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All of the sections within this module have online quizzes for you to 
test your understanding.  To find the quizzes: 

EXAMPLE
From within the LEMMA learning environment 

� Go down to the section for Module 5: Introduction to Multilevel Modelling
� Click " 5.1 Comparing Groups Using Multilevel Modelling"

to open Lesson 5.1 
� Click                to open the first question 

All of the sections within this module have practicals so you can 
learn how to perform this kind of analysis in MLwiN or other 
software packages. To find the practicals: 

From within the LEMMA learning environment 
� Go down to the section for Module 5: Introduction to Multilevel Modelling, 

then 
Either

� Click "5.1 Comparing Groups Using Multilevel Modelling" to open Lesson 5.1 
� Click  

Or 
� Click Print all Module 5 MLwiN Practicals

What is multilevel modelling? 

In the social, medical and biological sciences multilevel or hierarchical structures 
are the norm.   Examples include individuals nested within geographical areas or 
institutions (e.g. schools or employers), and repeated observations over time on 
individuals.  Other examples of hierarchical and non-hierarchical structures were 
given in Module 4.  When individuals form groups or clusters, we might expect that 
two randomly selected individuals from the same group will tend to be more alike 
than two individuals selected from different groups.  For example, children learn 
in classes and features of their class, such as teacher characteristics and the 
ability of other children in the class, are likely to influence a child’s educational 
attainment.  Because of these class effects, we would expect test scores for 
children in the same class to be more alike than scores for children from different 
classes. By a similar argument, measurements taken on the same individual at 
different occasions, e.g. physical attributes or social attitudes, will tend to more 
highly correlated than two measurements from different individuals.  Such 

Q 1
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dependencies can therefore be expected to arise and we need multilevel models – 
also known as hierarchical linear models, mixed models, random effects models
and variance components models - to analyse data with a hierarchical structure.  
Throughout this module we refer to the lowest level of observation in the 
hierarchy (e.g. student or measurement on a given occasion) as level 1, and the 
group or cluster (e.g. school or individual) as level 2. 

One assumption of the single-level multiple regression model is that the measured 
units are independent (see Module 3).  Specifically, we assume that the residuals 

ie  are uncorrelated with one another.  If data are grouped and we have not taken 
account of group effects in our regression model, the independence assumption 
will not hold.  One way to allow for grouping is to include a set of dummy variables 
for groups as explanatory variables in the model.  For example, in C3.2.2 we 
allowed for between-country differences in levels of hedonism by including two 
dummy variables for Germany and France (treating the UK as the reference group).  
A model with dummy variables for groups is called a fixed effects model but, for 
reasons summarised in C3.2.3, there are problems with adopting this approach 
when the number of groups is large.  An alternative strategy to allow for group 
effects is to include in the model explanatory variables that measure group 
characteristics that are believed to influence individual outcomes.  We might, for 
example, collect data on teachers’ experience and their teaching methods.  In 
practice, however, the processes which lead to clustering are complex and 
important sources of group effects are likely to be unmeasured and therefore not 
fully accounted for by including group-level variables.  So, on its own, this 
approach is not enough to allow for clustering. 

What are the implications of ignoring clustering?  Suppose we are interested in the 
predictors of children’s educational attainment and, in particular, whether there 
are inequalities by gender and ethnicity.  We are not concerned with differences 
among schools and therefore fit a multiple regression model with gender, ethnic 
group and some family background measures as explanatory variables.  If 
attainment is clustered by school, however, and this is not taken into account in 
the analysis, the standard errors of the regression coefficients will generally be 
underestimated (see C5.2.4 for a non-technical explanation for this).  
Consequently confidence intervals will be too narrow and p-values will be too 
small, which may in turn lead us to infer that a predictor has a ‘real’ effect on the 
outcome when in fact the effect could be ascribed to chance.   Underestimation of 
standard errors is particularly severe for coefficients of predictors that are 
measured at the group level, e.g. an indicator of whether a school is mixed or 
single sex.  Correct standard errors will be estimated only if variation among 
groups is allowed for in the analysis, and multilevel modelling provides an efficient 
means of doing this. 

Obtaining correct standard errors is just one reason for using multilevel modelling.  
If you are interested only in controlling for clustering, rather than exploring it, 
there are other methods that can be used.  For example, survey methodologists 
have long recognised the consequences of ignoring clustering in the analysis of 
data from multistage designs and have developed methods to adjust standard 
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errors for design effects.  Another approach is to model the dependency between 
observations in the same group explicitly using a marginal model.  Both methods 
yield correct standard errors, but treat clustering as a nuisance rather than 
something of substantive interest in its own right.  Multilevel modelling enables 
researchers to investigate the nature of between-group variability, and the effects 
of group-level characteristics on individual outcomes.   Some examples of research 
questions that can be explored using multilevel models are given below:  

� Is there between-school variability in students’ academic progress?  Does 
the strength of the relationship between prior attainment and subsequent 
performance vary across schools?  The first question is concerned with 
overall differences in school effectiveness while the second asks whether 
some schools are more effective for certain types of students, e.g. those 
with low or high ability.  A school in which the mean attainment at age 16 
depends little on a student’s intake score may be said to show greater 
equity because it has decreased differences in outcomes across its intake 
spectrum.

� Do health outcomes vary across areas?  Are between-area variations in 
health explained by differences in access to health services?  Is the amount 
of variation between areas different for rural and urban areas? 

� Does the rate of physical growth vary across children?  Does variability in 
the growth rate differ for boys and girls? 

Note that the data structures in the above examples are all hierarchical, that is 
each level 1 unit belongs to a single level 2 unit.  More generally, structures can be 
non-hierarchical.  Module 4 gave examples of cross-classified and multiple 
membership structures.  In this module, we consider only models for hierarchical 
structures.  We also restrict the discussion to models for continuous (normal) 
responses.  Multilevel models for non-hierarchical structures and non-normal 
responses will be described in subsequent modules. 

55HTable 5.1 summarises the alternative approaches that might be considered when 
analysing a dataset with hierarchical structure in which we anticipate some 
dependency. 
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Table 5.1.  Alternative analysis strategies for hierarchical data 

Strategy Consequences
Fit a single-level model and ignore 
structure 

Substantively you would not measure the 
importance of context.  Technically, your 
standard errors would be too small, leading 
to incorrect inferences (concluding that 
effects that might be ascribed to chance 
are ‘real’, i.e. a high risk of Type I error). 

Include a set of dummy variables for groups 
(a fixed effects model) 

Group is treated as a fixed classification, so 
the target of inference is restricted to the 
groups represented in the sample.   If the 
number of groups is large, there will be a 
large number of additional parameters to 
estimate.  The effects of group-level 
predictors cannot be estimated 
simultaneously with group residuals. 

Fit a single-level model with group-level 
predictors 

High risk of Type I errors because standard 
errors of coefficients of group-level 
predictors may be severely underestimated. 
No estimate of the between-group variance 
that remains unaccounted for by the 
included group-level predictors. 

Correcting standard errors for design 
effects, or fitting a marginal model in 
which the dependency is modelled directly 

The standard errors will be correct 
(properly adjusted for clustering), but 
unable to assess the degree of between-
group variation. 

Multilevel modelling (random effects) Correct standard errors and an estimate of 
between-group variance. 

Introduction to the example dataset

The ideas of multilevel modelling will be introduced using data from the 2002 
European Social Surveys (ESS).  Measures of ten human values have been 
constructed for 20 countries in the European Union.  According to value theory, 
values are defined as desirable, trans-situational goals that serve as guiding 
principles in people’s lives. Further details on value theory and how it is 
operationalised in the ESS can be found on the ESS education net 
(22Hhttp://essedunet.nsd.uib.no/cms/topics/1/).

We will study one of the ten values, hedonism, defined as the ‘pleasure and 
sensuous gratification for oneself’.  The measure we use is based on the extent to 
which respondents identify themselves with a person with the following 
descriptions: 
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� He (sic) seeks every chance he can to have fun.  It is important to him to do 
things that give him pleasure. 

� Having a good time is important to him.  He likes to “spoil” himself. 

Higher scores on the hedonism variable indicate more hedonistic beliefs.  

Data for three countries – France, Germany and the UK – were analysed in Module 3 
to illustrate multiple regression.  Here, we analyse data from all 20 countries in 
the study.  The combined sample size for these countries is 36,527.  The data have 
a two-level hierarchical structure with individual respondents at level 1 and 
countries at level 2.  We will treat country as a random classification. 

In the following analyses, we investigate between-country variation in hedonism 
using different types of two-level model.  We consider four explanatory variables: 

� Respondent’s age in years 
� Respondent’s gender 
� Respondent’s monthly household income in bands (less than 150 Euros, 150-

300, 300-500, 500-1000, 1000-1500, 1500-2000, 2000-2500, 2500-3000, 3000-
5000, 5000-7500, 7500-10000, 10000+) 

� Country-level income (the mean income band in a country); this is a level 2 
variable. 

The following countries were included in the study: Austria, Belgium, the Czech 
Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Israel, 
Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden, Switzerland, and 
the United Kingdom.  The target of inference could be a wider population of 
countries from which those in the study can be considered a random sample.  
However, it is not clear which countries such a population would contain.  In this 
case, it is more natural to think of the sample data as if they were a set of 
realisations from some underlying process that could extend through time and 
possibly space1.  This process has driven the observations, but the statistics we 
compute from the observed data refer to a particular point in time and are subject 
to random fluctuations.    We are interested in the underlying process that has 
generated the data we observe, and use the ‘sample’ data to make inferences 
about this process. 

1 In survey sampling this abstract notion of a target population is called a superpopulation.  A 
superpopulation is infinite, while a population consisting of a fixed number of countries (e.g. all 
European countries) is finite. 
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C5.1 Comparing Groups using Multilevel Modelling  

C5.1.1 A multilevel model for group effects 

A single-level regression model for the mean 

Before introducing multilevel models, let’s consider the simplest possible 
regression model: a model for the mean of the dependent variable y  with no 
explanatory variables.  Such a null or empty model may be written 

ii ey �� 0�    (5.1) 

where iy  is the value of y  for the i th individual ( ni ,...,1� ), 0�  is the mean of y

in the population, and ie  is the ‘residual’ for the i th individual, i.e. the difference 
between an individual’s y  value and the population mean.  56HFigure 5.1 shows the 
residuals for four observations ( 4�n ). We usually assume that the residuals follow 
a normal distribution with mean zero and variance 2� , i.e. ),0(~ 2�Nei .  The 
variance summarises the variability around the mean; if this is zero all the points 
would have the same y-value and would therefore lie on the 0��y  line.  The 
larger the variance, the greater the departures about the mean. 

Figure 5.1.  Residuals for four data points in a single-level model for the mean 

A multilevel model for group means 

Now let’s move to the simplest form of a multilevel model, which allows for group 
differences in the mean of y .  We now view the data as having a two-level 
structure with individuals at level 1, nested within groups at level 2.  To indicate 
the group that individual i  belongs to, we add a second subscript j  so that ijy  is 

the value of y  for the i th individual in the j th group.  Suppose there are a total 

y1

y2

y3
y4

0�
e1 e2

e3 e4
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of J  groups with jn  individuals in the j th group, and that the total sample size is 

....21 Jnnnn ����

In a two-level model we split the residual into two components, corresponding to 
the two levels in the data structure. We denote the group-level residuals, also 
called group random effects, by ju  and the individual residuals by ije .  The two-
level extension of (5.1) which allows for group effects is given by  

ijjij euy ��� 0�   (5.2) 

where 0�  is the overall mean of y  (across all groups). 

The mean of y  for group j  is ju�0� , and so the group-level residual ju  is the 

difference between group j ’s mean and the overall mean.  The individual-level 
residual ije  is the difference between the y -value for the i th individual and that 

individual’s group mean, i.e. )( 0 jijij uye ��� � . 57HFigure 5.2 shows y -values for 
eight individuals in two groups, with individuals in group 2 denoted by black circles 
and those in group 1 denoted by grey squares.  The overall mean is represented by 
the solid line and the means for groups 1 and 2 are shown as dashed lines.  Also 
shown are the group residuals and the individual residual for the 4th individual in 
the 2nd group ( 42e ). Group 1 has a below-average mean (negative ju ), while group 

2 is above average ( positive ju ).

Figure 5.2.  Individual and group residuals in a two-level model for the mean 

Residuals at both levels are assumed to follow normal distributions with zero 
means: ),0(~ 2

uj Nu �  and ),0(~ 2
eij Ne � .  The total variance is therefore partitioned 

into two components: the between-group variance 2
u� , based on departures of 

group means from the overall mean, and the within-group between-individual 

�0
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u2
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