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Health outcome: fat mass at age 12, n = 4120
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A number of confounders/predictors are available including:
height, sex, characteristics of mother.



Predictor: physical activity profile at age 12
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I time series of measurements by minute over 7 days of
4120 individuals at age 12;

I after some pre-processing;
I cutpoints for light/moderate/vigorous activity estimated

from a calibration study (Mattocks et al, 2007);
I mean hours worn per day: 11 hours (SD 4.9 hours).



Protocol for pre-processing of activity profiles

1. replace any sequence with more than 10 zeros by missing
values;

2. exclude days if:
I mean count < 150;
I mean count > 3 SD above overall mean (prior to

exclusions);
I monitor was worn < 10h;

3. Exclude weekly profiles if < 3 valid days were observed.



random sample of 4 profiles
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Objectives

I Scientific question: What is the relationship between
physical activity profile and fat mass?

I So far only single summary statistics of physical activity
profiles are used, e.g. moderate to vigorous physical
activity (MVPA).

I MVPA neglects a large part of the activity profile where
activity is light or below;

I relies on setting cut-points for moderate and vigorous
activity;

I cut-points may change with age;
I the pattern of physical activity may be relevant.

I Aim: develop a statistical tool to explore the relationship
between physical activity and fat mass.



Requirement: a functional summary of the profiles

I cannot compare individuals using profiles directly;
I need to reduce the dimension of data;
I the function should be simple and easy to interpret;
I different possibilities: spectrum, quantiles, cumulative

density function, histogram, ...

Here we use the histogram as a function.



Mean histogram
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Mean histogram
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Some extreme histograms
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Model fat mass as a function of the accelerometer
profile

I response yik total fat mass for individual i at age k ;
I vector xik is the accelerometer profile, with 10080 entries;
I zik (x) is the histogram with some given number of

mid-points xj ;

Start with a linear model:

log(yik ) = α+
∑

j

βjzik (xj) +
∑

l

γlconfounderlik + εik .

with εik ∼ N(0, σ2) and confounders sex, height,
height2.



A generalised regression of scalars on functions
(Ramsay and Silverman, 2005)

Let the βj vary smoothly, where βj = f (xj):

log(yik ) = α+
∑

j

f (xj)zik (xj) +
∑

l

γlconfounderlik + εik .

I f (x) is an unknown ‘coefficient’ function to be estimated;
I f (x) is represented using an adaptive smooth with a

P-spline basis;
I use penalised iteratively re-weighted least squares for

parameter estimation;
I Wood (2010), implemented in R mgcv package.



Preliminary model results
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I results robust to different bin widths;
I backs up the cut-point used for MVPA
I moderate and vigorous activity has a negative effect on fat

mass;
I that very low levels of activity have a positive effect on fat

mass.



Further work

I Should the very low levels of activity with counts close to
zero be included?

I Which transformation of counts should be used?
I classification of activity profiles;
I investigate other types of summary functions;
I look at different ages;
I how sensitive are results to different ways of

pre-processing.
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