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SUMMARY 
The effects of adjustment for measurement error are illustrated in a two-level analysis of 
an educational data set. It is shown how estimates and conclusions can vary, depending on 
the degree of measurement error that is assumed to exist in explanatory variables at level 
1 and level 2, and in the response variable. The importance of obtaining satisfactory prior 
estimates of measurement error variances and covariances, and of correctly adjusting for 
them during analysis, is demonstrated. 
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1. INTRODUCTION 

Most measurements in educational and other social research are subject to error, in 
the sense that a repetition of the measurement process does not produce an identical 
result. For example, measurements of cognitive outcomes in schools such as scores 
on standardized tests can be affected by item inconsistency, by fluctuations within 
individuals and by differences in the administration of the tests and in the 
environment of the schools and classes where the tests take place. Measurements of 
non-cognitive outcomes also, such as children's behaviour, self-concept and attitudes 
to school, can be similarly affected. It is well known that the use of such measure- 
ments in analysis, without taking measurement errors into account, can lead to 
mistaken causal inferences. Goldstein (1979) showed, in an analysis of social class 
differences in the educational attainment of children aged 11 years, how a conclusion 
can be reversed when a correction is introduced for measurement error. Fuller (1 987) 
has given a comprehensive account of methods for dealing with errors of measure- 
ment in regression models but observed that few statistical studies appear to use such 
procedures. Plewis (1 985) reviewed methods of correcting for measurement error 
proposed by Degracie and Fuller (1972) and by Joreskog (1970), and explored the 
effects of various methods on the conclusions obtained. 

All these studies are based on classical single-level regression models. Social 
research data, however, often have a hierarchical structure and are most efficiently 
analysed by means of multilevel models (Goldstein, 1995). The present paper is 
concerned with the effects of measurement error in continuous variables on multi- 
level model estimates. Methods derived by Goldstein (1986) and extended in 
Goldstein (1995) and in Woodhouse (1996) are applied to a two-level analysis of a 
longitudinal data set. We show how parameter estimates and associated conclusions 
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change as we change assumptions about the extent of measurement error in 
explanatory variables at levels 1 and 2, and in the response variable. 

2. DATA SET AND MODEL 

For illustration we use a sample of 1075 pupils from 48 schools. The data are 
derived from the Junior School Project (JSP), a longitudinal study of an age cohort 
of pupils who entered junior classes in September 1980 and transferred to secondary 
school in September 1984. (The first junior year in English and Welsh primary 
schools is now called year 3 of the national curriculum: pupils typically reach their 
eighth birthday during this year.) The schools used by the JSP were selected 
randomly from the 636 primary schools that were maintained by the Inner London 
Education Authority at the start of the project. A full account of the project is given 
in Mortimore et al. (1988). 

We consider the data to have a two-level structure, with pupils (indexed by i )  at 
level 1 and schools (indexed by j )  at level 2. We use a model with the following 
characteristics: 

(a) it contains an explanatory variable at level 1 which is subject to measurement 
error; 

(b) it contains an aggregate explanatory variable at level 2, also subject to mea- 
surement error; 

(c) it contains an explanatory variable at level 1 which is assumed to be known 
without error, but whose estimated coefficient may be affected by error in the 
other explanatory variables; 

(d) it is relatively straightforward to interpret both substantively and statistically. 

We have four variables: 

(a) Yg is the pupil's observed reading score in year 5 (at average age 10 years), 
transformed by using normal scores to have a standard normal distribution; 

(b) XlV is the pupil's observed reading score in year 3 (at average age 8 years), also 
normalized; 

(c) X Z ~is the mean normalized observed year 3 reading score for pupils in school j, 
as estimated from the sample; 

(d) X3ij is the pupil's family socioeconomic status (SES), coded 1 if the father is 
employed in non-manual work and 0 otherwise. 

The model that we wish to estimate is based on true values and may be written 

In this model yG,xlij, xZj and x3ij represent true values of the variables denoted by 
capitals in the preceding list. In particular, x2, is the mean of the true year 3 reading 
scores for the full cohort in school j. The uj and eij are residuals at level 2 and level 1 
respectively, assumed to be independently distributed with zero mean and constant 
variance: 



MEASUREMENT ERROR IN MULTILEVEL ANALYSIS 

The parameters to be estimated are Po, P,, P2, P, (the fixed parameters) and d and d 
(the random parameters). Equations (2.1) and (2.2) define a two-level variance 
components model for the true year 5 reading score of each pupil, conditional on the 
true year 3 score of the pupil, the true mean year 3 score for the cohort in the school, 
and the pupil's true family SES. The observed individual scores and the mean year 3 
scores are subject to measurement error, 

Xlij = Xlly +Clij, 

x, = x2, +C2,, 1y..
q --Yij +Vij. 

Each pupil's SES is assumed to be observed without error: 

We assume that the errors CIQ are distributed with zero mean and constant variance, 
and that they are not correlated either with one another across pupils or with the true 
values xlij. We make similar assumptions about the errors qij The errors C2, are 
assumed to be distributed with zero mean, and their variances will depend on the 
numbers of pupils in each school j, in the manner described in Section 3. They will 
also covary with the errors Clij. 

Considerable further elaboration would be required to produce a fully satisfactory 
model for these data. For example, it is unrealistic to assume complete reliability for 
the SES variable, it is probable that the coefficient of x,  varies from school to school, 
and other explanatory variables should be considered for inclusion. It is also a 
simplification to assume that each pupil's year 5 score will be affected equally by the 
mean year 3 score for the full cohort in the school. The purpose of the analysis, 
however, is to illustrate in a relatively simple context the effects of adjustment for 
measurement error. 

3. MEASUREMENT ERROR VARIANCES AND COVARIANCES, AND 
RELIABILITY 

The model described by equations (2.1)-(2.4) can be estimated by using the multi- 
level modelling package MLn (Rasbash and Woodhouse, 1995), which incorporates 
the theory described in Woodhouse (1996). Before carrying out this analysis, how- 
ever, we require prior estimates of the measurement error variances of X, and of Y, 
and for each school j an estimate of the measurement error variance of X2 and its 
measurement error covariance with the errors in X, for pupils within the school. 

Ecob and Goldstein (1983) discussed the difficulty of obtaining satisfactory 
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estimates of measurement error variances and covariances. They cast doubt on the 
assumptions underlying standard procedures and proposed an alternative procedure 
based on the use of instrumental variables. In the present paper we do not address 
the issue of measurement error estimation directly, but we observe that in general 
estimates of measurement error variances are imprecise and it is advisable to inves- 
tigate the effects of varying assumptions. In the present case, no dependable prior 
estimates are available for the measurement error variances of Y and XI; nor are 
there suitable estimates of the reliability of these variables for the population under 
study. 

The analyses in Section 4 show the effects on the parameter estimates of adjust- 
ment for varying amounts of measurement error. These amounts are expressed in 
the forrn of assumed reliabilities for Y and Xl. We now derive expressions which will 
enable us to convert these assumptions into the measurement error variances and 
covariances needed for the parameter estimation. 

If we assume that the measurement error variance of X1 is constant for all pupils, 
with a known value var(tl), it is straightforward to estimate for each school the 
variance of the error in X2 and its covariance with the errors in X1 for pupils in the 
school. 

Consider a given school j. Let Nj be the size of the cohort in school j, and write nj 
for the size of the sample. We have, by definition, 

The measurement error (2j in X2j is given by 

where Zl.j is the mean of the true scores for the pupils sampled, and E(Zl.j) = x2,. 
For school j, x2,, though unknown, is fixed. The sample of size nj has been selected, 

we assume at random without replacement, from the known cohort s f  size Nj. 
Therefore 

where o$(xlii) is the variance of the true scores x l  within the cohort for school j. 
Since measurement errors are assumed to be uncorrelated across students, the 

measurement error covariance between XI and X2 for pupil a in school j is 
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= cov %) 

These results enable us to estimate model (2.1)-(2.4), provided that we have 
estimates of, or make assumptions about, 

(a) <(xlr), the within-school variance of the true year 3 scores, for each school, 
(b) var(E1), the measurement error variance of the observed year 3 scores, and 
(c) 4, the measurement error variance of the observed year 5 scores. 

We shall assume that the within-school variance &(xlr) of the true year 3 scores is 
the same for all schools, with value &(x,). As we have already assumed that the 
measurement errors in the observed scores are uncorrelated with the true scores and 
that their variance is constant, it follows that the within-school variance of the 
observed year 3 scores also is constant, say &(XI). A reasonable estimate of this is 
the level 1 variance obtained when fitting X, to its mean in a two-level variance 
components model. 

We do not have a prior estimate of var([,), and one possible way forward is to 
define the level 1 reliability R1 of X1 as 

Now, given an estimate G$(x,) for the within-school variance of X,, and an assumed 
value of R,, the level 1 measurement error variance of X, is estimated as 

With these assumptions, the level 2 measurement error variance of X,, is estimated 
as 

and the covariance with errors in X, as 
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Similarly, if we assume that the within-school variance of the true year 5 scores is 
constant, it follows that the within-school variance of the observed response also is 
constant. Given an estimate %(Y) for this variance, and an assumed value Ry of the 
response reliability, we have the following estimate for the measurement error 
variance of K 

3= (1 -Ry) %(Y). 	 (3.9) 

Note that the adjustment method described in Woodhouse (1996) uses measurement 
error variances and covariances, not reliabilities. Our assumption here of constant 
reliabilities across schools for X ,  and Y allows us to express in a familiar way 
different assumptions about the degree of measurement error in the data. This use of 
reliabilities is not essential, and in particular we make no use of the reliability of X2 in 
the population of schools. (See Raudenbush et al. (1991) for a further discussion of 
this issue.) 

Longford (1993) described a measurement error model where a vector of indicator 
or manifest variables S is a linear function of a set of true but unobserved variables x. 
At its most general this is a latent variable model and in the special case of a single 
unobserved variable it is the usual congeneric test score model. Longford specialized 
the model to the case where the 'loadings' are known, and in particular he considered 
the assumption of 'exchangeability' where the loadings are assumed to be equal. For 
these cases he derived maximum likelihood estimators. Longford's model is therefore 
different from the present case where we assume prior knowledge of the measurement 
error variance rather than specifying an implicit model which allows the measure- 
ment error variance to be estimated. 

4. ANALYSIS AND DISCUSSION 

Four analyses of the model in Section 2 were conducted, illustrating the effects of 
progressively more complete adjustment: 

(a) analysis A, adjustment for measurement error in X 1  only, i.e. no adjustment 
for measurement error at level 2 or in the response; 

(b) analysis B, adjustment for measurement errors in X 1 and X2 but not for covari- 
ances between these errors nor for measurement error in the response; 

(c) analysis C, adjustment for measurement errors in Xl  and X2 and for covarian- 
ces between them, but no adjustment for measurement error in the response; 

(d) analysis 	D, adjustment for measurement errors in X 1  and X2 and for 
covariances between them, and for measurement error in the response. 

Unadjusted results were provided by analysis A with R 1 = 1.O. In all analyses X ,  was 
assumed to have been measured without error. Of the four analyses, clearly analysis 
D is to be preferred in practice. The other three show the extent to which it is possible 
to be misled by incomplete adjustment for errors in the variables. 
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TABLE 1 

Sample and cohort sizes for each school (indexed by j)? 

i n j  is the number of pupils sampled; N, is the cohort size. 

Table 1 shows for each school j the number of pupils in the sample, the total 
number in the age cohort within the school and the sampling fraction. Equations 
(3.6)-(3.8) provide estimates for the measurement error variances of X1 and X2, and 
for the covariance between errors in X2 and in X1, in terms of the level 1 reliability R1 
of X1, the estimated within-school variance %(XI), assumed constant, and the 
sample and cohort sizes in each school. In analyses A-C, we allow R1 to assume 
values ranging from 1.0 down to 0.7. The common within-school variance of X1 was 
estimated from a simple two-level variance components model fitting X1 to its mean 
and was found to be 0.89. 

A pooled estimate for the within-school variance of Y was obtained in a similar 
way from a two-level variance components model fitting Y to its mean and was 
found to be 0.86. Equation (3.9) was used in analysis D to provide estimates of the 
response measurement error variance 4for different assumptions about the response 
reliability R,. 

4.1. Parameters Essentially UnafSected by Measurement Error at Level 2 
Estimates of these parameters are summarized in Table 2. Consider first the 

parameter p,. For two pupils in the same school and with the same SES, P1 is the 
predicted difference in their normalized scores for year 5, per point of difference in 
their true normalized year 3 scores. With no adjustment for measurement error (first 
row of Table 2), the model predicts that the pupil scoring higher in year 3 will score 
higher in year 5 also, by an amount 0.77 per point on the year 3 scale. When 
adjustment is made at level 1, p1 igcreases as the assumed level 1 reliability R1 
decreases, so that, when R1 = 0.8, Dl has increased by a factor 1.27. Its standard 
error has increased by a factor 1.41. These disattenuation factors become 1.46 and 
1.74 respectively, when R1 = 0.7. Thus the estimate of the coefficient of x1 is 
approximately, though not exactly, in inverse proportion to the assumed level 1 
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TABLE 2 
Adjusted estimates of parameters which were essentially unaffected by measurement error at level 27 

-

Rel~abrlity R 1  Intercept b0 year 3 score 81 SES Level 1 variance 3 

tstandard errors are given in parentheses. 

reliability of X1, whereas the precision of the estimate decreases slightly as this 
reliability decreases. These effects are similar to those fpr simple regression in the 
presence of measurement error. The disattenuation of ,Dl is illustrated in Fig. ](a). 
Further adjustment for measurement error at level 2 (as in analyses B and C) has 
negligible further effect on the estimate of this parameter, which remains statistically 
highly significant throughout. 

The parameter ,Dj is the predicted difference in outcome score between two pupils 
in the same school and with the same true score in year 3, where one pupil's father is 
in non-manual employment and the other's is not. With no adjustment for measure- 
ment error in X1, the benefit to the pupil with a non-manual background is estimated 
to be 0.17 points on the outcome scale and to be statistically highly significant. When 
R1 = 0.8 and adjustment is made at level 1, that estimate is attenuated by a factor 
0.44, with an accompanying increase in its standard error. With the usual distri- 
butional assumptions, the effect of SES on outcome score ceases to be statistically 
significant at the 5% error level for R1 < 0.82. As with ,Dl, further adjustment for 
measurement er_ror at level 2 has negligible further effect on the estimate of ,D3. The 
attenuation of ,D3 is illustrated in Fig. l(b). 

The other parameter (apart from the intercept) whose estimates do not vary 
noticeably between the three analyses A, B and C is the residual variance at level 1, 
nz. When adjustment is made on the assumption that R1 = 0.8, the estimate is 
reduced by 44% of its unadjusted value. This is the variance in Y explained by the 
assumed measurement error variance of X1 in this case. The attenuation increases to 

1.O 0.9 0.8 0.7 1.O 0.9 0.8 0.7 
Level1Reliability Level1Reliability 

(a) (b) 

Fig. 1. Adjusted estimates of (a) PI,the coefficient of individual year 3 score, and (b) P3 the coefficient 
of SES, as functions of the level 1 reliability R1 
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76% as R, decreases to 0.7, and 8 vanishes for a sufficiently low assumed value of R, 
(approximately 0.65 for this data set). 

4.2. EfSect of Adjustment for Measurement Error at Level 2 
The estimation of b2and, to a lesser extent, of the level 2 residual variance 4is 

affected by measurement error at level 2 (Table 3). The parameter ,B2 predicts the 
difference between pupils' outcomes in different schools which is attributable to the 
difference between the true mean year 3 scores in the schools. Its negative sign 
indicates that, according to the model in Section 2, pupils with a given year 3 score 
and SES obtain better scores on average in year 5 the lower the mean year 3 score is 
in their school. Thus, pupils with low year 3 scores are predicted to do better where 
they are closer to the school mean and pupils with high year 3 scores to do better the 
further they are from the school mean. Further analysis, incorporating interaction 
terms for example, would be needed to test such a hypothesis, but this is beyond the 
scope of the present paper. 

Assuming normality, the effect of the school mean year 3 score is estimated to be 
non-significant when there is no adjustment for measurement error but increases 
markedly in size as the asjumed level 1 reliability R, decreases. In analysis A, which 
adjusts at level 1 only, ,L12 is estimated to be statistically significant ( p < 0.05) for 
R, < 0.80. 

Analysis B adjusts for the effect of the measurement error variances of X2, 
calculated from equation (3.7) but ignores the covariance: between the measurement 
errors in X2jand XIii With this adjustment the estimates P2 are further disattenuated 
and are estimated to be statistically significant (p < 0.05) when R, < 0.79. 

In analysis C the level 2 measurement error covariance matrix for each school 
includes the covariance between the measurement errors in XIv and X2,. All such 

TABLE 3 

Adjusted estimates of parameters which were affected by measurement error at 


level 2t 

-

Reliability R I  Estimates for the following adjustments$: 

A B C 

j$: mean year 3 score 
1.0 0.00 (0.10) 0.01 (0.12) 0.01 (0.12) 
0.9 -0.08 (0.10) -0.10 (0.13) -0.07 (0.12) 
0.8 -0.19 (0.10) -0.23 (0.13) -0.17 (0.13) 
0.7 -0.33 (0.10) -0.41 (0.14) -0.30 (0.13) 

2:level 2 variance 
1 .O 0.059 (0.015) 0.059 (0.015) 0.059 (0.015) 
0.9 0.060 (0.016) 0.059 (0.016) 0.060 (0.016) 
0.8 0.059 (0.016) 0.058 (0.016) 0.061 (0.016) 
0.7 0.056 (0.016) 0.051 (0.016) 0.063 (0.016) 

tstandard errors are given in parentheses; 

$A, adjustment at level 1 only; B, adjustment at levels 1 and 2, ignoring measurement 

error correlation; C, adjustment at levels 1 and 2, including measurement error correl- 

ation. 
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1 .O 0.9 0.8 0.7 
Level 1 Reliability 

Fig. 2. Adjusted estimates of p2, the coefficient of mean year 3 score, as functions of the level 1 
reliability RI:A, adjustment at level 1 only; B, incomplete adjustment at level 2; C, full adjustment at 
level 2 

covariances are positive. Because the coefficients Dl and /3, are of opposite sign, the 
ehffect of adjusting for these positive covariances is to reduce the size of the estimates 
P2. The standard errors also are reduced but by very small amounts, so that t4e 
precision of the estimates is less than in either of the other analyses. In analysis C, P2 
is estimsted to be statistically significant (p<0.05) when R1<0.73. The disattenua- 
tion of ,D2 is illustrated in Fig. 2. If P1 and P2 were of like sign, the effect of adjusting 
for positive covariances betyeen the measurement errors in Xlii and X2j would be to 
increase further the size of P2. 

The estimates of level 2 residual variance 4,although somewhat different for 
analyses A-C, nevertheless change relatively little as a result of adjustment compared 
with those of ~. The estimate of the intraschool correlation therefore increases as 
measurement error variances increase (Fig. 3). 

4.3. Eflect of Measurement Error in Response Variable 
For analysis D, estimates of the measurement error variance 4of the response 

were obtained from equation (3.9), based on the assumption of equality of R1and the 

1 .O 0.9 0.8 0.7 0.6 
Level 1 Reliability 

Fig. 3. Adjusted intraschool correlation as a function of level 1 reliability R1and response reliability 
Ry:C,no adjustment for measurement error in the response; D, adjustment assuming R y= R1 
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response reliability Ry, and allowing this common value to decrease. Given R,, 3 is 
constant and in particular independent of the explanatory variables in any model and 
of their assumed measurement error variances and covariances. Clearly, 6: cannot 
exceed the residual level 1 variance 2 that would be left unexplained by a model 
omitting 6;.This imposes limits on the values that Ry and R1 can take. 

A full adjustment was made for measurement errors in Y, X1 and X,, and as before 
X, was assumed to have been measured without error. The lowest common value of 
R1 and Ry for which 2 remained positive was 0.805. The estimates 2 from analysis 
C were reduced, as expected, by approximately the value of 3 in each case. Changes 
in the other parameters and their standard errors resulting from the additional 
adjustment for measurement error in Y were negligble. 

Fig. 3 shows how the intraschool correlation depends on assumptions about R1 
and R,. The intraschool correlation, or more generally the intra-unit correlation, is 
an important statistic in multilevel analysis. In the present case a value above 0.25 
would suggest a substantial school level effect not explained by the model. On the 
assumption of a reliability of 0.90 for Y and for XI, we obtain a value 0.27 for the 
intraschool correlation. This value increases to 0.42 for Ry  = R1= 0.85. Without 
adjustment for measurement error in the response variable (as, for example, in 
analysis C) the intraschool correlation may be seriously underestimated. 

5. CONCLUSIONS 

Methods of adjusting for measurement error in single-level models and the effects 
of such adjustment are already well documented (see, for example, Fuller (1987)). In 
single-level regression analysis adjustment for measurement error in explanatory 
variables tends to increase the magnitude of the associated coefficients: our analysis 
has shown for this data set a similar effect at each level of a two-level model. As in the 
single-level case, adjustment for measurement error in a multilevel model can have 
substantial effects on other parameter estimates also. In this illustrative analysis the 
standard errors of all parameters have been found to increase when an adjustment is 
made. 

The level 1 residual variance decreases markedly when adjustment is made for 
measurement error in an explanatory variable at level 1. This produces a substantial 
effect on the intraschool correlation, which is further increased when adjustment is 
made for measurement error in the response variable. 

Adjustment for measurement error at level 2 has been found to be important 
chiefly in the estimation of parameters associated with level 2. If a level 1 variable 
and a level 2 aggregate of it are both present in the model, there will be measurement 
error variances and covariances all of which should be adjusted for. Incomplete 
adjustment leads to biased estimates of the parameters associated with level 2, and of 
their standard errors, the direction of the bias depending on the signs of the 
coefficients and of the covariances. 

Analyses of school outcomes often use school level data based on a sample. 
Examples include the proportion of pupils who are eligible for free meals, the 
proportion of girls in the school, the proportion of pupils from specific ethnic 
backgrounds etc. In household surveys where we wish to model the hierarchical 
population structure, typically only a small percentage of households in an area are 
sampled, and we may wish to use area level variables based on aggregating the 
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sample household characteristics. Thus an aggregate variable potentially includes 
error from two sources: error in the variable being aggregated and sampling error. 
The latter may be substantial, even if the former is absent. For adjustment in a 
multilevel model these two contributions to error in the aggregate variable may be 
combined as illustrated in Section 3, provided that the errors are random. 

The model analysed in this paper is the simplest model capable of illustrating the 
effects described. Similar simple models applied to simulated data suggest that the 
adjusted results are indeed an improvement on the unadjusted results. Further work 
is needed, and it is of both practical and theoretical importance to explore the effects 
of adjustment for measurement error on multilevel models with random coefficients. 

Finally, it is important in any study to obtain suitable estimates of measurement 
error variances and covariances, and in particular to investigate the effect of varying 
the estimates, for example, in accordance with any uncertainty intervals that may be 
available. Different assumptions about measurement error variances and covariances 
can lead to substantially different conclusions. 
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