1 can be used. When 
s= 1, then R1j = Qi and 

CIT = Zuipio(l -e,Q). 

The Q; may now be determined as described in model 1. The constraint (10) 
becomes R1l 2 0 since di > 0. 

The relative maximum where one or more R1i are less than zero occurs 
when one or more R1. are equal to zero (see Appendix) and a similar pro- 
cedure to that described in Model 1 may be used to obtain the maximum. 

MODEL 3 

It may often be the case that a given total amount of resource is available 
for detecting all handicaps, rather than the amount for each handicap being 
fixed in advance. This is the situation described by equation (4). 

The total amount of resource will be measured in some common unit 
whereas the resources specific to each handicap will in general be measured 
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in different units which are determined by the proportion of each type of 
handicap that a given amount of the total resource will detect. The wi de- 
fined in (4) are therefore introduced as linear conversion factors, and are 
calculated as follows. 

If all the available resources TQ are allocated to detecting handicap j 
with s = 1, then using (21) the number of handicaps detected is 

C= Tp3o(l - e-Qwi) (28) 

The quantity Cj/(Tpj0) - , say, is the proportion detected of the 
total number of jth handicaps, using all resources. If the Di are known in a 
particular population then (4) and (28) determine Q and the w: 

Q = -t [log (1 - Di)]-1}1, (29) 

Wi = -Q[log (1 - DY)]`. (30) 

The total expected utility is 

C = T uiaipip(1 - e-Rii), (31) 

where the u; are assumed known, as before. Maximising C gives 

aC/aRii + Xwva,1 = 0, 

R = log pi - log w; + B' + log u. (32) 

Multiplying by ajwv and summing over i, j gives 

B' = Q- ai Ew log pii + >w logw;- Zw logu;, (33) 

which leads to 

C/T aitipi - exp (-Q + E aiw, log pii) H (wi/luj)i. 
i j i ii 

(34) 

For s = 1 

C/T = Zuip, - e-Q fi [W/(pOUj)`-w. (35) 

MODEL 4 

This model is effectively a combination of Models 2 and 3, being obtained 
by adding the constraint (23) to Model 3. 

The wj and Q are determined by equations (29) and (30) and the ui are 
assumed known as before. As in Model 2 the Rij can be expressed in terms 
of R1, and d1, *, d*_- which must now be determined. 

MVlaximisiig C gives 

aC/aRii + Xai E wmDm = O i = 1 Xs 
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where 

D=I(M= ( di) = 1 
j o 

and 
k 

aC/adi + XR1ja, wmDm/diO j= 12 . c - 1, 

which leads to 
k k 

Dm,mpm7ie + ? E WmDm = 0 (36) 

and 

kk 

EumPnie-R iD , + X E> WmDm = 0 (37) 
m=j+l m=j+l 

which together with (4) and (31) can be solved iteratively. 
When k = 1 these equations give 

pie-Rli + X =0 i , S 

which is equivalent to Model 1 with k = 1. 

MODEL 5 

The form of g(R) given by equation (9) assumes, among other things, 
that the resources can be measured in continuous units and that any amount 
may be given to an individual. In many situations this may be a reasonable 
approximation, but there are some circumstances where this clearly does not 
hold. In these cases the resource can only be allocated in one of a finite 
number of fixed amounts. In the extreme case, for example, it may only be 
possible to allocate either a given fixed amount or none at all. Such a re- 
source will be referred to as dichotomous and in the general case we shall 
consider polytomous resources. 

An example of such a polytomous resource is the type of provision given 
to a woman for childbirth. A baby will generally be delivered in a hospital 
maternity uniit, in a general practitioner unit, or at home. If for example, 
the aim is to prevent the death of the baby within the first week of life, then 
there will be different probabilities of preventing such a 'perinatal' mortality 
associated with the three places of delivery. The problem is then that of 
allocating mothers to one of these places based on a known risk of perinatal 
mortality. 

The general case of more than one type of resource for more than one 
handicap can be reduced to the case of a single type of 'pseudo-resource' 
for more than one handicap by considering all possible combinations of the 
different amounts or levels of each resource. This device covers in principle 
the situations analogous to equations (3) and (4) where either the total 
amount of each resource is fixed or the total amount of all resources is fixed. 
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The situation where some resources are polytomous and some are continuous 
will not be dealt with in detail, save to remark first that in the case of Model 
1 the resources are effectively treated separately so that no new problems 
arise. Second, when the total amount of all resources is fixed a solution can 
be obtained, in principle, by considering all possible ways of allocating levels 
of the pseudo-resource and then for each of these solving for the continuous 
resources; and selecting the maximum among these solutions. Other methods 
of tackling the problem might consist either of imposing a continuous scale 
on the pseudo-resource or polytomising the continuous resources. 

Suppose then that there is a pseudo-resource which can be allocated at 
one of m fixed levels. Let the probability of detecting the jth handicap with 
level r in the ith group be 

r= 1,*@ ,m 

g.i(r) = 9rii j = 1 * , k. (38) 

We now have to consider the two cases analogous to equations (3) and (4). 
First we may fix the total number of units of each level so that 

E ai = Qr X (39) 
itRr 

summation taking place over those groups where level r has been allocated 
(the set Rr). 

Second, we may fix the grand total number of units and (39) becomes 

E aiWr = Q (40) 
v ieRr 

where the w, are linear conversion factors as before. The solution using (40) 
will not be considered in detail, but can in principle be reduced to (39) by 
considering all possible combinations of different Qr , obtaining the solution 
for each combination as for (39), and selecting the maximum among these. 

If every individual in the ith group receives level r then the expected 
number of handicaps detected in this group is 

ETipgri i 

with Ti and Pii as before. The quantity to be maximised is therefore 

C = T > > ajpjig7,ji (41) 
j i 

subject to (39). We shall further assume, without loss of generality, that the 
total number of units of resource is equal to the total number of individuals 
so that 

ZQr (42) 

Some of the Qr may be zero. 
Consider any allocation of levels to individuals, and assume that all the 
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individuals in one group receive the same level of resource. (This may be 
achieved by arbitrarily dividing up any group in which this is not so into 
several groups in which it is). Any reallocation of resources will involve the 
exchange of levels between individuals in different groups. 

Suppose that a level r from an individual in the ith group is exchanged 
with a level r' from an individual in the i'th group. The loss in the expected 
number of handicaps detected is 

G = E [(Piigrji 4 Pi9r'i) - (Pjiigrji + Pii'grii')] 
(43) 

= E [Pii(grii - Uj i) - Pii'(g(riUi -9r ii )] 
i 

In order for the new allocation to result in a greater number of handicaps 
detected we require G < 0 or 

Zpji(grji - gr'ii) < Zpji (grgiq - jiv) (44) 
i j 

Thus, starting with any given allocation we may proceed by considering 
all possible exchanges, choosing that exchange which gives the minimum 
value of G, and repeating the process. Given a suitable allocation to start 
with, this procedure should converge to the solution fairly rapidly. One way 
of obtaining a suitable starting allocation would be to consider first of all the 
highest risk group (i.e. the group with the largest value of >7 pji) and 
allocate to individuals in this group level r such that Pji9rj is maximised. 
This is then repeated for the next highest risk group and so on until all the 
resources have been allocated. This initial allocation will in many situations 
also be the optimum allocation. 

This procedure may be illustrated simply, by considering the case of one 
type of handicap (k = 1). Equation (44) now becomes, dropping the suffix j, 

pi(gri - gr'i) < pi'(gri' - gr'i'), (45) 
pi/pi' < (gri' - gr'i')/(gri - gr'i) 

The condition for the above initial allocation to be the optimum alloca- 
tion is that if pi 2 pi, , then 

Pi/Pi' > (gri' - gr'i')/(gri - gr'i) (46) 
Equation (46) may be satisfied in a number of ways. One of these is the 

special case 

gri = gr for all r (47) 

and we require 

pi/p' ? (giri g r'')/(gri - r'i) = 1 
which is true since pi 2 pi @ 

More generally (46) is satisfied if 

ri r- I i =Dpx, x > -1, D > O' (48) 
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In practice it will often be reasonable to assume that 

9 - i ri ? 9ri 9- (49) 

which also satisfies (46). 
It should be noted that we are no longer assuming that the probability 

of detecting a handicap with a given amount of resource is the same for each 
risk group. This assumption is, in fact, the special case given by (47). 

ILLUSTRATIVE EXAMPLES 

In order to see what the effect of different restrictions are, Models 1-3 
will be compared using data from the National Child Development Study. 
The exact definitions of the variables used in this example and why they were 
chosen are given in a recent publication of the study by Davie et al. [1972]. 
An example of the use of Model 5 is given using data from the Perinatal 
Mortality Survey (Butler and Alberman [1969]). Two types of handicaps 
are considered, 'severe physical or mental handicap' with a prevalence 
among 7-year olds of 11.6 per 1000 and 'educational handicap' with a preva- 
lence of 22.3 per 1000. 

The case s = 2, which is of mnuch practical interest, will be discussed in 
detail. In this case children are classified as either 'high' or 'low' risk on the 
basis of the 'perinatal' variables measured at birth listed in Table A. 

TABLE A 

1. Neonatal illness (a) Ill during first week of life 
(b) Not ill during first week of life 

2. Parity (a) Parities 4 and over 
(b) Parities 0-3 

3. Social class (a) Social class 5 1 
or no male Registrar 
head of house- General 
hold (1951) 

(b) Social class 1-4 

4. Method of delivery (a) Breech, face, shoulder, internal 
version, or unattended delivery. 
(Abnormal) 

(b) Remainder. (Normal) 
5. Birthweight-gestation (completed (a) Less than 2,500 g. or less than 37 

weeks) weeks (Premature) 
(b) Over 2,500 g. and over 42 weeks. 

(Postmature) 
(c) Over 2,500 g. and 37-42 weeks 

(Normal) 

These perinatal variables are then related to the probabilities of the two 
types of handicap at 7 years, using the multivariate logit model described 
earlier. 

The design matrix for the independent (perinatal) variables is of rank 7, 
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that is, a 'main effects' design, and the design matrix for the ways of classi- 
fication among the probabilities of handicap is of rank 2, also a 'main effects' 
design. The results are given in Table 1, which presents tests of significance 
for the effects of each of the perinatal variables on the joint probabilities of 
handicap. 

All the perinatal variables have significant effects, although as can be 
seen from the values of some of the individual standard errors, this is some- 
times due entirely to one or other of the handicaps. This fact that the dif- 
ferent types of handicap are 'predicted' by different sets of perinatal variables 
is discussed further in Davie et al. [1972] where the two types of handicap 
are treated completely separately. For the purposes of the example, however, 

TABLE 1 
FITTED CONSTANTS AND ANALYSIS OF VARIANCE 

(All chi square values are adjusted for the other factors) 
For definitions of perinatal variables see Table A 

Fitted Standard 
Source Constant Error D.F. X2 

CSevere Handicap -1.552 
Overall 

Educational Handicap -1.114 

Severe Handicap a)-b) 0.633 0.180 
Neonatal 2 11.1** 

Illness Educational Handicap a)-b) 0.268 0.178 

Severe Handicap a)-b) 0.2,80 0.126 
Pari ty 2 2 67.O0*** 

Eiducational Handicap a)-b) 0.652. 0.074 

Severe Handicap a)-b) 0.015 0.135 
Social Class ) 2 53.5*** 

Educational Handicap a)-b) 0.566 0.071 

Severe Handicap a)-b) 0.398 0.150 
Delivery 2 8.5* 

L Educational Handicap a)-b) 0.211 0.122 

a) 0.121 
Severe Handicap b) -0.013 

Birthweight c) -0.108 4 11.9* 
Gestation ap 0.155 Gestation 0.155ducational Hatidicap b 0.030 

C) -0.185 

Test for 'goodness of fit' of model: x2 = 126.7 D.F. = 97* 

Significance levels 
P < 0.001 

**0.001 <P <0.01 
*0.01 < P<005 
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they will be treated together, although in general it should be borne in mind 
that separate treatment may be better if the restriction of the same set of 
(perinatal) 'risk' factor combinations for each handicap does not apply. 
Another drawback of the analysis is the significant result of the test for 
goodness of fit of the model. Interactions have not been tested, and in some 
cases are inestimable because of the lack of observations in some of the cells. 
In particular, it may be expected that there would be interaction among the 
response variables (handicaps). Since this analysis is used for illustrative 
purposes only, however, it will be assumed that the model is adequate. 

Following the above analysis the population of children can be divided 
into groups on the basis of the perinatal variables, each group associated 
with specified risks of developing the two handicaps. Furthermore, since in 
this example we are attempting to maximise the total number of handicaps, 
that is using (5), it is useful to rank these groups in order of the total pre- 
dicted proportion of handicaps in the group. This is done in Table 2 for all 
37 combinations of the perinatal variables for which sample observations 
exist. 

The rank order in Table 2 is not the same for the separate handicaps, 
and the rank order of the sum of the two tends to be more heavily weighted 
by the educational handicaps, as the average probability of such a handicap 
is nearly twice that of a severe handicap. Since the ordering in this table 
forms the basis of the division of the population into a high and a low risk 
group (discussed below) it might be felt that in practice different weights 
should be applied to these probabilities, if, say, greater importance were to 
be attached to detecting a severe rather than an educational handicap. This 
paper, however, is not the appropriate place to take such issues further. 

Table 2 may be used as it stands in order to determine the optimum 
allocation of resources to all 37 groups. As has already been pointed out, 
however, interest usually centres on 2 groups only. There are 36 ways of 
constructing 2 groups from Table 2, such that all the constituent groups 
in one (the 'high risk' group) have a higher total probability of handicap 
then all the constituent groups in the other (the 'low risk' group). 

For some of these divisions Table 3 shows the expected number of handi- 
caps detected with the optimum allocation of resources under Models 1-3. 

For each model arbitrary values of Pi, or Di have been chosen and the 
expected percentage of detected handicaps under the optimum allocation of 
resources is calculated for each division. That division which gives the great- 
est expected percentage of detected handicaps is chosen as the best out of all 
possible divisions. 

It will be seen that the best division for ModeLs 1 and 2 is ranks 1-35 
for the 'high risk' group and for Model 3 is ranks 1-33. It is not in general 
true that the best division is the same for all values of Pio or Di . Table 4 
shows the best division for Model 3 for different combinations of values of 
D1 and D2, 

It will be seen that wlhere small amounts of total resource are available 
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TABLE 4 
EXAMPLE OF THE 'BEST' DIVISIONS INTO TWO GROIUPS FOR MODEL 3. 

COMBINATIONS OF RANKS DERIVED FROM TABLE 2. 

D1 (Ss) D2 ( R) High Risk group Low Risk group 

5.0 5.0 1-28 29-37 

5.0 20.0 1-33 34-37 

5.0 40.0 1-33 34-37 

20.0 5.0 1-26 27-37 

20.0 20.0 1-33 34-37 

20.0 40.0 1-33 34-37 

40.0 5.0 1-22 23-37 

40.0 20.0 1-33 34-37 

40.0 40.0 1-33 34-37 

The suffix 1 refers to the severe and the suffix 2 to the educational handicaps. 

(e.g., D1 = 5.0, D2 = 5.0) the division gives a considerably smaller high-risk 
group than for moderate and large amounts of total resource. 

With the choice of P10 and P20 in Table 3 there does not appear to be 
much difference between Models 1 and 2. There may, however, be a larger 
difference for other values of P10 and P20 . Figure 1 compares Models 1 and 
2 for a range of values of P20 with fixed P1o. 

It will be seen that the advantage of Model 1 is greatest when P1o is 
large. The lower continuous line is the expected percentage of handicaps 
detected with uniform allocation of resources in an undivided population. It 
is clear that the greatest relative gain is with small total amounts of resource. 

Model 5 

The data for this example are taken from Butler and Alberman [19691 
where the probability of a stillbirth or neonatal death was related to vari- 
ables measured during pregnancy. The analysis found 6 variables to be 
significant and, as in the previous example, combinations of these may be 
ranked in order of mortality risk. The first 4 risk combinations are shown in 
Table 5. It will be assumed that equation (46) is satisfied, and that the 
probability of preventing mortality is greater if a baby is born in hospital 
than at home, distinguishing only between these two possibilities. It follows 
that the babies at lowest risk should be booked for a home delivery. If, for 
example, there are hospital beds for about 80% of mothers (the British 
average), then on this model mothers in the first 3 combinations should have 
their babies at home. It is seen that, apart from pre-eclampsia, the values 
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FIGURE 1 
EXPECTED PERCENTAGE OF HANDICAPS DETECTED WITH OPTIMUM ALLOCATION OF RE- 

SOURCES FOR MODELS 1 AND 2. PERCENTAGE OF SEVERE HANDICAPS DETECTED 

WITH UNIFORM ALLOCATION = 40.0 (u1 = U2 = 1) 

of the other 5 variables are known at the time of booking and an allocation 
can be made on the basis of these variables. If a mother has been assigned 
to have a home booking and then develops severe pre-eclampsia, she would 
immediately be booked for hospital as she would no longer be classified into 
one of the first 3 combinations. 

FURTHER CONSIDERATIONS 

The models presented may be extended in several ways. 
Different utility functions could be studied as indicated earlier, in order 

to see what difference, if any, was made to the optimum allocation of re- 
sources. More important, however, is an examination of the form of g(R). 
It would be useful to study the assumptions underlying the particular form 
adopted for Models 1-4 and to see what effect different assumptions would 
have. There seems to be no empirical data relating to this problem, although 
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TABLE 5 
MATERNAL CATEGORIES IN ORDER OF INCREASING RISK OF STILLBIRTH OR NEONATAL 

MORTALITY 

Cumulative 
Cumulative Perinatal 

Social 5% of Mortality 
Class Age Height Pre-eclampsia Parity Smoking Population per 1000 

1 or 2 (55 >.5'2" None,mild or moderate 1 - 3 Non-Smoker 5.07 20.0 

3 <535 - 5l2"1 None,mild or moderate 1 - 5 Non-Smoker 18.63 21.2 

1 or 2 <55 ;>5'21' None,mild or moderate 1 - 3 Non-Smoker 19.46 22.5 

1 or 2 <35 ,5' 2" None,mild or moderate 0 Non-Smoker 23.43 22.9 

Average perinatal mortality rate = 34.9 per 1000 
N. B. A non-smoker is defined as a mother who smokes less than 1 cigarette a day after 

the 4th month of pregnancy. 

a current study (Combined Obstetric and Child Health Project, London 
Borough of Hounslow) is collecting relevant information. 

In other applications of decision theory models, especially in medicine, 
one of the difficulties has been the combination of different types of 'cost' 
into a single utility. Aitchiison [1970] considers such models for allocating 
treatments to patients. His models deal with the case of continuous final 
states and two treatments (types of resource) rather than the presence or 
absence of a state and continuous resources. The principal difference, how- 
ever, between his approach and the present one seems to lie in the fact that 
whereas he assumes a given initial state and allocates costs to the different 
possible treatments, the present approach considers the distribution of this 
initial state in a population; and the allocation of 'treatments' to the popu- 
lation is made for a fixed total available amount of such treatments. It is 
this feature of the present approach which avoids the above difficulty in 
defining the utility function. It may be that the present approach, with 
suitable modification, could prove useful in some of the situations envisaged 
by Aitchison. 
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LA REPARTITION DES MOYENNES DANS UN SCREENING DE POPULATION: 
UN MODELE DECISIONNEL 

RESUME 

Dans le screening m6dical d'une population pour des maladies latentes, il est souvent 
possible de d6finir des sous-populations diff6rant dans les risques des maladies. Dans le 
but de rendre la plus efficace possible l'utilisation des ressources disponibles pour les pro- 
grammes de screening, l'attribution de ces ressources devrait prendre en compte les diff6rents 
risques. Quelques modeles relevant de la th6orie de la d6cision sont propos6s pour d6ter- 
miner les r6partitions optimales. Ces modeles sont appliqu6s a des donn6es sur les handicaps 
chez des enfants jeunes et A la mortalit6 p6rinatale. 
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APPENDIX 

In Models 1-4, the unconditional maximum solution may give values of 
some of the Rii which are negative. The relative maximum of the expected 
utility is the maximum subject to all R >2 0. 

Consider the n-dimensional Euclidean space defined by the Ri, . If equa- 
tion (3) is used, n = k and each resource j may be considered separately. If 
equation (4) is used n = ks. The conditions (3) and (4) each define a hyper- 
plane of dimension n -1 which contains all solutions. 

Since C is a linear combination of convex functions of the form 1- eR, 
C is also convex. It is shown by Brunk [1958] that for such a function, if it 
has an absolute maximum outside the feasible region determined here by 
equation (10), then the relative maximum lies on the boundary of this region, 
that is, when one or more R,j are equal to zero. 
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